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Abstract

Structural models of default are unable to generate measurable Baa-Aaa credit spreads, when

these models are calibrated to realistic values for default rates and losses given default. Motivated by

recent results in behavioral economics, this paper is the first to propose a consumption-based asset

pricing model with disappointment aversion preferences in an attempt to resolve the credit spread

puzzle. Simulation results suggest that as long as losses given default and default boundaries are

countercyclical, then the disappointment model can explain Baa-Aaa credit spreads using preference

parameter values that are consistent with experimental findings. Further, the disappointment

aversion discount factor can match key moments for stock market returns, the aggregate price-

dividend ratio, and the risk-free rate.

keywords: structural models of default, credit spreads, consumption-based asset pricing, disappointment
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oυκ αν λάβoις παρά τoυ µη έχoντoς

You cannot receive anything by someone who has nothing

“Dialogues of the Dead”, Lucian (125− 175 A.D.)

1 Introduction

When traditional structural models of default are calibrated to realistic values for default rates and

losses given default, then these models are unable to generate measurable Baa-Aaa credit spreads,

an empirical conundrum also known as the credit spread puzzle. Moreover, recent results1 suggest

that state-of-the-art consumption-based asset pricing models cannot rationalize Baa-Aaa bond

spreads, even if they can successfully explain equity premia. Nevertheless, a universal stochastic

discount that can resolve the equity premium puzzle should also be able to fit credit spreads in

corporate bond markets.

Although behavioral theories have been extensively used to explain equity risk premia2, this

is the first paper to address the credit spread puzzle from a behavioral perspective. Towards this

objective, I use a general equilibrium model of an endowment economy populated by disappointment

averse investors in order to price zero-coupon corporate bonds subject to default. Disappointment

aversion preferences were first introduced by Gul (1991), and are able to capture well documented

patterns for risky choices, such as asymmetric marginal utility over gains and losses or reference-

based evaluation of stochastic payoffs3. Moreover, disapppointment aversion preferences do not

violate first-order stochastic dominance, transitivity of preferences or aggregation of investors. The

disappointment aversion framework can therefore help us shed additional light on the link between

credit-spreads and aggregate economic activity while maintaining investor rationality.

Disappointment averse investors are characterized by first-order risk aversion4 preferences with

1Chen et al. 2009.
2Epstein and Zin (1990), Bernatzi and Thaler (1995), Barberis et al. (2001), Andries (2011), Piccioni (2011),

Easley and Yang (2012), Delikouras (2013).
3Kahneman and Tversky (1979), Duncan (2010), Pope and Schweitzer (2011).
4Segal and Spivak (1990).
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endogenous expectation-based reference points for gains and losses. Due to the linear homogeneity

of these preferences, I am able to obtain approximate analytical solutions for the price-payout ratios

(price-dividends, price-earinigs) in the economy. This is the first paper to derive analytical expres-

sions for price-payout ratios when investors and disappointment averse and aggregate uncertainty

is time-varying. Explicit solutions for price-payout ratios, in turn, facilitate model simulation, and

provide valuable intuition. Price-payout ratios are log-linear functions of three state variables:

consumption growth, consumption growth volatility, and consumption growth variance.

The main mechanism in place for disappointment aversion preferences is related to asymmet-

ric marginal utility, and the fact that disappointment averse investors penalize losses below the

endogenous reference level three times more than they do for losses above the reference level.

The disappointment aversion model highlights the interaction between default rates and periods

of worse-than-expected aggregate macroeconomic conditions. During these periods there is an up-

wards jump in marginal utility. Almeida and Philipon (2007) also document that distress costs are

most likely to happen during times when marginal utility is high.

Figure I shows Baa-Aaa credit spreads, Baa default rates, and NBER recessions for the 1946-

2011 period. Two things become immediately clear from Figure I. First, credit spreads are strongly

countercyclical. Second, Baa default rates remain close to zero over long periods of time, and tend

to spike up at or after a recession. Through first-order risk aversion, the disappointment model

amplifies very small risks, such as the almost zero default risk for Baa firms, and is able to generate

measurable Baa-Aaa credit spreads despite the very low default rates.

Although several consumption-based asset pricing models have proposed frameworks that gen-

erate credit spreads consistent with empirical observations, with the exception of the habit model in

Chen et al. (2009), either preference parameters (eg. the risk aversion coefficient) in these models

are much larger than those estimated in clinical experiments5, or these models cannot perfectly

match other asset pricing moments such as equity risk premia6. On the other hand, the disappoint-

5Chen (2010), p. 2190, assumes a risk aversion parameter equal to 6.5 and an EIS larger than 1.
6The equity premium in Bhamra et al. (2010) p. 682 is 3.19%, whereas the sample equity premium for the

1946-2011 period is around 6.5%.
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ment model of this paper is calibrated to preference parameter values which are consistent with

recent experimental results7: the risk aversion parameter is equal to 1.8, and the disappointment

aversion coefficient is equal to 2.03.

This paper compliments a growing literature which argues that disappointment aversion prefer-

ences are able to address a variety of stylized facts in financial markets such as the equity premium

puzzle (Routledge and Zin 2010, Bonomo et al. 2011), the cross-section of expected returns (Os-

trovnaya et al. 2006, Delikouras 2013), or limited stock market participation (Ang et al. 2005,

Khanapure 2012). Simulation results suggest that as long as losses given default and default bound-

aries are countercyclical, then the disappointment model can explain the credit spread puzzle, and

generate expected Baa-Aaa credit spreads equal to 100 bps for four-year maturities. This is very

close to the historical average of 103 bps in Huang and Huang (2012). In contrast, for the discrete

time version of Merton’s model (Merton 1974), the Baa-Aaa credit spread is equal to 51 bps. Never-

theless, the disappointment model seems to overpredict expected credit spreads for long maturities

(15yr+).

Ever since Merton’s model, most results on corporate bond pricing (Leland 1994, Leland and

Toft1996, Goldstein et al. 2001, Bhamra et al. 2010) rely directly on risk-neutral probability

measures for asset returns, while being silent on investor preferences and the stochastic discount

factor. In contrast, this paper adds to recent works by Chen et al. (2009), and Chen (2010) who

approach the equity premium and credit spread puzzles in a unified manner, explicitly using a

universal consumption-based stochastic discount factor across all financial markets.

Taking a stance on the functional form of the stochastic discount factor is particularly im-

portant for two reasons. First, we can identify whether a particular set of preferences is able to

generate plausible asset pricing moments across different markets. For instance, besides explain-

ing the credit spread puzzle, the disappointment aversion discount factor in this paper matches

moments for aggregate state variables, stock market returns, and the risk-free rate. Second, esti-

mates for preference parameters can be compared to recent experimental findings for choices under

7Choi et al. (2007), Gill and Prowse (2012).
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uncertainty in order to assess the empirical plausibility of the model.

There are many asset pricing models that can efficiently explain stylized facts in financial

markets, yet these models usually explain asset prices one market at a time. The strategy of this

paper is to impose more discipline on investor preferences, and provide solid micro-foundations

for a universal discount factor across different markets by taking into account recent experimental

results for choices under uncertainty. These results emphasize the importance of expectation-

based reference-dependent utility. The use of disappointment aversion preferences is motivated by

strong experimental and field evidence from aspects of economic life that are not directly related

to finance8. This paper also adds to the relatively limited strand of literature that incorporates

elements of behavioral economics into a consumption-based asset pricing model without violating

key assumptions of the traditional general equilibrium framework.

2 The credit spread puzzle

2.1 Historical data

Average default rates for the 1970-2011 period9 and recovery rates are from the Moody’s 2012

annual report. Data on recovery rates start in 1982. Corporate bond yields are obtained from

Datastream and the St. Louis Fed website for four different sets of indices: two Moody’s indices10,

four Barclays indices11, six BofA indices12, and eighteen Thomson-Reuters corporate bond indices13.

In terms of aggregate variables, personal consumption expenditures (PCE), and PCE index data

8Choi et al. (2007), Gill and Prowse (2012), Artstein-Avidan and Dillenberger (2011).
9Average default rates in the Moody’s report are calculated for three different periods: 1920-2011, 1970-2011,

and 1983-2011. Average default rates for the 1983-2011 sample are almost identical to the ones used in this study.
However, average default rates for the 1920-2011 period are substantially higher than for the 1970-2011 or the 1983-
2011 samples due to the inclusion of the Great Depression.

10Moody’s Seasoned Aaa and Baa Corporate Bond Indices (1920-2011).
11US Agg. Corp. Intermediate Aaa and Baa Indices, US Agg. Corp. Long Aaa and Baa Indices (1974-2011).
12US Corp. 1-5y Aaa and Baa, US Corp. 7-10y Aaa and Baa, and US Corp. 15y+ Aaa and Baa Indices

(2001-2011).
13US Corp. AAA and BBB Indices for maturities from 2yr up to 10yr (2003-2011). Even though BofA indices use

S&P ratings (AAA, BBB), for the practical purposes of this study, BBB (AAA) and Baa (Aaa) ratings are considered
equivalent. See also Cantor and Packer (1994).
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are from the BEA. Per capita consumption expenditures are defined as services plus non-durables.

Each component of aggregate consumption expenditures is deflated by its corresponding PCE price

index (base year is 2004). Population data are from the U.S. Census Bureau. For consumption

data, I follow the “beginning-of-period” convention as in Campbell (2003) and Yogo (2006) because

beginning-of-period consumption growth is better aligned with asset returns. Recession dates are

from the NBER. Interest rates are from Kenneth French’s (whom I kindly thank) website. Market

returns, dividends, and price-dividend ratios are obtained through the CRSP-WRDS database for

the value weighted AMEX/NYSE/NASDAQ index.

Earnings are gross profits (item GP) from the merged CRSP-Compustat database. I use gross

profits as a measure of earnings because Compustat EBIT (or EBITDA) growth rates are very

volatile14. For earinings data, I also follow the “beginning-of-period” convention so that earnings

are aligned with consumption. Earnings have been exponentially detrended due to the increasing

number of firms in the Compustat sample over time. Stock market returns, dividend growth,

earnings growth, and interest rates have been adjusted for inflation by subtracting the growth rate

of the PCE price index15. Aggregate variables and market data are sampled for the 1946-2011

period, with the exception of earnings that start in 1950 and end in 2010 due to Compustat data

availability. All variables have been sampled and simulated at the annual frequency.

2.2 A benchmark model for credit spreads

Consider a discrete-time, single-good, closed, endowment economy in which the aggregation prob-

lem has been solved. Implicit in the representative agent framework lies the assumption of complete

markets. There is no productive activity, yet at each point in time the endowment of the economy is

generated exogenously by n “tree-assets” as in Lucas (1978). There are also markets where equity,

debt, and claims on the total output of these “tree-assets” can be traded. In addition to rational

expectations, I will also assume that there are no restrictions on individual asset holdings or trans-

14EBIT growth volatility in the compustat sample is around is around 12%. Earnings growth volatility from
Shiller’s website is around 30%.

15Rreal,t+1 = exp(logRnom,t+1 − log PCEt+1

PCEt
).
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action costs, that preferences over risky payoffs can be described by CRRA power utility, and that

all agents can borrow and lend at the same risk-free rate. This paper focuses on zero-coupon bonds

because, according to Chen et al. (2009) p. 3384, the inclusion of coupon payments does not really

affect credit spreads.

Consider a T -period, zero-coupon bond written on firm’s i’s assets. This bond pays $1 if the

firm remains solvent at time t+T , and $(1−L) < $1 otherwise. According to Appendix A, expected

yields for zero-coupon, corporate bonds are given by16

E[yi,t,t+T ] = rf −
1

T
log
[
1− LN

(
N−1(πPi,T ) +

µ̃i − rf
σi

√
T
)]
. (1)

yi,t,t+T and rf are the continuously compounded yield-to-maturity and risk-free rate respectively, L

are losses given default, N() is the standard normal c.d.f. and N−1() is the inverse of the standard

normal c.d.f.. πPi,T is the physical probability of default, while µ̃i and σi are the expected value and

standard deviation for asset log-returns. Expected corporate bond yields in (1) depend on Sharpe

ratios (
µ̃i−rf
σi

), physical probabilities of default (πPi,T ), losses given default (L), and bond maturity

(T ). In calibrating the model, I set the Sharpe ratio equal to 0.22 which is the Sharpe ratio for the

median Baa firm in Chen et al. (2009)17. Losses given default L are set equal to 54.9% to match

the average recovery rate of 45.1% for senior unsecured bonds in the Moody’s report18. Physical

probabilities of default, πPi,T , are calibrated to average default probabilities for Aaa and Baa bonds

during the 1970-2011 period, which are shown in Panel A of Table I.

Panel B in Table I shows average Baa-Aaa credit spreads estimated in previous studies, as well

as average spreads for the four sets of bond indices (Moody’s, Barclays, BofA, Thomson-Reuters)19.

Following the credit spread puzzle literature, this paper focuses on Baa-Aaa spreads instead of Baa-

rf spreads because Aaa yields seem to encompass parts of credit spreads such as liquidity, callability,

16This expression is identical to the continuous-time one in Chen et al. (2009) p. 3377. However, Appendix A
derives the expression in (1) for a discrete-time economy with CRRA investors.

17The Sharpe ratio in (1) is the Sharpe ratio for the firm’s assets in place, not the equity Sharpe ratio. However,
because returns for assets in place are hard to measure, I follow Chen et al. (2009) p. 3375 who proxy asset Sharpe
ratios with equity Sharpe ratios.

18Chen et al. (2009) use an average recovery rate of 44.1%.
19See subsection 2.1.
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or tax issues which are unrelated to default risk, and are ignored by the model in (1)20. According

to Panel B, the average Baa-Aaa spread in the Huang and Huang sample (2012) is around 103

bps for short maturities, and 131 bps for medium maturities. Expected credit spreads for the long

maturity Barclays indices is 112 bps. In Duffee (1998), average credit spreads are low because the

sample is short (1985-1995), and is heavily influenced by the 1990-1995 period which, according to

Figure I, is characterized by very low spreads (around 50 bps). In contrast, average credit spreads

for the BofA and Thomson-Reuters indices are high because average credit spreads for the these

indices are calculated over a short sample (2001-2011), and average spreads are affected by extreme

observations during the 2009 recession (Figure I).

For the rest of the paper, target expected credit spreads to be explained will be 103 bps for

4yr maturities and 131 bps for 10yr maturities from Huang and Huang (2012). These spreads are

frequently cited in the literature, and have been calculated over a relatively long period (1973-1993).

The 4yr credit spreads from Huang and Huang are very similar to the 4yr spreads in Chen et al.

(2009) (107 bps for the 1970-2001 period), while 10yr expected credit spreads from Huang and

Huang are very close to 10yr spreads in the Barclays sample (129 bps for the 1974-2011 period).

Finally, target expected spreads for long maturities (15yrs+) are equal to 112 bps from the long-

term Barclays indices. Average credit spreads for long-term Barclays indices, in turn, are similar

to the Moody’s sample (118 bps for the 1920-2011 period).

The second-to-last line in Panel B of Table I shows average Baa-Aaa credit spreads generated by

the benchmark model in (1). Expected Baa bond yields were generated using default probabilities

for Baa firms from Panel A, a Sharpe ratio of 0.22, and losses given default equal to 54.9%.

Expected bond yields for Aaa bonds were estimated using the same values for the Sharpe ratio and

losses given default as in the Baa case, but Aaa default probabilities were used instead. Expected

Baa-Aaa spreads generated by the model in (1) are substantially smaller in magnitude than those

observed in the data. For instance, model implied expected credit spreads for short maturites (4yr)

20Longstaff, Mithal and Neis (2005) find evidence in favor of a liquidity component in the spreads of corporate
bonds over treasuries, while Ericsson and Renault (2006) suggest part of the spread over treasuries can also be
attributed to taxes.
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are almost half the average spreads observed in practice (51 bps vs. 103 bps in Huang and Huang

2012)21.

The credit spread puzzle is clearly illustrated in Figure II. The dotted line shows expected

credit spreads according to the expression in (1) accross different maturities. The scattered dots in

Figure II are average Baa-Aaa spreads from Huang and Huang (2012), and the three sets of bond

indices shown in Table I (Barclays, Thomson-Reuters, BofA). If the expression in (1) were able to

fit expected credits spread reasonably well, then the scattered points should belong to the credit

spread curve. According, to Figure II, the credit spread puzzle is particularly pronounced for short

maturities up to 10 years. However, as maturity (T ) increases, the term
µ̃i−rf
σi

√
T in (1) becomes

larger, and the benchmark model is able to fit credit spreads better.

Besides the implicit assumption of CRRA preferences, the model in (1) imposes three very

important limitations that can explain its problematic empirical performance. First, even though

time-variation in expected asset returns is considered a key mechanism for resolving a number of

stylized facts in financial markets, asset returns in (1) are normally distributed with constant mean

(µ̃i) and variance (σi). Ferson and Harvey (1991) emphasize the importance of time-varying ex-

pected returns, while Campbell and Cochrane (1999), Bansal and Yaron (2004), and Ostrovnaya et

al. (2006) describe different mechanisms (habit, time-varying macroeconomic uncertainty, general-

ized disappointment aversion) which can generate time-variation in investors’ risk attitudes, and,

consequently, time-varying expected returns22.

Second, recovery rates (1 − L) in (1) are also constant. Table II shows OLS regression results

for recovery rates and aggregate consumption growth during the 1982-2011 period. The regression

coefficient is positive (4.461), and statistically significant (t-stat. 3.036, R2 24.767%), suggesting

that recovery rates are most likely procyclical. Figure III also indicates that recovery rates decrease

substantially during recessions23. Appendix B shows that if recovery rates comove with aggregate

21Nevertheless, the benchmark model in (1) is doing quite well in matching average credit spreads for the Duffee
(1998) sample or credit spreads for long maturities.

22Besides constant moments, the normal distribution also appears to be a restrictive assumption. Nevertheless,
Huang and Huang (2012) and Chet et al. (2009) show that introducing jumps or relaxing the normality assumption
cannot resolve the credit spread puzzle.

23Evidence in favor of procyclical recovery rates can be found in Altman et al. (2005), and Acharya et al. (2007)
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economic conditions (consumption growth) in a linear way24

1− Lt+T = arec,0 + arec,c∆ct+T−1,t+T , (2)

then the benchmark model becomes

E[yi,t,t+T ] = rf −
1

T
log
[
1−

(
E[Lt+T ] + arec,c

µ̃m − rf
ρm,cσm

σc︸ ︷︷ ︸
risk adjustment for Lt+T

)
N
(
N−1

(
πPi,T

)
+
µ̃i − rf
σi

√
T
)]
. (3)

µ̃m−rf
σm

in (3) is the stock market Sharpe ratio (0.378 from Table VI), ρm,c is the correlation coefficient

between stock market returns and consumption growth (0.463 in Table VI), and σc is consumption

growth volatility (1.914% in Table IV)25.

According to the expression in (3), risk averse individuals adjust (decrease) expected values

for recovery rates 1 − E[Lt+T ] because these rates are procyclical (arec,c > 0 in 2). The risk

adjustment term for recovery rates would normally depend on the risk aversion parameter in the

CRRA power utility. However, Appendix B shows that we can use the Euler equation for stock

market returns (eqn. 26 in Appendix F.1) in order to substitute the risk aversion parameter with

the stock market Sharpe ratio
µ̃m−rf
σm

adjusted for the correlation (ρm,c) between stock market

returns and consumption growth. Nevertheless, the last line in Panel B suggests that the addition

of procyclical recovery rates leads to a small increase in credit spreads (10 bps across maturities)

relative to the benchmark model in (1). The small improvement in credit spreads is either because

recovery rates do not covary much with aggregate consumption (low arec,c in 3), or because the

standard CRRA power utility framework does not penalize enough recovery rate risk.

The third drawback of the benchmark model in (1) is related to the constant and exogenous

default boundary. In the original Merton model, default boundaries are constant, and equal to the

among others. Shleifer and Vishny (1992) also provide theoretical arguments in favor of procyclical recovery rates.
24Throughout the paper, recovery rates do not change across all firms, even though they are allowed to vary

through time.
25For comparison purposes with the disappointment model in subsection 4.2, values for

µ̃m−rf
σm

, ρm,c, and σc are
from the simulated economy.
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face value of debt. In (1), the default boundary is also assumed constant but not necessarily equal

to the face value of debt, because a number of studies26 suggest that default happens below the

debt level. For instance, Chen et al. (2009) argue that since average recovery rates are around

45%, if default happened at the face value of debt, then default costs would amount to 55% of

face value, which is an extremely large number. Contrary to the constant default case of the

original Merton model, Chen et al. (2009) set an exogenous default boundary which comoves

negatively with surplus consumption27. Chen (2010) and Bhama et al. (2010), on the other

hand, endogenize default boundaries exploiting the smooth pasting conditions in a continous-time

framework. Although default boundaries are hard to measure, it seems that time-variation in these

boundaries is an important ingredient for resolving the credit spread puzzle.

In a continuous-time setting, the derivation of the benchmark models in (1) and (3) hinges on

continuous trading so that, under the risk-neutral probability measure, expected returns (µ̃i) are

replaced by the risk-free rate 28. However, for discrete-time models, in which continuous trading

is not an option, replacing the mean with the risk-free rate while preserving log-normality of asset

returns necessarily requires that investor preferences are characterized by power utility29. Hence,

in a discrete-time world, the models in (1) and (3) are essentially a statement about investor

preferences.

The aim of this paper is to examine whether relaxing the CRRA power utility assumption,

and introducing disappointment aversion preferences can help us resolve the credit-spread puzzle.

Unfortunately, by introducing more complicated preference structures, we are no longer able to

derive simple pricing formulas for corporate bond yields like the ones in (1) and (3).

26Leland (2004), Davydenko (2012).
27The assumption of countercyclical default boundaries in Chen et al. (2009) is necessary for positive comovement

between default rates and credit spreads.
28Black and Scholes (1973).
29Brennan (1979) and Appendix F.1.
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3 Recursive utility with disappointment aversion preferences

3.1 Disappointment aversion stochastic discount factor

For the benchmark disappointment model of this paper, I maintain the same assumptions as in th

previous section, with the crucial difference that now the model economy is populated by disappoint-

ment averse, instead of CRRA, individuals. Disappointment aversion preferences are homothetic.

Therefore, if all individuals have identical preferences, then a representative investor exists, and

equilibrium prices are independent of the wealth distribution30. The expression for the disappoint-

ment aversion intertemporal marginal rate of substitution between periods t and t + 131 is given

by

Mt,t+1 = β
(Ct+1

Ct

)(ρ−1)

︸ ︷︷ ︸
time correction

[ Vt+1

µt
(
Vt+1

)]−α−ρ︸ ︷︷ ︸
second-order risk correction︸ ︷︷ ︸

Epstein-Zin terms

[ 1 + θ1{Vt+1 < δµt}
1− θ(δ−α − 1)1{δ > 1}+ θδ−αEt[1{Vt+1 < δµt}]

]
.︸ ︷︷ ︸

disappointment (first-order risk) correction

(4)

with

µt(Vt+1) = Et
[ V −αt+1 (1 + θ1{Vt+1 < δµt})

1− θ(δ−α − 1)1{δ > 1}+ θδ−αEt[1{Vt+1 < δµt}]

]− 1
α
. (5)

The derivation of the disappointment aversion discount factor is shown in Appendix C.

Vt is lifetime utility from time t onwards. µt in equation (5) is the disappointment aversion cer-

tainty equivalent which generalizes the concept of expected value. Et is the conditional expectation

operator. The denominator in (5) is a normalization constant such that µt(µt) = µt. 1{} is the

disappointment indicator function that overweighs bad states of the world (disappointment events).

According to (5), disappointment events happen whenever lifetime utility Vt+1 is less than some

multiple δ of its certainty equivalent µt. The parameter δ is associated with the threshold below

which disappointment events occur. In Gul (1991) δ is 1, whereas in Routlegde and Zin (2010),

30Chapter 1 in Duffie (2000), and Chapter 5 in Huang and Litzenberger (1989).
31See also Hansen et al. (2007), Routledge and Zin (2010), and Delikouras (2013).
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disappointment events may happen below or above the certainty equivalent, Vt+1 < δµt(Vt+1), de-

pending on whether the GDA parameter δ is lower or greater than one respectively. Here, I follow

Gul (1991), and set δ equal to 1 for analytical tractability.

α ≥ −1 is the Pratt (1964) coefficient of second-order risk aversion which affects the smooth

concavity of the objective function. θ ≥ 0 is the disappointment aversion parameter which charac-

terizes the degree of asymmetry in marginal utility above and below the reference level. β ∈ (0, 1)

is the rate of time preference. ρ ≤ 1 characterizes the elasticity of intertemporal substitution

(EIS= 1
1−ρ) for consumption between two consecutive periods. In order to facilitate the derivation

of analytical solutions, I set the EIS equal to unity (ρ = 0). For ρ = 0 and δ = 1 in (4), the

disappointment aversion stochastic discount factor becomes32

Mt,t+1 = β
(Ct+1

Ct

)−1

︸ ︷︷ ︸
time correction

( Vt+1

µt
(
Vt+1

))−α︸ ︷︷ ︸
second-order risk correction

1 + θ 1{Vt+1 < µt(Vt+1)}
Et[1 + θ 1{Vt+1 < µt(Vt+1)}]︸ ︷︷ ︸

disappointment correction

. (6)

Mt,t+1 in (4) and (6) essentially corrects expected values by taking into account investor pref-

erences over the timing and riskiness of stochastic payoffs. The first term in (4) and (6) corrects

for the timing of uncertain payoffs (resolution of uncertainty) which happen at a future date. The

second term adjusts future payoffs for investors’ dislike towards risk (second-order risk aversion).

When investors’ preferences are time-additive, adjustments for time and risk are identical (α = ρ),

and the second term vanishes. The third term in equations (4) and (6) corrects future payoffs for

investors’ aversion towards disappointment events, defined as periods during which lifetime utility

Vt+1 drops below its certainty equivalent µt.

32The reader is referred to Delikouras (2013) for a more thorough analysis of the disappointment model.
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3.2 Approximate analytical solutions for the disappointment aversion discount

factor

Since lifetime utility Vt in (6) is unobservable, it is hard to test the empirical performance of the

disappointment model. The analysis will become much easier if we are able to express lifetime

utility as a function of state variables.

Suppose that at each point in time, expected consumption growth is a function of a state variable

xt. For simplicity, I will assume that xt is equal to current consumption growth ∆ct−1,t. Suppose

also that there is a second state variable σt which drives aggregate economic uncertainty. Based

on those two assumptions, our model economy is described by the following system of equations

∆ct,t+1 = µc + φc∆ct−1,t + σtεc,t+1, (7)

σt+1 = µσ + φσσt + νσεσ,t+1, (8)

∆om,t,t+1 = µo + φo∆ct−1,t + σoσtεo,t+1. (9)

According to (7), consumption growth is an AR(1) process with time-varying volatility. φc ∈

(−1, 1) is the first-order autocorrelation coefficient, µc is the constant term, and εc,t+1 are i.i.d.

N(0, 1) shocks. Although, the AR(1) model for consumption growth is quite common in the asset

pricing literature (Mehra and Prescott 1985, Routledge and Zin 2010
)
, a number of works (Campbell

and Cochrane 1999, Cochrane 2001) suggest that consumption growth is i.i.d., and φc in (7) is zero.

Time-varying macroeconomic uncertainty33 is captured by consumption growth volatility σt

which is stochastic. Following Chen et al. (2009), σt is an AR(1) process in which εσ,t+1 are i.i.d.

N(0, 1) shocks, φσ ∈ (−1, 1) is the first-order autocorrelation coefficient, µσ ∈ R>0 is the constant

term, and νσ ∈ R>0 captures the conditional volatility in macroeconomic uncertainty. Bansal and

Yaron (2004), Bansal et al. (2007), Lettau et al. (2007), and Bonomo et al. (2011) all use similar

autoregressive models for macroeconomic uncertainty, although they consider consumption growth

33In addition to the asset pricing implications of stochastic volatility, Bloom (2009) and Bloom et al. (2012) propose
a model in which stochastic second moments in TFP shocks are the single cause for business cycle fluctuations.

13



variance instead of consumption growth volatility. Because shocks in (8) are normally distributed,

the probability of negative volatility is non-zero. However, consumption growth variance σ2
t is

always positive34.

The last equation describes the evolution of aggregate payout growth. Depending on the asset we

want to price, om,t represents different kinds of cashflows. For aggregate equity claims, the relevant

payout is dividends (o = d). For the valuation of aggregate assets in place, the relevant payout is

earnings (o = e). According to (9), expected payout growth depends on aggregate consumption

growth ∆ct−1,t through φo ∈ R. For φo > 1, aggregate payout is a levered claim to consumption,

whereas for φo = 0, payout growth is i.i.d.. σo ∈ R>0 is the volatility parameter for payout growth.

This specification for aggregate payout growth is very similar to the one in Bansal and Yaron (2004)

where expected dividend growth depends on expected consumption growth (the long-run risk state

variable). Finally, for algebraic convenience, I will assume that shocks to consumption growth,

consumption growth volatility, and payout growth (εc,t, εσ,t, εo,t), are mutually uncorrelated.

Using the system of equations in (7) and (8), and the log-linear structure of investor’s lifetime

utility, I can derive analytical solutions for the log utility-consumption ratio vt − ct expressed in

terms of consumption growth ∆ct−1,t and aggregate uncertainty σt.

Proposition 1: For ρ = 0, δ = 1 in (4), and macroeconomic dynamics in (7) and (8), the log

utility-consumption ratio, vt − ct = log(Vt/Ct), is approximately affine in consumption growth,

consumption growth volatility, and consumption growth variance: vt − ct ≈ A0 + A1∆ct−1,t +

A2σt +A3σ
2
t ∀t, where

• A1 = βφc
1−βφc ,

• A2 =

disappointment aversion︷ ︸︸ ︷
−θβn(x̄)(A1 + 1)(1 + 2αA3ν

2
σ) +2βA3µσφσ

1+2αA3ν2
σ−βφσ

,

• A3 =
−[1−βφ2

σ+βα2(A1+1)2ν2
σ ]+
√

[1−βφ2
σ+βα2(A1+1)2ν2

σ ]2−4βα2(A1+1)2ν2
σ

4αν2
σ

,

34Hsu and Palomino (2011) resolve the issue of negative variance by assuming an autoregressive gamma process
as in Gourieroux and Gasiak (2006).
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• A0 = β
1−β [(A1 + 1)µc + 1

1+2αA3ν2
σ

(A2µσ +A3µ
2
σ − 0.5αA2

2ν
2
σ) + 1

2α log(1 + 2αA3ν
2
σ)],

and n(.) is the standard normal p.d.f..

Proof. See Appendix F.4

A1 is the consumption growth multiplier. The sign and magnitude of A1 depend on consumption

growth autocorrelation φc. If consumption growth is i.i.d. then A1 is zero. A3 is the multiplier for

consumption growth variance σ2
t . If the risk aversion coefficient α is positive, then A3 is negative35.

For A3 to be real, we require that the terms inside the square root are positive, and that α is

different than zero36.

A2 is the multiplier for consumption growth volatility σt. A2 captures first-order risk aversion

through the θn(x̄) term. For A3 negative and positive θ, then A2 is also negative. Finally, A0 is the

constant term in the log utility-consumption ratio. For A0 to be well defined, we require 1+2αA3ν
2
σ

to be positive, and that α is non-zero. If consumption growth is positively autocorrelated (φc > 0),

and preference parameters (α, θ > 0) are also positive, then the log utility-consumption ratio is

procyclical since A1 is positive, and A2, A3 are negative.

An immediate consequence of Proposition 1 is that we can express the disappointment aversion

stochastic discount factor in (6) as a function of consumption growth ∆ct−1,t, and consumption

growth volatility σt

Mt,t+1 ≈ elogβ−∆ct,t+1︸ ︷︷ ︸
time correction

e
−α
{
A0(1− 1

β
)+[(A1+1)∆ct,t+1− 1

β
A1∆ct−1,t]+A2(σt+1− 1

β
σt)+A3(σ2

t+1−
1
β
σ2
t )
}︸ ︷︷ ︸

second-order risk correction

× (10)

1 + θ 1{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ
2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ

2
t )}

Et[1 + θ 1{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ2

t )}]︸ ︷︷ ︸
disappointment correction

.

Mt,t+1 in (10) corrects expected future payoffs for timing, risk and disappointment, much like the

one in (6). The crucial difference between the two expressions is that in equation (10) unobservable

35Appendix F.4.
36A detailed discussion on parameter restrictions can be found in Appendix F.4. The requirement α 6= 0, implies

that preferences need to be non-separable across time, since ρ is already assumed zero in Proposition 1.
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lifetime utility Vt+1 is expressed in terms of state variables.

Armed with the expression for the stochastic discount factor, we can also solve for the one-period

log risk-free rate (see Appendix F.5)

rf,t,t+1 ≈ −logβ + 1 · µc + 1 · φc∆ct−1,t︸ ︷︷ ︸
impatience and future prospects

−0.5[2α(A1 + 1) + 1]σ2
t︸ ︷︷ ︸

second-order risk aversion

− θn(x̄)σt.︸ ︷︷ ︸
disappointment aversion︸ ︷︷ ︸

precautionary savings motive

(11)

Consumption growth terms
(
µc(1−φc), φc∆ct−1,t

)
in (11) are multiplied by unity, since the EIS is

assumed equal to one (ρ=0), and consumption growth moves one-for-one with interest rates. The

last two terms in (11) reflect the precautionary motive for investors to save. This motive depends

on both risk and disappointment aversion. Notice that second-order risk aversion terms depend on

consumption growth variance (σ2
t ), while disappointment aversion terms depend on consumption

growth volatility (σt) due to first-order risk aversion. For α, θ positive, higher uncertainty (high

values for σt and σ2
t ) will force investors to save more in the risk-free technology, and therefore

decrease interest rates.

Turning now to risky financial assets, let Rm,t be the cum-payout, one-period, gross return for a

claim on a stream of aggregate payments (dividends or earnings). If claims are traded in complete,

frictionless markets, then the consumption-Euler equation implies that

Et
[
Mt,t+1Rm,t,t+1

]
= 1.

Using the results in Appendix D, aggregate log-returns rm,t,t+1 can be written as a linear function

of log price-payout ratios, and the Euler equation becomes

Et
[
Mt,t+1e

κm,0+κm,0zm,t+1−zm,t+∆om,t,t+1

]
= 1,

where κm,0 and κm,1 are linearization constants, and zm,t = log
Pm,t
Om,t

is the log price-payout ratio.

In order to provide valuable intuition, we can further express the log price-payout ratio zm,t as
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a linear function of the state variables ∆ct,t+1 and σt using Proposition 2.

Proposition 2: For ρ = 0, δ = 1 in (4), and the dynamics in (7) - (9), the log price-payout

ratio zm,t = log(Pm,t/Om,t) for a claim on a stream of aggregate payments is approximately affine

in consumption growth, consumption growth volatility, and consumption growth variance: zm,t ≈

Am,0 +Am,1∆ct−1,t +Am,2σt +Am,3σ
2
t ∀t, where

• Am,1 = φo−φc
1−κm,1φc ,

• Am,2 ≈

disappointment aversion︷ ︸︸ ︷
θn(x̄)(1− κm,1Am,1) +2κm,1Am,3µσφσ

1−κm,1φσ ,

• Am,3 ≈ 1
2

(1−κm,1Am,1)2+2α(A1+1)(1−κm,1Am,1)+σ2
o

1−κm,1φ2
σ

,

• Am,0 ≈ 1
1−κm,1

[
logβ + κm,0 + µo + (κm,1Am,1 − 1)µc + κm,1Am,2µσ + κm,1Am,3µ

2
σ

]
,

Proof. See Appendix F.6

Note that the values for Am,2, Am,3 and Am,0 above are approximations assuming that the variance

for consumption growth volatility (ν2
σ) is a number close to zero. Exact solutions can be found in

Appendix F.6. The above approximations preserve the intuition without the notational burden.

However, for the simulation part of this study, I use the exact solutions. Moreover, the multipliers

Am,1, Am,2, Am,3 and Am,0 for the price-dividend ratio, in which o = d, are different than the

multipliers for the price-earnings ratio, in which o = e, because aggregate dividend growth dynamics

are different than aggregate earnings growth dynamics (φd 6= φe or µd 6= µe or σd 6= σe).

As long as φo 6= φc, the multiplier for consumption growth Am,1 will be non-zero, and the price-

payout ratio zm,t will depend on consumption growth, even if φc = 0 and consumption growth is

i.i.d.. The sign of Am,1 essentially depends on φo−φc because 1−κm,1φc is always positive37. Am,3

is the multiplier for σ2
t , and depends on the risk aversion coefficient α, as well as on the persistence

of aggregate shocks through the terms φ2
σ and Am,1. A3 in Proposition 1 is always negative for

37For consumption growth to be stationary we require φc ∈ (−1, 1). Additionally, κm,1 < 1 from (25), and thus
1− κm,1φc > 0.
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positive values of the risk aversion parameter α. On the other hand, Am,3 in Proposition 2 can

turn positive even if α is positive, provided that σo is a large number. When Am,3 is positive, an

increase in consumption growth variance will increase the price-payout ratio.

Am,2 is the stochastic volatility multiplier. If investors are not disappointment averse (θ = 0)

and Am,3 is positive, then Am,2 is also positive, and an increase in aggregate uncertainty will

unambiguously lead to an increase in the price-payout ratio. However, for positive θ, A2,m can be

negative, even if Am,3 is positive. In this case, the effects of aggregate uncertainty on the price-

payout ratio operate in two different directions thought the first and second-order risk aversion

channels. This is a subtle, but important, difference between disappointment aversion and the

traditional Epstein-Zin (Epstein and Zin 1989) framework without any first-order risk aversion

effects. Finally, A0,m, the constant term in the price-divided ratio, is equal to the sum of the

constant terms (µm, µc) from (7) and (9) adjusted for disappointment (Am,2µσ) and uncertainty

(Am,3µ
2
σ).

The results in Proposition 2 are particularly important, since we can use the price-payout

identity in Appendix D to express asset log-returns as a function of the state variables

rm,t,t+1 ≈ κm,0 + κm,1zm,t+1 − zm,t + ∆om,t,t+1, ∀t (12)

zm,t = Am,0 +Am,1∆ct−1,t +Am,2σt +Am,3σ
2
t .

Asset returns in (12) correspond to aggregate claims. In order to describe firm-level asset returns,

we need to introduce idiosyncratic shocks as follows

ri,t,t+1 ≈ κm,0 + κm,1zm,t+1 − zm,t + ∆om,t,t+1︸ ︷︷ ︸
systematic component

+ σiεi,t+1︸ ︷︷ ︸
idiosyncratic part

, (13)

for cum-payout returns, and

rxi,t,t+1 = zm,t+1 − zm,t + ∆om,t,t+1 + σiεi,t+1, (14)
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for ex-payout returns. εi,t+1 are i.i.d. N(0,1) idiosyncratic shocks, orthogonal to the rest of the

aggregate shocks in (7)-(9). The above specification for firm-level returns matches perfectly a long-

standing concept in finance according to which asset returns can be decomposed into a systematic

part, and an idiosyncratic one. For equity returns the relevant payout in (12) - (14) is dividends

(o = d), whereas for assets in place returns the relevant payout is earnings (o = e).

4 Simulation results for the disappointment aversion discount fac-

tor

4.1 Preference parameters, and state variable moments for the simulated econ-

omy

The EIS and the GDA parameters for the disappointment aversion discount factor in (4) are

assumed equal to one for analytical tractability. For the remaining parameters, I set the risk

aversion coefficient α equal to 1.8 and the disappointment aversion parameter θ equal to 2.030

in Table III. These values are within the range of clinical estimates38, and are very similar to

those used in Bonomo et al. (2011). The value for θ implies that whenever lifetime utility is

below its certainty equivalent (disappointment events), investors penalize losses 3 times more than

during normal times. Finally, the rate of time preference β is equal to 0.9955. In the deterministic

steady-state of the economy, an additional $1 of consumption tomorrow is worth $0.9955 today.

In order to explain the market-wide equity premium, Routledge and Zin (2010) employ a con-

stant consumption growth variance framework, and set θ equal to 9 with α equal to -1 (second-order

risk neutrality). In Bonomo et al. (2011), consumption growth variance is stochastic, θ is 2.33, and

α is 1.5. Choi et al. (2007) conduct clinical experiments on portfolio choice under uncertainty, and

find disappointment aversion coefficients that range from 0 to 1.876, with a mean of 0.39. They

also estimate second-order risk aversion parameters that range from -0.952 to 2.871, with a mean

of 1.448.

38Gill and Prowse (2012).
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Using experimental data on real effort provision, Gill and Prowse (2012) estimate disappoint-

ment aversion coefficients ranging from 1.260 to 2.070. Ostrovnaya et al. (2006) estimate disap-

pointment aversion parameters from the cross-section of expected returns using market wide stock

market returns as the explanatory variable, instead of consumption growth. Their estimates for

θ range from 1.825 to 2.783. Finally, Delikouras (2013) assumes constant consumption growth

volatility in a consumption-based model for the cross-section of expected returns, and provides θ

estimates around 10, and risk aversion estimates around 1. Routledege and Zin (2010) also assume

constant consumption growth volatility, and set θ equal to 9 and the risk aversion arameter equal

to -1 (second-order risk neutrality) in order to explain the equity premium.

Table III also summarizes moment parameters for the state variable dynamics in (7)-(9). These

values are carefully chosen so that simulated moments match those observed in real data. Many

of these parameters have been used in previous studies. For instance, the consumption growth

multipliers φd and φe in (9) are equal to 3 as in Bansal and Yaron (2004). Earnings are considered

a levered claim to consumption (φe > 1) because the endowment model ignores other claims to

earnings such as salaries, depreciation, and taxes that need to be paid out before interest and

dividends39.

Volatility parameters for dividends and earnings growth (σd = 7.166 and σe = 2.201) are larger

than one, because dividend and earnings growth are much more volatile than consumption growth.

The autocorrelation parameter for aggregate consumption growth volatility is 0.971 because, ac-

cording to prior works40, aggregate uncertainty is a very persistent process. Idiosyncratic volatility

σi is set equal to 0.210 so as to match the Sharpe ratio for the median Baa firm which is 0.220 (Chen

et al. 2009, p. 3377). Finally, the linearization constant z̄m for log price-payout ratios in (25) is

equal to 3, which is very close to the unconditional mean for the stock market log price-dividend

ratio (Table VI).

39Also, for uncorrelated macroeconomic shocks in (7)-(9), letting φe (φd) be larger than one is the only way to
obtain realistic correlations between earnings (dividend) growth and consumption growth. Chen et al. (2009), p.
3404, set φd equal to 3.5 and φe equal to 2.7.

40Bansal and Yaron (2004), Bansal et al. (2007), Lettau et al. (2007), Chen et al. (2009), and Bonomo et al.
(2011).
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Despite the similarities with previous studies, there are a few very important differences in terms

of parameter calibration. First, in Bansal and Yaron (2004) and Bansal et al. (2007), expected

consumption growth is a very persistent process, whereas in Chen et al. (2009) and Bonomo et al.

(2011) consumption growth is i.i.d. (φc=0). Here, I set the autocorelation parameter φc equal to

0.5 to match the persistence in BEA consumption data.

Second, the volatility parameter µσ in Bansal and Yaron (2004) and Bonomo et al. (2011) is

quite high. Their values for µσ imply that annual consumption growth volatility is approximately

3%, which is more than two times the volatility observed in the BEA sample (1.3% from Table

IV). In this study, µσ is equal to a very small value (0.0004) so that consumption growth volatility

remains low.

Table IV shows simulated and sample moments for all macroeconomic variables. Simulated

values for the state variables are according to the system in (7)-(9), using parameter values from

Table III41. Simulated moments for aggregate consumption growth are very close to actual ones

(mean 1.834% vs. 1.838% in the data, autocorrelation 0.504 vs. 0.502), with the exception of

consumption growth volatility which is higher for the simulated economy (1.914% vs. 1.346% in

the data)42.

Simulated moments for aggregate dividend growth are very realistic as well (mean 1.796% vs.

2.107%, volatility 13.232% vs. 13.079% in the data). However, the autocorrelation for the simulated

aggregate dividend growth process is positive (0.093), whereas dividend growth in the data is a

mean reverting process with negative autocorrelation (-0.278). Finally, the simulated dividend

growth and consumption growth processes are positively correlated (0.218 vs. 0.286 in the data43).

Expected earnings growth for the simulated economy is positive (1.819%), and similar to the

expected value for consumption and dividend growth. Even though, in the long-run, expected

41Because (8) admits negative volatility, if at some point volatility becomes negative, then the negative observation
is replaced with the previous observation.

42In Chen et al. (2009) consumption growth volatility is around 1.5%. In Bansal and Yaron (2004) and Bonomo
et al. (2011) consumption growth volatility is 3%, whereas consumption growth volatility in Shiller’s data is 1.8%.

43For their habit model, Chen et al. (2009) p. 3377 assume that the correlation coefficient between aggregate
dividends and aggregate consumption growth is equal to 0.60, more than twice the estimated value 0.286 in Table
IV.
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growth rates should be almost identical because dividends and earnings are cointegrated, Belo et

al. (2012) explain how endogenous capital decisions can make dividends riskier than earnings in

the short-run.

Expected earnings growth in the sample is negative (-3.831%) and approximately equal to

expected inflation, because CRSP-Compustat nominal earnings have been exponentially detrended

due to the increasing number of firms in the Compustat sample over time. Simulated earnings

growth volatility is slightly lower than in the 1950-2010 sample (6.784% vs. 7.057%). Similarly, the

simulated correlation coefficient between earnings growth and consumption growth is lower than in

the sample (0.425 vs. 0.487)44.

Macroeconomic uncertainty is hard to measure, and, therefore, there aren’t any readily available

data to benchmark simulation results for σt. Instead, simulations for σt are compared against a

discretized Ornstein-Uhlenbeck process with calibrated parameter values from Chen et al. (2006),

which in turn is based on parameter values from Bansal and Yaron (2004). The key difference

between the two stochastic volatility processes is that here the unconditional mean for σt is lower

than in Chen et al. (2006) (1.498% here vs. 2.697%) because in the latter paper, as well as in

Bansal and Yaron (2004), consumption growth is much more volatile than the consumption growth

process in this paper (around 3% as opposed to 1.8% here).

4.2 Simulation results for Baa-Aaa credit spreads

The main pricing equation used in this study is the unconditional Euler equation for zero-coupon,

corporate bonds that are subject to default at the expiration date

E[yi,t,t+T ] = E
[
− 1

T
logEt

[( T∏
j=1

Mt+j−1,t+j

)(
1− Lt+T1{rxi,t,t+T < Di,t+T }

)]]
, (15)

44The correlation coefficient between consumption growth and earnings growth in Chen et al. (2009) is 0.48 (p.
3377).
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in which Mt,t+j is the disappointment aversion stochastic discount factor from (10), Lt+T are losses

given default, rxi,t,t+T are ex-payout, log-returns for assets in place according to (14), and Di,t+T is

the default boundary. Credit spreads over the log risk-free rate are given by

E
[
− 1

T
logEt

[( T∏
j=1

Mt+j−1,t+j

)(
1− Lt+T1{rxi,t,t+T < Di,t+T }

)]]
− E

[
− 1

T
logEt

[ T∏
j=1

Mt+j−1,t+j

]]
, (16)

while Baa-Aaa credit spreads are calculated according to

E
[
− 1

T
logEt

[( T∏
j=1

Mt+j−1,t+j

)(
1− Lt+T1{rxBaa,t,t+T < DBaa,t+T }

)]]
(17)

−E
[
− 1

T
logEt

[( T∏
j=1

Mt+j−1,t+j

)(
1− Lt+T1{rxAaa,t,t+T < DAaa,t+T }

)]]
. (18)

Although bond yields in Table I are measured in nominal terms, the model economy has been

simulated in real terms, and thus, model implied spreads are inflation-free. To the extend that

inflation risk premia are approximately equal for Baa and Aaa bonds, then nominal Baa-Aaa credit

spreads should be very similar to real Baa-Aaa credit spreads. Unlike the model in (1), losses given

default Lt+T and default boundaries Di,t+T are allowed to vary over time, and also be functions of

the state variables

1− Lt+T = arec,0 + arec,c∆ct+T−1,t+T , (19)

Di,t+T = ai,def,0 + adef,c
(
∆ct+T−1,t+T −

µc
1− φc

)
+ adef,σ

(
σt+T −

µσ
1− φσ

)
. (20)

Table V shows the main empirical results in this study which have been obtained through the

simulation process discussed in Appendix E. Panel A in Table V specifies values for the Baa and

Aaa default boundaries which are expressed in terms of asset log-returns. For example, the 4yr

constant Baa default boundary is equal to -0.998 which means that the value of assets in place

needs to decrease to e−0.998 = 36.861% of initial value before a Baa firm defaults45.

45Chen et al. 2009 also assume a similar constant default boundary for 4 year Baa bonds (p. 3384).
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Simulated default probabilities in Panel B are practically indistinguishable from default rates in

the Moody’s report due to appropriately selecting default boundaries. The default rates in Panel

B guarantee that the stochastic discount factor in (10) generates plausible credit spreads because

investors severely penalize default states through the disappointment aversion mechanism, and not

because default probabilities are abnormally high.

Panel C in Table V shows average credit spreads implied by the disappointment aversion dis-

count factor in (10) with preference parameters from Table III, and aggregate state variable dy-

namics according to the system in (7)-(9). In order to address the shortcomings of the benchmark

model in (1), I consider four different cases: 1) constant recovery rates and default boundaries, 2)

procyclical recovery rates according to (19) and constant default boundaries, 3) constant recovery

rates and countercyclical default boundaries according to (20), and 4) procyclical recovery rates

and countercyclical default boundaries.

Expected credit spreads for the disappointment aversion discount factor in case 1 are larger than

those for the benchmark model (average increase across maturities 15 bps) because disappointment

averse investors heavily penalize periods during which lifetime utility is less than its certainty

equivalent (disappointment events). During these periods, Baa defaults happen more often than

defaults for Aaa firms, which are fairly acyclical. In other words, Baa corporate bonds expose the

aggregate investor to more disappointment risk than Aaa bonds. Therefore, in order for Baa bonds

to be part of the aggregate investor’s portfolio, these claims should be discounted at higher rates

than Aaa bonds.

Relative to the benchmark model in (1), case 1 in Panel C is different in two very important

ways. First, as explained by Lemma 1 in Appendix F.1, the benchmark model implicitly assumes

CRRA preferences. Although concave CRRA utility functions overweigh unfavorable outcomes,

they do not capture asymmetries in marginal utility, because CRRA preferences are isoelasic. On

the other hand, the disappointment model relies heavily on investors penalizing losses that happen

during disapppointment periods 1 + θ times more than they do for loses happening during normal

times. Second, disappointment aversion preference induce time-variation in risk attitudes. This
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time-variation is further amplified by stochastic consumption growth volatility in (8) so as to

generate substantial time-variation in expected returns and Sharpe ratios. Recent results in asset

pricing46 suggest that time-variation in Sharpe ratios is almost a necessary condition for resolving

a number of prominent asset pricing puzzles, including the credit spread puzzle.

Nevertheless, disappointment aversion alone cannot fully rationalize expected Baa-Aaa credit

spreads, especially for very short maturities, since, according to Table V, 41 bps in expected credit

spreads for 4yr bonds remain unexplained by the disappointment model. These results should

not cast any doubt on the explanatory power of disappointment aversion. According to Chen et

al. (2009), neither the habit, nor the long-run risk models can explain credit spreads47, unless we

assume time-varying recovery rates or stochastic default boundaries.

Table II provides evidence that recovery rates are procyclical. The assumption of constant

recovery rates therefore ignores an important risk source for credit spreads. Case 2 in Table V

relaxes this assumption, and, based on the results of Table II, assumes that losses given default

Lt+T are a linear function of aggregate consumption growth as in (19) in which arec,c is set equal to

4.464 from Table II. The addition of procyclical recovery rates increases Baa-Aaa spreads implied

by the disappointment model by 34 bps on average across maturities relatively to the benchmark

model in (1), and by 23 bps relatively to the benchmark model with procyclical recovery rates in

(3).

In the case of countercyclical losses given default, corporate bonds have to compensate dis-

appointment averse investors for two sources of systematic risk. The first one is related to the

fact that during economic downturns default frequencies for Baa firms increase more than default

frequencies for Aaa bonds. The second source of systematic risk captures the fact that during

disappointment periods recovery rates decrease. Moreover, disappointment aversion preferences

punish the procyclicality of recovery rates more severely than CRRA power utility. First-order risk

aversion amplifies recovery rate risk, despite the relatively low covariance between recovery rates

46Campbell and Cochrane (1999), Bansal and Yaron (2004), Verdelhan (2010), Routledge and Zin (2010), Bansal
and Shaliastovich (2013).

47Chen et al. (2009) p. 3384 and p. 3405.
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and consumption growth. However, despite the improvement relatively to the benchmark case in

(3), even with countercyclical recovery rates, 26 bps in 4yr expected credit spreads (17 bps for 10yr

maturities) cannot be explained by case 2 of the disappointment model.

Cases 3 and 4 in Table V assume stochastic default boundaries. Since these boundaries are hard

to measure, parameters for the stochastic default boundary have been calibrated so that average

default rates for the simulated economy match actual ones. Unlike Chen (2010) or Bhamra et

al. (2010), but similar to Chen et al. (2009), default boundaries in this study are exogenous,

even though they are functions of state variables. The calibrated values for default boundary

parameters (adef,c and adef,σ) in (20) imply that these boundaries are strongly countercyclical, since

they comove negatively with consumption growth, and positively with macroeconomic uncertainty.

In bad times, when consumption growth (volatility) is lower (higher) than its unconditional mean,

default boundaries are low in absolute value, and thus managers find it easier to declare bankruptcy.

In good times, when consumption growth (volatility) is higher (lower) than its mean, default

boundaries are high in absolute value, and firms do not default as easily as in bad times.

Countercyclical default boundaries lead to a larger number of defaults during economic down-

turns, and fewer number of defaults during good times. However, unconditionally, average default

rates are equal to the ones observed in actual data. Countercyclical default boundaries essentially

imply that default events covary more with aggregate macroeconomic conditions relative to cases 1

and 2. The combination of disappointment aversion preferences with countercyclical default bound-

aries (case 3) improves the fit of the baseline disappointment model (case 1), and also increases

model implied expected credit spreads by 25 bps across maturities relative to the benchmark model

in (1). Nevertheless, the increase in credit spreads induced by stochastic default boundaries in case

3 is less than the increase due to procyclical recovery rates in case 2, and leaves 29 bps in 4yr

expected credit spreads (25 bps in 10yr bonds) unexplained.

Case 4 of the disappointment model assumes procyclical recovery rates as well as countercycli-

cal boundaries. Case 4 can almost perfectly fit average credit spreads for short (100 bps vs. 103

bps for 4yr spreads) and medium maturities (129 bps vs. 131 bps for 10yr spreads), but severely
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overestimates credit spreads at the long end of the term structure (148 bps vs. 112 bps in the data

for 15yr bonds). Countercyclical default boundaries increase the frequency of defaults during bad

times, while procyclical recovery rates imply that losses given default increase during periods of low

economic growth. Because periods of high default rates and high losses given default are also asso-

ciated with disappointment events (lifetime utility below its certainty equivalent), disappointment

averse investors require larger compensation for holding Baa bonds than Aaa bonds.

Overall, results in Table V suggest that as long as we allow for procyclical recovery rates and

countercyclical default boundaries, disappointment aversion preferences are able to resolve the

credit spread puzzle using risk and disappointment aversion parameters that are consistent with

recent experimental results. However, as shown in Figure IV, by fitting mean credit spreads for

short and medium maturities, the disappointment model overestimates mean credit spreads for

maturities longer than 15 years. The credit spread literature has almost exclusively considered 4yr

or 10yr bonds, and does not provide any results on long maturities. Therefore, we cannot assess

the relative performance of the disappointment aversion model for long maturities relative to other

asset pricing models. Moreover, matching average credit spreads for very short maturities (1-3yr)

still remains an open question for all models.48.

Although, the goal of this paper is not a horse race between prominent asset pricing models,

we need to highlight that the disappointment aversion mechanism is unique. First, disappointment

aversion preferences fully encompass recent clinical and field evidence for behavior under uncer-

tainty which emphasize the importance of expectation-based reference-dependent utility49. The key

mechanism in disappointment aversion is asymmetric marginal utility over gains and losses. Gains

and losses are, in turn, endogenously characterized by the forward-looking certainty equivalent for

lifetime utility.

Asymmetric marginal utility is not present in the habit model, which assumes a backwards-

48According to Table I, default rates for 1 up to 3 years are almost zero. Because no asset pricing model can map
zero default rates for short term bonds into measurable yields, the credit spread literature focuses on medium to long
term maturities (4-10yr).

49Choi et al. (2007), Post et al. (2008), Doran (2010), Crawford and Meng (2011), Abeler et al. (2011), Gill and
Prowse (2012).
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looking unobservable habit process, and, according to Ljungqvist and Uhlig (2009), leads to policy

inconsistencies for the central planner. Furthermore, in the habit model of Campbell and Cochrane

(1999) consumption never drops below its habit, otherwise marginal utility becomes infinity. On the

other hand, for disappointment aversion preferences it is precisely periods during which consump-

tion growth falls below its certainty equivalent that are important for credit spreads. Asymmetric

marginal utility is not captured by the long-run risk model either which assumes a highly persistent

mean in expected consumption growth50.

4.3 Equity premium, and the risk-free rate

By assuming extremely high risk premia, one could possibly improve the performance of consumption-

based models in fitting credit spreads. However, extreme risk premia would also imply abnormally

high expected returns for the stock market. In this section, I show that the disappointment aver-

sion model in (10) can match moments for the equity premium, the price-dividend ratio, and the

risk-free rate reasonably well, with the same preference parameters and state variable dynamics

from Table III. Equity returns, the risk-free rate, and the price-dividend ratio, have been simulated

according to the expressions in (12), (11), and Proposition 2 respectively, while sample moments

are calculated using the data described in subsection 2.1.

According to Table VI, simulated stock market returns for the disappointment aversion model

have a high mean (6.653% vs. 6.581% in the data), are quite volatile (15.049% vs. 17.216% in the

data), are i.i.d.
(
ρ(rm,t,t+1, rm,t−1,t) = 0.035 vs. -0.030 in the data

)
, and are positively correlated

with consumption growth
(
ρ(rm,t,t+1,∆ct−1,t) = 0.463 vs. 0.503 in the data

)
. The disappointment

model also predicts a highly autocorrelated (0.650 vs. 0.696 in the data) and low mean (0.962% vs.

0.928% in the data) risk-free rate, yet the variance of the simulated risk-free rate is substantially

smaller than the sample estimate (1.163% vs. 2.727%). Finally, even though results for the price-

dividend ratio are fairly accurate, especially in terms of persistence (0.891 vs. 0.950 in the data), the

simulated price-dividend in the disappointment averse economy has lower mean (3.000 vs. 3.433),

50Beeler and Campbell (2012), Bonomo et al. (2011).
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and is less volatile (0.227 vs. 0.467) than the one obtained from the CRSP database.

Traditional consumption-based asset pricing models with time-separable power utility need

exorbitant values for the risk aversion coefficient, around 50 for annual data51 and around 150 for

quarterly data52, in order to match expected stock market returns. Further, extremely large risk

aversion parameters lead to very volatile risk-free rates53. Non-separable Epstein-Zin preferences

without first-order risk aversion effects, also require large coefficients of risk aversion, around 3054,

to match expected stock market returns, unless we assume a very persistent process for expected

consumption growth55. These empirical discrepancies are ingeniously concealed by the benchmark

models in (1) and (3) or any other model that directly uses risk-neutral pricing because these

models do not explicitly account for investor preferences. In contrast, the disappointment aversion

discount factor in (10) can generate realistic asset pricing moments using parameter values that

are consistent with clinical results for behavior under uncertainty.

4.4 Comparative results for alternative preference parameters

The main goal of the paper is to examine whether disappointment aversion preferences can explain

asset prices across different financial markets with risk and disappointment aversion parameters

calibrated to experimental findings. This section performs a sensitivity analysis on preference

parameters for the disappointment aversion discount factor in (10). Comparative results focus on

the two parameters that affect risky choices, the risk aversion parameters α and the disappointment

aversion coefficient θ. The rest of the parameters in Table III as well as model dynamics from (7)-(9)

are kept constant.

The choice of alternative parameter values for the disappointment aversion model serves three

purposes. First, alternative parameters need to be close to clinical estimates. Second, alternative

parameter values should be able to identify the marginal importance of the first and second-order

51Mehra and Prescott (1985), Cochrane (2001), Yogo (2004), Liu et al. (2009), Routldege and Zin (2010).
52Aı̈t-Sahalia et al. (2004), Yogo (2004).
53Weil (1989), Delikouras (2013).
54Routldege and Zin (2010), Delikouras (2013).
55Bonomo et al. (2011), Beeler and Campbell (2012), Delikouras (2013)
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risk aversion channels. Finally, the choice of these alternative values ought to guarantee that the

multipliers {A0, A3}, and {Am,0,Am,3} in Propositions 1 and 2 are well defined and real56.

For the first alternative scenario, the risk aversion parameter is set equal to -1 (second-order

risk neutrality), and the disappointment aversion parameter is equal to 3. By setting α equal to

-1, we are essentially downgrading the importance of consumption growth variance σ2
t as a state

variable. This is done through the parameter A3 which significantly decreases in magnitude, and

even turns positive due to second-order risk neutrality. For the baseline disappointment model in

Table V and Table VI where α is positive, A3 is large in absolute value and negative.

According to Table VII, if we turn off the risk aversion channel, and slightly increase the magni-

tude for the disappointment aversion parameter, then the expected risk-free rate decreases relative

to the baseline scenario in Table VI (0.519% vs. 0.962%) because the first-order precautionary

savings motive in (11) intensifies. In contrast, expected equity premia remain essentially the same

relative to the baseline disappointment model (5.676% vs. 5.691% for the baseline model in Table

VI).

Even though the reduction in stock market risk premia is almost zero, the decrease in expected

credit spreads relative to the baseline scenario in Table V is quite impressive: approximately -29

bps for 4yr maturities across all four cases. Results in Table VII suggest that although equity

premia are insensitive to the second-order risk aversion channel, credit-spreads are hugely affected

by setting α equal to -1. Because Baa defaults are very rare events, even the slightest change in

systematic risk can lead to substantial changes in credit spreads. On the other hand, equity premia

are not sensitive to second-order risk-neutrality because stock market returns are not related to

rare events.

For the second alternative scenario, the disappointment aversion channel is turned off (θ = 0),

and the risk aversion parameter is set equal to 5. Although 5 is a reasonable value in the asset

56The systems of equations in Proposition 1 and Proposition 2 impose constraints on the magnitude of the risk
aversion parameter. For instance, if α is greater than 8.7, then the solutions to the quadratic equations for A3 and
Am,3 are imaginary numbers, unless we specify different parameters for the state variable dynamics in (7)-(9). In
contrast, there are no constraints imposed on θ, because A2 and Am,2 are solutions to linear equations.
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pricing literature, experimental results imply that α cannot be greater than 2.857. In the absence

of the first-order risk aversion mechanism, there is an important decrease in average credit spreads

relative to the baseline calibration for the disappointment model in Table V: approximately -38 bps

for 4yr maturities across all four cases. Furthermore, expected excess stock returns are almost zero,

while the expected risk-free rate doubles in magnitude relative to the baseline scenario (2.000% vs.

0.962%), because, without disappointment aversion, the precautionary savings motive attenuates.

Essentially comparative results for preference parameters in Table VII highlight the importance

of both first- and second-order risk aversion terms in generating measurable credit spreads. On

the other hand, disappointment aversion preferences can generate realistic equity premia even if

we turn off the effects of second-order risk aversion. Asset pricing models that do not include

disappointment aversion preferences, usually substitute first-order risk aversion effects with highly

persistent shocks to the stochastic discount factor through the habit or the long-run risk channels58.

5 Related literature

Before concluding the discussion on the credit spread puzzle, I will briefly relate the disappointment

framework to some key results in the corporate bond literature. Merton (1974) was one of the first

authors to propose a unified framework for the valuation of corporate securities, bonds and equities,

which are priced as contingent claims written on a firm’s assets in place. Previous results on the

inability of the Merton model to match credit spreads date back to Jones et al. (1984), while

Huang and Huang (2012) show that the credit puzzle is robust to a variety of specifications for the

risk-neutral dynamics of asset returns.

In Merton’s early framework, there were no taxes, no bankruptcy costs, and capital structure

choices were irrelevant. Leland (1994) and Leland and Toft (1996), extend Merton’s framework

to account for tax benefits of debt, bankruptcy costs, and optimal leverage decisions. Goldstein

et al. (2001) also propose an asset pricing model for corporate bonds in which the government,

57Choi et al. (2007).
58Campbell and Conchrane (1999), Bansal and Yaron (2004).
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bondholders, and equityholders all have stakes in the firm’s EBIT-generating process. In the

Goldstein et al. model, bond coupons, default, and leverage are all endogenous decisions. However,

all these papers rely directly on risk-neutral dynamics, remain silent on investor preferences, and

do not really focus on the empirical performance of these models across financial markets.

Bhamra et al. (2010) also propose a unified framework to explain the equity premium and the

credit-spread puzzle. Even though they assume Epstein-Zin utility for the aggregate investor, they

use risk-neutral dynamics, and provide a comprehensive model with endogenous capital structure

and default decisions in order to resolve the equity premium and credit spread puzzles. Nevertheless,

their model generates a credit spread of only 45 bps for 5yr maturities an 75 bps for 10yr maturities

in contrast to 103 bps and 112 bps. Moreover, their model implies an equity risk premium of 3.19%,

about half the one in the data (6.653%).

Chen et al. (2009) compare the habit model of Campbell and Cochrane (1999), and the long-run

risk model of Bansal and Yaron (2004) for their ability to explain the credit spread puzzle while

generating possible moments for the stock market. Although, both models can resolve the equity

premium puzzle, the long-run risk model has difficulties in generating measurable credit-spreads,

while the habit-model needs to be combined with countercyclical default boundaries or procyclical

recovery rates in order to fit Baa-Aaa credit spreads. Finally, Chen (2010) provides a parsimonious

general equilibrium model in order to resolve the credit spread and underleverage puzzles, while

matching moments for equity risk premia. However, he focuses only on 10yr maturities, while he

sets the risk aversion coefficient equal to 6.5, and the EIS equal to 1.5., even though a number of

empirical results59 suggest that the EIS cannot be larger than one.

Table VIII shows model implied credit spreads and expected equity premia for some recent works

previous works in the bond pricing lietrature. Almost all results focus on 4yr or 10yr maturities and

remain silent on longer maturities. This paper is the first one to examine the credit-spread puzzle

for 15yr+ maturities, and the first one to impose a stochastic discount factor which is micro-founded

on experimental evidence for behavior under risk.

59Hall (1988), Bonomo et al. (2011), and Beeler and Campbell (2012).
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6 Conclusion

The aim of this paper is to examine whether disappointment aversion preferences can help us resolve

the credit spread puzzle within a consumption-based asset pricing framework of an endowment

economy. Given the relative success of first-order risk aversion preferences in explaining other

stylized facts in financial markets, the disappointment aversion discount factor seems a natural

candidate for correctly pricing corporate bonds. However, the first-order risk aversion mechanism

implied by disappointment aversion is not powerful enough to map the low probabilities of Baa

default into measurable Baa-Aaa credit spreads.

Only when the disappointment model is combined with countercyclical losses given default and

default boundaries, can disappointment aversion preferences resolve the credit spread puzzle. This

is in line with the conclusions in Chen et al. (2009), according to which neither the habit nor the

long-run risk models can price Baa-Aaa credit spreads, unless we assume additional sources of risk

such as procyclical recovery rates, countercyclical default boundaries or stochastic idiosyncratic

volatility.

Furthermore, by fitting credit spreads for the short and medium term, the disappointment

model tends to overestimate credit spreads for long maturities (15yr+). Traditional consumption-

based asset pricing models (habit, long-run risk) have only been tested against 4yr or 10yr bond

maturities. It would be interesting to examine the predictions of these models for longer maturities,

as well as for the ultra short-run (up to 4 yrs).

Another direction for future research is to introduce disappointment aversion preferences in a

world where capital structure choices matter so as to endogenize default decisions. Despite all the

above, the disappointment model is quite successful in explaining both corporate bond prices, as

well as key moments for stock market returns, the risk-free rate, and the price-dividend ratio using

preference parameters that are consistent with experimental data for choices under uncertainty.
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7 Tables

Table I Average default rates, and expected credit spreads for Baa and Aaa
bonds

Panel A: average default rates for Aaa and
Baa bonds (1970-2011)

1 year 4 year 10 year 15 year 20 year

Aaa 0.000% 0.035% 0.476% 0.884% 1.045%
Baa 0.181% 1.379% 4.649% 8.632% 12.315%

Panel B: average Baa-Aaa credit spreads (bps)

sample maturity
period short medium long

Moody’s Baa-Aaa Corp. Bond Yield 1920-2011 118

Barclays US Agg. Corp. Baa-Aaa 1974-2011 128 112

BofA US Corp. BBB-AAA 2001-2011 155 128 102

Thomson-Reuters US Corp. Baa-Aaa 2003-2011 157 180

Duffee (1998) 1985-1995 75 70 105

Chen et al. (2009) 1970-2001 109

Huang and Huang (2012) 1973-1993 103 131

benchmark model in (1) 51 77 97

stochastic recovery rates in (3) 58 87 112

Average default rates for Baa and Aaa-rated firms in Panel A are from the Moody’s 2012 annual report. Panel B
summarizes sample average credit spreads used in previous studies, as well as expected credit spreads implied by the
models in (1) and (3). In Duffee (1998), short maturity is 2yr-7yr, medium is 7yr-15yr, and long maturity is 15yr-30yr.
Chen et al. (2009) consider 4yr maturities, while Huang and Huang (2012) consider 4yr and 10yr maturities. For the
Moody’s indices, long maturity is between 20yr and 30yr. For the Barclays indices, medium maturity is 1yr-10yr,
and long maturity is 10yr+. For the BofA indices, short maturity is 1yr-5yr, medium is 7yr-10yr, and long maturity
is 15yr+. For the Thomson-Reuters indices, short maturity is 4yr and medium maturity is 10yr. Finally, for the
benchmark and stochastic recovery rates models in (1) and (3), short maturity is 4yr, medium maturity is 10yr, and
long maturity is 15yr.
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Table II OLS regression of recovery rates on aggregate consumption growth
(1982-2011)

recovery rates 1− Lt
∆ct−1,t 4.461

(3.036)

R2 24.767%

Table II shows results for the OLS regression of recovery rates on contemporaneous consumption growth. Recovery

rates for senior subordinate debt are from the Moody’s 2012 report. ârec,c is the OLS estimate with the t-statistic in

parenthesis.
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Table III Preference parameters and state variable moments for the baseline
disappointment model

variable variable description variable value

EIS elasticity of intetemporal substitution 1
δ generalized disappointment aversion 1
β rate of time preference 0.9955
α risk aversion 1.8000
θ disappointment aversion 2.0303

µc consumption growth constant 0.0091
φc consumption growth autocorrelation 0.5026

µσ volatility constant 0.0004
φσ volatility autocorrelation 0.9715
νσ volatility of volatility 0.0017

µd dividend growth constant -0.0367
φd sensitivity dividend growth to consumption growth 3
σd volatility parameter for dividend growth 7.1664

µe earnings growth constant -0.0367
φe sensitivity of earnings growth to consumption growth 3
σe volatility parameter for earnings growth 2.2011

σi idiosyncratic volatility 0.2100

z̄m linearization constant for the price-payout ratio in (25) 3
x̄ linearization constant for the normal c.d.f. in (30) 0

Table III summarizes preference coefficients for the disappointment aversion stochastic discount factor in (10), as well

as moment parameters for aggregate state dynamics in equations (7)-(9).
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Table IV Simulation results for aggregate state variables

1946-2011 simulated economy

E[∆ct,t+1] 1.838% 1.834%
Vol(∆ct,t+1) 1.346% 1.914%
ρ(∆ct−1,t,∆ct,t+1) 0.502 0.504

E[∆dm,t,t+1] 2.107% 1.796%
Vol(∆dm,t,t+1) 13.079% 13.232%
ρ(∆dm,t−1,t,∆dm,t,t+1) -0.278 0.093
ρ(∆dm,t,t+1,∆cm,t,t+1) 0.286 0.218

E[∆em,t,t+1] -3.831% 1.819%
Vol(∆em,t,t+1) 7.057% 6.784%
ρ(∆em,t−1,t,∆em,t,t+1) 0.114 0.360
ρ(∆em,t,t+1,∆cm,t,t+1) 0.487 0.425

E[σt] 2.697% 1.498%
Vol(σt) 0.458% 0.691%
ρ(σt) 0.922 0.967

Table IV shows sample and simulated moments for aggregate state variables. E is expected value, Vol is volatility,
and ρ is the correlation coefficient. ∆ct−1,t, ∆dm,t−1,t, and ∆em,t−1,t are real consumption, real dividend, and
real earnings growth respectively. σt is consumption growth volatility. Simulated values for the state variables are
according to the system in (7)-(9), using parameter values from Table III. Sample moments are calculated using the
data described in subsection 2.1. Sample results for consumption growth volatility σt are according to the volatility
process in Chen et al. (2006) p. 31. All variables have been simulated for 100,000 years.
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Table V Default boundaries, average default rates, and expected Baa-Aaa credit
spreads for the disappointment model

Panel A: default boundaries for the simulated economy

cases 1 & 2: constant default boundary
4 yr 10 yr 15 yr

Baa Aaa Baa Aaa Baa Aaa

adef,0 -0.998 -1.600 -1.108 -1.832 -1.007 -1.970

cases 3 & 4: time-varying default boundary
4 yr 10 yr 15 yr

Baa Aaa Baa Aaa Baa Aaa

ai,def,0 -1.085 -1.790 -1.150 -1.920 -1.032 -2.040
adef,c -4 -4 -4 -4 -4 -4
adef,σ 4 4 4 4 4 4

Panel B: average default rates for the simulated economy

4 year 10 year 15 year
Aaa Baa Aaa Baa Aaa

case 1 1.379% 0.036% 4.655% 0.469% 8.626% 0.888%
case 2 1.378% 0.035% 4.665% 0.471% 8.627% 0.891%
case 3 1.374% 0.035% 4.666% 0.469% 8.640% 0.881%
case 4 1.385% 0.036% 4.651% 0.472% 8.663% 0.869%

1970-2011 sample 1.375% 0.035% 4.649% 0.476% 8.632% 0.884%

Panel C: average simulated Baa-Aaa credit spreads according to the disappointment model

4 year 10 year 15 year
Baa-rf Aaa-rf Baa-Aaa Baa-rf Aaa-rf Baa-Aaa Baa-rf Aaa-rf Baa-Aaa

case 1 65 3 62 122 27 95 153 40 113
case 2 81 4 77 151 37 114 191 55 136
case 3 78 4 74 139 33 106 167 47 120
case 4 106 6 100 176 47 129 215 67 148

eq. (1) 51 77 97
eq. (3) 58 87 112

sample 103 131 112

Default boundaries for the simulated economy (Panel A) are expressed in terms of asset log-returns. I consider four
different cases for the disappointment aversion discount factor: 1) constant recovery rates and default boundaries,
2) procyclical recovery rates according to (19) and constant default boundaries, 3) constant recovery rates and
countercyclical default boundaries according to (20), and 4) procyclical recovery rates and countercyclical default
boundaries. ai,def,0 is a constant, and adef,c, adef,σ are the loadings on consumption growth and consumption growth
volatility in the expression for default boundaries (20). Panel B shows average default rates for the simulated data
as well as for the Moody’s sample. Finally, Panel C shows expected Baa-Aaa credit spreads (bps) for the simulated
disappointment model according to (16) and (17). Benchmark expected credit spreads are from the models in (1)
and (3). Sample average credit spreads are from Huang and Huang (2012) for 4yr and 10yr bonds, and from the
Barclays corporate indices for long maturity bonds.
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Table VI Simulation results for the stock market and the risk-free rate accord-
ing to the disappointment model

1946-2011 simulated economy

E[rm,t,t+1] 6.581% 6.653%
Vol(rm,t,t+1) 17.216% 15.049%
ρ(rm,t−1,t, rm,t,t+1) -0.030 0.035
ρ(rm,t,t+1, ct,t+1) 0.503 0.463
Sharpe 0.328 0.378

E[rf,t,t+1] 0.928% 0.962%
Vol(rf,t,t+1) 2.727% 1.163%
ρ(rf,t−1,t, rf,t,t+1) 0.696 0.650

E[zm,t] 3.433 3.000
Vol(zm,t) 0.427 0.227
ρ(zm,t, zm,t−1) 0.950 0.891

Baa Sharpe ratio 0.220 0.218

Table VI shows sample and simulated moments for the stock market and the risk-free rate. rm,t,t+1 are real stock
market returns, rf,t,t+1 is the one-year real risk-free rate, zm,t is the aggregate price-dividend ratio, and Baa Sharpe
ratio is the equity Sharpe ratio for the median Baa firm according to Chen et al. (2009). Equity returns, the risk-free
rate, and the price-dividend ratio, have been simulated according to the expressions in (12), (11), and Proposition 2
respectively, while sample moments are calculated using the data described in subsection 2.1.
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Table VII Simulation results for alternative preference parameters in the dis-
appointment aversion model

baseline scenario I scenario II
θ = 2.03, α = 1.8 θ = 3, α = −1 θ = 0, α = 5

case 1 Baa-Aaa 4yr 62 43 33
case 2 Baa-Aaa 4yr 77 48 39
case 3 Baa-Aaa 4yr 74 43 38
case 4 Baa-Aaa 4yr 100 61 51

E[rm,t,t+1 − rf,t,t+1] 5.691% 5.676% 0.000%
Vol(rm,t,t+1) 15.049% 16.275% 14.367%
E[rf,t,t+1] 0.962% 0.519% 2.000%
Vol(rf,t,t+1) 1.163% 1.247% 0.987%

Table VII shows simulation results for expected Baa-Aaa credits spreads (bps) and the stock market when the
disappointment aversion discount factor from (10) is calibrated to alternative preference parameters. In the baseline
case of Table V and Table VI, θ = 2.03 and α = 1.8. For the first alternative scenario, θ is 3 and α is -1 (second-order
risk neutrality). In the second alternative scenario, θ is zero (no disappointment aversion effect) and α is 5.
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Table VIII Model implied expected credit spreads and expected equity risk
premia in the previous literature

model maturity
characteristics 4yr 10yr 15yr E[rm,t,t+1 − rf,t,t+1]

Chen et al. (2009) habit, α = 2.45 107 123 7.30%
countercyclical boundaries

Chen et al. (2009) long-run risk, 52 7.40%
EIS=2, α = 7.5

Chen (2010) endogenous default, 105 6.71%
EIS=1.5, α = 6.5

Bhamra et al. (2010) endogenous default, 45 (5yr) 75 3.19%
no preferences

Huang & Huang (2012) Goldstein et al. (2001) 31 40
model

case 4 in Table V EIS=1, α = 1.8, θ = 2.03, 100 129 148 6.65%
countercyclical boundaries &

losses given default

Table VIII shows model implied expected credit spreads (bps) and equity risk premia calculated in prior works. “no
preferences” implies that expected credit spreads have been calculated using risk-neutral measures, without modeling
investor preferences. α is the risk aversion parameter, EIS is the elasticity of intertemporal substitution, and θ is the
disappointment aversion parameter. E[rm,t,t+1 − rf,t,t+1] is the equity risk premium.
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8 Figures

Figure I Baa-Aaa credit spreads, and Baa default rates for the 1946-2011 period
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The solid line in Figure I shows Baa-Aaa credit credit spreads for the Moody’s Seasoned Aaa and Baa Corporate
Bond Indices. The dashed line shows annual Baa default rates from the Moody’s 2012 report. Shaded areas are
NBER recessions.
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Figure II Sample and fitted expected Baa-Aaa credit spreads according to the
benchmark model in (1)
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The dotted line in Figure II shows expected credit spreads (bps) according to the benchmark model in (1) for
maturities from 1 up to 20 years. The scattered points are mean Baa-Aaa credit spreads for the three sets of
corporate bond indices (Barclays, BofA, and Thomson-Reuters) and the Huang and Huang (2012) sample. If the
benchmark model in (1) could succefully explain expected returns, then the scattered points should be part of the
credit spread term structure.
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Figure III Recovery rates for senior subordinate bonds during the 1982-2011
period
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Figure III shows recovery rates for senior subordinate bonds from the Moody’s 2012 report. Shaded areas are NBER
recessions.
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Figure IV Sample and fitted expected Baa-Aaa credit spreads according to the
disappointment model in (15)
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Figure IV shows fitted expected Baa-Aaa credit spreads across maturities according to the benchmark model in (1)
and case 4 of the disappointment model in (17). Sample expected credit spreads are from Huang and Huang (2012)
for 4yr and 10yr maturities. Sample credit spreads for 15yr maturities are from the Barclays corporate indices.
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Appendix

Appendix A Bond yields according to the benchmark model in (1)

Suppose that single-period, cum-payout, asset log-returns for firm i ri,t,t+1 are i.i.d. normal random
variables with constant mean µ̃i − 1

2σ
2
i ∈ R, and volatility σi ∈ R>0. Let ∆i be the constant log-

payout yield: ∆i = log
(
1 +

Oi,t+1

Pi,t+1

)
. Oi,t+1 is the payout, and Pi,t+1 is the price of assets in

place60. Ex-payout log-returns rxi,t,t+1 are equal to cum-payout log-returns minus the log-payout
yield (rxi,t,t+1 = ri,t,t+1 −∆i). Hence, rxi,t,t+1 are also normal random variables, and, in a discrete-
time setting, can be expressed as

rxi,t,t+1 = µ̃i −∆i −
1

2
σ2
i + σiεi,t+1,

with εi,t+1 i.i.d. N(0, 1) shocks. Moreover, T -period, ex-payout returns are also i.i.d. normal
random variables with mean (µ̃i −∆i − 1

2σ
2
i )T and volatility σi

√
T .

Suppose that the single-period, log risk-free rate is constant and equal to rf . Assume also that
there are no taxes, and that default boundaries Di,T as well as losses given default L are constant.
Let πPi,t,t+T be the physical probability of default for a T -period, zero-coupon bond

πPi,t,t+T = Pt
(
Pi,t+T < Di,T

)
.

Similar to the original Merton model, default can only happen at the expiration date t + T , but
unlike the Merton model, the default boundary is not necessarily equal to the face value of debt.
Normalizing current period firm value Pi,t to one, the physical probability of default πPi,t,t+T can be
expressed in terms of asset log-returns rxi,t,t+1

πPi,t,t+T = N
( logDi,T − (µ̃i −∆i − 1

2σ
2
i )T

σi
√
T

)
, (21)

in which N() is the standard normal c.d.f.. Because asset log-returns are i.i.d. with constant mean
and standard deviation, πPi,t,t+T depends only on maturity T , hence πPi,t,t+T = πPi,T . Finally, using

the inverse of the normal c.d.f. N−1(), we can express the log-default boundary logDi,T from (21)
as a function of the physical probability of default πPi,T , expected returns for assets in place µ̃i, and
asset return volatility σi

logDi,T = (µ̃i −∆i −
1

2
σ2
i )T +N−1

(
πPi,T

)
σi
√
T . (22)

The continuous-time framework in Black and Scholes (1973) allows for frictionless trading and
hedging between underlying and derivative securities. An immediate consequence of continuous
trading is that if asset returns under the physical measure are normally distributed with constant
mean and volatility, then asset returns under the risk-neutral measure are also normally distributed

60In the benchmark case, the price-payout ratio is constant.
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with the same variance, and mean equal to the risk-free rate.

In a discrete-time setting, continuous trading is not possible. However, according to Lemma
1 in Appendix F.1, the risk-neutral density for asset returns is normal, provided that aggregate
preferences over consumption are described by a CRRA utility function, and that aggregate con-
sumption growth is a log-normal random variable. Hence, assuming that all conditions for Lemma
1 hold, T -period, ex-payout asset log-returns rxi,t,t+1 under the risk-neutral measure are normally

distributed with mean (rf −∆i − 1
2σ

2
i )T , and volatility σi

√
T .

Let yi,t,t+T be the continuously compounded yield to maturity for a T -period, zero-coupon bond
written on firm i at time t. Then, under the risk-neutral measure

e−Tyi,t,t+T = e−Trf
(

1− LN
( logDi,T − (rf −∆i − 1

2σ
2
i )T

σi
√
T

))
. (23)

Taking logs in (23), and substituting logDi,T with the expression from (22), we get that

yi,t,t+T − rf = − 1

T
log
[
1− LN

(
N−1

(
πPi,T

)
+
µ̃i − rf
σi

√
T
)]
.

Since the right-hand side above and the risk-free rate are constants, we conclude that

E[yi,t,t+T − rf ] = − 1

T
log
[
1− LN

(
N−1

(
πPi,T

)
+
µ̃i − rf
σi

√
T
)]
.

Appendix B Bond yields according to the model in (3) with time-varying re-
covery rates

Suppose that recovery rates are the same across all bonds, and depend only on consumption growth

1− Lt+T = arec,0 + arec,c∆ct+T−1,t+T .

Suppose also that all the assumptions in Appendix A hold. Then, the yield-to-maturity for a
zero-coupon, T-period bond is given by61

e−Tyi,t,t+T = e−TrfEQ
t

[
EQ
t

[
1− (1− arec,0 − arec,c∆ct+T−1,t+T )1

{
ri,t,t+T < logDi,T

}
|∆ct+T−1,t+T

]]
,

in which EQ
t is the expectation under the risk-neutral measure. Further algebra implies that

e−Tyi,t,t+T = e−TrfEQ
t

[
1− (1− arec,0 − arec,c∆ct+T−1,t+T )N

( logDi,T − (rf −∆i − 1
2σ

2
i )T

σi
√
T

)]
According to Appendix F.3, under the risk neutral measure, log-consumption growth is a normal

random variable with volatility σc, and mean µ̃c −
µ̃m−rf
ρm,cσm

σc.
µ̃m−rf
σm

is the stock market Sharpe
ratio, and ρm,c is the correlation between stock market returns and consumption growth. Using

61Under the risk neutral measure Q, asset returns ri,t,t+1 and consumption growth are independent.
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the expression for the default boundary logDi,T from (22), we obtain

e−T (yi,t,t+T+rf ) =
[
1−

(
1− arec,0 − arec,cµ̃c︸ ︷︷ ︸

E[Lt+T ]

+arec,c
µ̃m − rf
ρm,cσm

σc

)
N
(
N−1

(
πPi,T

)
+
µ̃i − rf
σi

√
T
)]
.

Since the right-hand side and the risk-free rate are constants, we conclude that

E[yi,t,t+T − rf ] = − 1

T
log
[
1−

(
E[Lt+T ] + arec,c

µ̃m − rf
ρm,cσm

σc

)
N
(
N−1

(
πPi,T

)
+
µ̃i − rf
σi

√
T
)]
.

Appendix C Intertemporal marginal rate of substitution for disappointment
aversion preferences

Along an optimal consumption path, the Bellman equation for the representative investor’s consumption-
investment problem implies that

Vt =
[
(1− β)Cρt + βµt

(
Vt+1

)ρ] 1
ρ ,

where µt is the disappointment aversion certainty equivalent from (5). The expression for the
stochastic discount factor is given by

Mt,t+1 =
∂Vt/∂Ct+1

∂Vt/∂Ct
,

in which

∂Vt/∂Ct =
1

ρ
V 1−ρ
t (1− β)ρCρ−1

t ,

and

∂Vt/∂Ct+1 =
1

ρ
V 1−ρ
t βρµt

(
Vt+1

)ρ−1 ×

(− 1

α
)Et
[ V −αt+1 (1 + θ1{Vt+1 < δµt})

1− θ(δ−α − 1)1{δ > 1}+ θδ−αEt[1{Vt+1 < δµt}]

]− 1
α
−1
×

(−α)V −α−1
t+

1 + θ1{Vt+1 < δµt})
1− θ(δ−α − 1)1{δ > 1}+ θδ−αEt[1{Vt+1 < δµt}]

1

ρ
V 1−ρ
t+1 (1− β)ρCρ−1

t+1 ,

to conclude that

Mt,t+1 = β
(Ct+1

Ct

)(ρ−1)[ Vt+1

µt
(
Vt+1

)]−α−ρ[ 1 + θ1{Vt+1 < δµt}
1− θ(δ−α − 1)1{δ > 1}+ θδ−αEt[1{Vt+1 < δµt}]

]
.
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Appendix D Asset returns and the price-payout ratio

Let Pm,t, Om,t, Zm,t = (P/O)m,t be the price, payout, and price-payout ratio of a generic financial
claim m written on a stream of aggregate payments. Depending on the asset we want to price,
payouts can be aggregate dividends (equity), aggregate earnings (assets in place), or even aggregate
consumption (claim on aggregate consumption). Let Rm,t+1 be the cum-payout, gross return for
claim m, then

Rm,t+1 =
Pm,t+1 +Om,t+1

Pm,t
.

Dividing and multiplying the numerator with Om,t+1, the denominator with Om,t, and taking
logs, we can express log-returns rm,t,t+1 in terms of log price-payout ratios zm,t

rm,t,t+1 = log[ezm,t+1 + 1]− zm,t + ∆om,t,t+1.

Using a first-order Taylor series approximation for log[ezm,t+1 + 1] around the point zm,t+1 = z̄m,
asset returns can be expressed as

rm,t,t+1 ≈ κm,0 + κm,1zm,t+1 − zm,t + ∆om,t,t+1, (24)

where

κm,1 =
ez̄m

ez̄m + 1
∈ (0, 1), and κm,0 = log[ez̄m + 1]− ez̄m

ez̄m + 1
z̄m. (25)

Following a similar line of arguments62, ex-payout, asset log-returns are given by

rxm,t,t+1 = zm,t+1 − zm,t + ∆om,t,t+1.

Appendix E Simulation

Appendix E.1 Simulation methodology

The consumption-Euler equation for a T -period, zero-coupon bond written on firm’s i assets reads

e−Tyi,t,t+T = Et
[( T∏

j=1

Mt+j−1,t+j

)(
1{rxi,t,t+T ≥ Di,t+T }+ (1− Lt+T )1{rxi,t,t+T < Di,t+T }

)]
.

62For ex-dividend returns, no linearization is needed, since rxm,t,t+1 = log
(
Pm,t+1/Om,t+1

Pm,t/Om,t

Om,t+1

Om,t

)
.
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Unlike the model in (1), default boundaries Di,t+T and losses given default Lt+T are allowed to
vary over time, and be functions of the state variables

Di,t+T = ai,def,0 + adef,c
(
∆ct+T−1,t+T −

µc
1− φc

)
+ adef,σ

(
σt+T −

µσ
1− φσ

)
,

and

1− Lt+T = arec,0 + arec,c∆ct+T−1,t+T .

The first step in the simulation exercise is to discretize the consumption growth and consumption
growth volatility space into N∆c = 20 and Nσ = 20 equidistant points with a pace of d∆c and dσ
respectively. The consumption growth space is truncated from above and below by Ê[∆ct−1,t] ±
3V̂ol(∆ct−1,t), whereas the volatility space is truncated from above and below by Ê[σt]±1.9V̂ol(σt).
The lower bound for the volatility space guarantees that initial values for volatility are always
positive. Ê[] and V̂ol() are the simulated unconditional mean and standard deviation from Table
IV.

The second step is to choose starting values for consumption growth and consumption growth
volatility. To do so, I iterate though all possible pairs of {∆cl, σk}, l = 1, 2, ..., N∆c, k = 1, 2, ..., Nσ.
For each pair of starting values, I simulate N = 10, 000 63 paths for consumption growth, con-
sumption growth volatility, and aggregate payout growth according to the system in (7)-(9), as
well as idiosyncratic volatility shocks. Each path contains T nodes, as many nodes as the life of
of the zero-coupon security. Negative volatility observations are replaced with the lowest positive
observation

(
Ê[σt]− 1.9V̂ol(σt)

)
from the initial grid.

At each node of the simulated paths for ∆ct−1,t and σt, I can obtain values for the stochastic
discount factor Mt+j−1,t+j from (10), price-payout ratios according to Proposition 2, one-period,
ex-payout asset log-returns for the median firm from (14), as well as losses given default and
default boundaries according to (19) and (20). T -period, ex-payout, asset log-returns are simply
given by the sum of single-period returns rxi,t,t+T =

∑T
j=1 r

x
i,t,t+j . Finally, for each simulated

path, the discounted cashflow of a zero-coupon corporate bond is
(∏T

j=1Mt+j−1,t+j

)(
1{rxi,t,t+T ≥

Di,t+T } + (1 − Lt+T )1{rxi,t,t+T < Di,t+T }
)

. Averaging across all N simulated paths, we obtain a

value for the yield to maturity given the initial values for ∆ct−1,t and σt

ŷi,t,t+T (∆cl, σk) ≈ −
1

T
log
[ 1

n

N∑
n=1

( T∏
j=1

M
(n)
t+j−1,t+j

)(
1{rx (n)

i,t,t+T ≥ D
(n)
i,t+T }+ (1− L(n)

t+T )1{rx (n)
i,t,t+T < D

(n)
i,t+T }

)]
.

The objective is to match unconditional first moments for credit spreads. We therefore need
to calculate unconditional expected values over the grid of starting values for consumption growth

63Simulation results are not affected by the number of simulation paths N or the number of grid points (Nδc, Nσ),
provided of course that these numbers are relatively large.
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and consumption growth volatility using the p.d.f’s. for ∆ct−1,t, σt, and σt−1

E[ŷi,t,t+T (∆cl, σk)] ≈
Nσ∑
j=1

{ Nσ∑
k=1

[N∆c∑
l=1

ŷi,t,t+T (∆cl, σk)f(∆cl|σk, σj)d′∆c
]
f(σk|σj)d′σ

}
f(σj)d

′′
σ,

where f(∆cl|σk, σj), f(σk|σj), and f(σj) are the p.d.f.’s for ∆ct−1,t, σt, and σt−1, while d′∆c, d
′
σ and

d′′σ are constants such that
∑N∆c

l=1 f(∆cl|σk, σj)d′∆c = 1,
∑Nσ

k=1 f(σk|σj)d′σ = 1, and
∑Nσ

j=1 f(σj)d
′′
σ =

1. The p.d.f.’s for ∆ct−1,t, σt, and σt−1 are derived in Appendix E.2.

Appendix E.2 Unconditional p.d.f.’s for consumption growth, and consumption growth
volatility

According to (8), consumption growth volatility σt−1 is unconditionally normally distributed with
mean µσ/(1−φσ) and variance ν2

σ/(1−φ2
σ). According to (7), conditional on σt−1, ∆ct is normally

distributed with long-run mean

E[∆ct−1,t|σt−1] =
µc

1− φc
,

and long-run variance

Var(∆ct−1,t|σt−1) =
σ2
t−1

1− φ2
c

.

Using the above results and equations (7)-(8), we conclude that the long-run p.d.f. for σt−1 is
equal to

f(σt−1) =
1√

2π(νσ/
√

1− φ2
σ)
e
−

(σt−1−
µσ

1−φσ
)2

2ν2
σ/(1−φ2

σ) .

The p.d.f. for σt|σt−1 is equal to

f(σt|σt−1) =
1√

2πνσ
e
− (σt−µσ−φσσt−1)2

2ν2
σ .

The long-run p.d.f for ∆ct−1,t conditional on σt and σt−1 is equal to

f(∆ct−1,t|σt, σt−1) =
1√

2π(σt−1/
√

1− φ2
c)
e
− (∆ct−µc/(1−φc))

2

2σ2
t−1/(1−φ

2
c) .
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The joint p.d.f. for ∆ct−1,t, σt and σt−1 is therefore equal to

f(∆ct−1,t, σt, σt−1) = f(∆ct−1,t|σt, σt−1)f(σt|σt−1)f(σt−1)⇔

f(∆ct−1,t, σt, σt−1) =
1√

2π(νσ/
√

1− φ2
σ)

1√
2πνσ

1√
2π(σt−1/

√
1− φ2

c)
e
−

(∆ct−1,t−µc/(1−φc))
2

2σ2
t−1/(1−φ

2
c) ×

e
− (σt−µσ−φσσt−1)2

2ν2
σ e

− (σt−1−µσ/(1−φσ))2

2ν2
σ/(1−φ2

σ)

Appendix F Proofs

Appendix F.1 Lemma 1

Lemma 1: Suppose that one-period, cum-dividend, asset log-returns ri,t,t+1 are i.i.d. normal ran-
dom variables with constant mean µ̃i − 1

2σ
2
i and volatility σi. Suppose also that financial markets

are complete, that there exists a representative investor with CRRA power utility defined over con-
sumption64, that log-consumption growth ∆ct,t+1 is a normal random variable with constant mean
µ̃c and constant volatility σc, and that the correlation coefficient between ri,t,t+1 and ∆ct,t+1 is ρi,c.
Then, the log risk-free rate rf is constant, and cum-payout asset log-returns under the risk-neutral
measure Q are i.i.d. normal random variables with constant mean rf − 1

2σ
2
i and volatility σi.

Proof:

In equilibrium, the consumption-Euler equation for asset log-returns implies that

Et
[
βe−α∆ct,t+1eri,t,t+1

]
= 1⇔ µ̃i + logβ − αµ̃c +

1

2
α2σ2

c − αρi,cσcσ1 = 0. (26)

in which β ∈ (0, 1) is the rate of time-preference, and α ≥ −1 is the risk aversion parameter in the
CRRA power utility function. Similarly, for the log risk-free rate

rf + logβ − αµ̃c +
1

2
α2σ2

c = 0. (27)

which is constant since µc and σc are also constant.

We can rewrite the consumption-Euler equation in (26) using the p.d.f. for ∆ct+1 conditional
on ri,t,t+1∫ +∞

−∞

1√
2πσi

elogβeri,t,t+1e
−

(ri,t,t+1−µ̃i+0.5σ2
i )2

2σ2
i e

−α[µ̃c+ρi,c
σc
σi

(ri,t,t+1−µ̃i+0.5σ2
i )]+ 1

2
α2(1−ρ2

i,c)σ
2
cdri,t,t+1 = 1.

64More on the aggregation properties of the CRRA utility function can be found in Chapter 1 of Duffie (2000),
and Chapter 5 in Huang and Litzenberger (1989).
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Exploiting the consumption-Euler conditions in (26) and (27), we obtain

e−rf
∫ +∞

−∞

1√
2πσi

eri,t,t+1e
−

(ri,t,t+1−rf+0.5σ2
i )2+(αρi,cσiσc)

2−2(ri,t,t+1−rf+0.5σ2
i )αρi,cσiσc

2σ2
i ×

e
−αρi,c σcσi (ri,t,t+1−µ̃i+0.5σ2

i )
e−

1
2
α2ρ2

i,cσ
2
cdri,t,t+1 = 1.

Further algebra yields

e−rf
∫ +∞

−∞

1√
2πσi

eri,t,t+1e
−

(ri,t,t+1−rf+0.5σ2
i )2

σi e
− 1

2
α2ρ2

i,cσ
2
c+(ri,t,t+1−rf+0.5σ2

i )αρi,c
σc
σi ×

e
−αρi,c σcσi (ri,t,t+1−rf−αρi,cσiσc+0.5σ2

i )
e−

1
2
α2ρ2

i,cσ
2
cdri,t,t+1 = 1.

Cancelling out terms, we conclude that

e−rf
∫ +∞

−∞
eri,t,t+1

1√
2πσi

e
−

(ri,t,t+1−rf+0.5σ2
i )2

σi︸ ︷︷ ︸
risk-neutral c.d.f. for ri,t,t+1

dri,t,t+1 = 1.

Appendix F.2 Lemma 2

Lemma 2: Let x be a normal random variable with mean µ ∈ R and standard deviation σ ∈ R>0.
Let A and B two real numbers with B > − 1

2σ2 , then

E
[
e−Ax−Bx

2
]

= e
0.5A2σ2−Aµ−Bµ2

1+2Bσ2
1√

1 + 2Bσ2
. (28)

Proof:

E
[
e−Ax−Bx

2
]

=
1√
2πσ

∫ +∞

−∞
e

−2Aσ2x−2σ2Bx2−x2−µ2+2µx

2σ2 dx.

Completing the square in the right-hand side

E
[
e−Ax−Bx

2
]

= e

(
µ−Aσ2√
1+2Bσ2

)2

−µ2

2σ2
1√
2πσ

∫ +∞

−∞
e

−(1+2Bσ2)x2+2
µ−Aσ2√
1+2Bσ2

√
1+2Bσ2x−

(
µ−Aσ2√
1+2Bσ2

)2

2σ2 dx.

After a change of variables x̃ =
√

1 + 2Bσ2x, we conclude that

E
[
e−Ax−Bx

2
]

= e
0.5A2σ2−Aµ−Bµ2

1+2Bσ2
1√

1 + 2Bσ2
.
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Appendix F.3 Risk-neutral density for consumption growth under CRRA prefer-
ences

Following Lemma 1 in Appendix F.1, assume that consumption growth is log-normally distributed
with constant mean µ̃c and volatility σc, and that aggregate investor preferences can be described
by a CRRA power utility function. Let ft(∆ct,t+1) be the normal p.d.f. for log-consumption growth,

then the risk-neutral density fQt (∆ct,t+1) is given by

fQt (∆ct,t+1) =
MCRRA
t,t+1

Et[MCRRA
t,t+1 ]

ft(∆ct,t+1).

Following a similar line of arguments as in Lemma 1, we obtain

fQt (∆ct,t+1) =
1√

2πσc
e
−

(
∆ct,t+1−(µ̃c−ασ2

c )

)2

2σ2
c .

Exploiting the consumption-Euler equations for stock market returns and the risk-free rate in
(26) and (27), we can substitute out the term ασ2

c with the stock market Sharpe ratio adjusted for
the correlation between the stock market and consumption growth

ασ2
c =

µ̃m − rf
σmρm,c

σc,

to conclude that

fQt (∆ct,t+1) =
1√

2πσc
e
−

(
∆ct,t+1−(µ̃c−

µ̃m−rf
σmρm,c

σc)

)2

2σ2
c .

Appendix F.4 Proof of Proposition 1

For ρ = 0, the Bellman recursion for the aggregate investor’s consumption problem becomes

Vt = C1−β
t µt

(
Vt+1

)β
. (29)

µt is the disappointment aversion certainty equivalent from (5) with δ = 1. Suppose that log VtCt =

vt − ct = A0 +A1∆ct−1,t +A2σt +A3σ
2
t . Then, the Bellman equation reads

exp
[ 1

β
(A0 +A1∆ct−1,t +A2σt +A3σ

2
t )
]

=

Et
{
exp
[
− α[A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ

2
t+1]

]
×

1 + θ1{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ
2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ

2
t )}

1 + θPt{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ2

t )}

}− 1
α
.
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Dividing both parts by the left-hand side,

Et
{
exp
[
− α(A0 −

1

β
A0)− α[(A1 + 1)∆ct,t+1 −

1

β
A1∆ct−1,t]

−α(A2σt+1 −
1

β
A2σt)− α(A3σ

2
t+1 −

1

β
A3σ

2
t )
]
×

1 + θ1{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ
2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ

2
t )}

1 + θPt{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ2
t+1 <

1
β (A0 +A1∆ct−1t +A2σt +A3σ2

t )}

}− 1
α

= 1.

Recall that εc,t+1 and εσ,t+1 from (7) and (8) are independent. We can use the law of total expec-
tation to rewrite the above expression as

Et
{
Et
{
exp
[
− α(A0 −

1

β
A0)− α[(A1 + 1)∆ct,t+1 −

1

β
A1∆ct−1,t]

−α(A2σt+1 −
1

β
A2σt)− α(A3σ

2
t+1 −

1

β
A3σ

2
t )
]
×

1 + θ1{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ
2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ

2
t )}

1 + θPt{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ2

t )}
|εσ,t+1

}}
= 1.

Using the dynamics of consumption growth ∆ct,t+1 in (7), and partial moments for the normal
distribution, the above expression becomes

Et
{
exp
[
− α(A0 −

1

β
A0)− α[(A1 + 1)(µc + φc∆ct−1,t)−

1

β
A1∆ct−1,t] +

1

2
α2(A1 + 1)2σ2

t

−α(A2σt+1 −
1

β
A2σt)− α(A3σ

2
t+1 −

1

β
A3σ

2
t )
]
×

1 + θN
( 1
β

(A0+A1∆ct−1,t+A2σt+A3σ2
t )−A0−(A1+1)µc−(A1+1)φc∆ct−1,t−A2σt+1−A3σ2

t+1

(A1+1)σt
+ α(A1 + 1)σt

)
1 + θN

( 1
β

(A0+A1∆ct−1,t+A2σt+A3σ2
t )−A0−(A1+1)µc−(A1+1)φc∆ct−1,t−A2σt+1−A3σ2

t+1

(A1+1)σt

) }
= 1,

where N() is the standard normal c.d.f.. For θ = 2 and N() a small number65, we can use the
following approximation 1 + θN(y) ≈ eθN(y) to get

Et
{
exp
[
− α(A0 −

1

β
A0)− α[(A1 + 1)(µc + φc∆ct−1,t)−

1

β
A1∆ct−1,t] +

1

2
α2(A1 + 1)2σ2

t

−α(A2σt+1 −
1

β
A2σt)− α(A3σ

2
t+1 −

1

β
A3σ

2
t )
]
×

e
θN

( 1
β

(A0+A1∆ct−1,t+A2σt+A3σ
2
t )−A0−(A1+1)µc−(A1+1)φc∆ct−1,t−A2σt+1−A3σ

2
t+1

(A1+1)σt
+α(A1+1)σt

)
×

e
−θN

( 1
β

(A0+A1∆ct−1,t+A2σt+A3σ
2
t )−A0−(A1+1)µc−(A1+1)φc∆ct−1,t−A2σt+1−A3σ

2
t+1

(A1+1)σt

)}
= 1,

65In simulations, the probability of disappointment events is less than 0.5
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Further, we can use a first-order linear approximation for the difference of the two standard normal
c.d.f.’s in the above equation, provided that this difference is small66,

N(x)−N(y) ≈ n(x̄)(x− y),

to obtain

exp
[
− α(A0 −

1

β
A0)− α[(A1 + 1)(µc + φc∆ct−1,t)−

1

β
A1∆ct−1,t] +

1

2
α2(A1 + 1)2σ2

t + (30)

αθn(x̄)(A1 + 1)σt + α
1

β
A2σt + α

1

β
A3σ

2
t

]
Et
{
exp
[
− αA2σt+1 − αA3σ

2
t+1

]}
= 1,

in which n() is the standard normal p.d.f..

Combining the dynamics for aggregate uncertainty σt+1 in (8) with Lemma 2 from Appendix
F.2, the Bellman equation becomes

exp
[
− α(A0 −

1

β
A0)− α[(A1 + 1)(µc + φc∆ct−1,t)−

1

β
A1∆ct−1,t] +

1

2
α2(A1 + 1)2σ2

t + (31)

αθn(x̄)(A1 + 1)σt + α
1

β
A2σt + α

1

β
A3σ

2
t

]
×

exp
[0.5α2A2

2ν
2
σ − αA2µσ − αA2φσσt − αA3µ

2
σ − αA3φ

2
σσ

2
t − 2αA3µσφσσt

1 + 2αA3ν2
σ

] 1√
1 + 2αA3ν2

σ

= e0.

We can now solve for A0, A1, A2, and A3 using the method of undetermined coefficients. We first
collect ∆ct−1,t terms to get

A1 =
βφc

1− βφc
. (32)

Note that for β ∈ (0, 1) and φc ∈ (−1, 1), then A1 + 1 is positive. Also, for β ∈ (0, 1), the sign of
A1 depends only on the sign of φc.

Similarly, collecting σ2
t terms yields

2αν2
σA

2
3 + [1− βφ2

σ + βα2(A1 + 1)2ν2
σ]A3 +

1

2
βα(A1 + 1)2 = 0. (33)

For α 6= 0, the solution for to the quadratic equation is

A3 =
−[1− βφ2

σ + βα2(A1 + 1)2ν2
σ]±

√
[1− βφ2

σ + βα2(A1 + 1)2ν2
σ]2 − 4βα2(A1 + 1)2ν2

σ

4αν2
σ

. (34)

The ratio of the constant term over the quadratic coefficient in the above quadratic equation is
a positive number

(
β(A1 + 1)2/4ν2

σ

)
. Hence, the roots of the quadratic equation will be of the

same sign. Furthermore, since β ∈ (0, 1) and φσ ∈ (−1, 1), then 1 − βφ2
σ is positive, −[1 − βφ2

σ +
βα2(A1 +1)2ν2

σ] is negative, and the solutions to the quadratic equation are therefore negative. We
will pick the largest negative root so that the quadratic solution in (34) is very close to the linear

66Essentially we require that α
1−βφc

σt to be small.
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approximation in (35) below.

For A3 to be a real number, we require that

[1− βφ2
σ + βα2(A1 + 1)2ν2

σ]2 − 4βα2(A1 + 1)2ν2
σ > 0.

We cannot really examine whether the above inequality holds without having picked parameter
values. However, ν2

σ is a very small number close to zero (0.001772), and for ν2
σ ≈ 0 the determinant

in (34) is approximately equal to

lim
ν2
σ↓0

[1− βφ2
σ + βα2(A1 + 1)2ν2

σ]2 − 4βα2(A1 + 1)2ν2
σ ≈ [1− βφ2

σ]2 > 0.

The restriction that νσ is a very small number is associated with higher consumption growth mo-
ments being well defined. Parameter values for the simulated economy ensure that the determinant
in (34) is real, and that 1 + 2αA3ν

2
σ > 0 as required by Lemma 2 in Appendix F.2. Finally, for

ν2
σ ≈ 0, equation (33) becomes linear yielding an approximate solution for A3

A3 ≈ −
1

2

βα(A1 + 1)2

1− βφ2
σ

. (35)

Collecting σt terms in (31), we obtain the solution for A2

A2 =
−θβn(x̄)(A1 + 1)(1 + 2αA3ν

2
σ) + 2βA3µσφσ

1 + 2αA3ν2
σ − βφσ

, (36)

where 1 + 2αA3ν
2
σ > 0 as required by Lemma 2 in Appendix F.2. It is easy to verify that for

negative A3, then A2 is also negative. Furthermore, as ν2
σ ↓ 0, an approximate solution for A2 reads

A2 ≈
−θβn(x̄)(A1 + 1) + 2βA3µσφσ

1− βφσ
. (37)

Finally, the remaining constant terms in (31) are grouped under A0

A0 =
β

1− β
[(A1 + 1)µc +

1

1 + 2αA3ν2
σ

(A2µσ +A3µ
2
σ − 0.5αA2

2ν
2
σ) +

1

2α
log(1 + 2αA3ν

2
σ)], (38)

with the approximation for ν2
σ ↓ 0

A0 ≈
β

1− β
[(A1 + 1)µc +A2µσ +A3µ

2
σ]. (39)

Appendix F.5 The log risk-free rate

The Euler condition for the log risk-free rate reads

e−rf,t,t+1 = Et
[
β
(Ct+1

Ct

)−1( Vt+1

µt
(
Vt+1

))−α 1 + θ 1{Vt+1 < µt(Vt+1)}
Et[1 + θ 1{Vt+1 < µt(Vt+1)}]

]
.
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Repeating all the steps that lead to equation (30) in Appendix F.4, we obtain

e−rf,t,t+1 = exp
[
logβ − α(A0 −

1

β
A0)−

[
[α(A1 + 1) + 1](µc + φc∆ct−1,t)−

1

β
A1∆ct

]
+

1

2
[α(A1 + 1) + 1]2σ2

t + θn(x̄)[α(A1 + 1) + 1]σt + α
1

β
A2σt + α

1

β
A3σ

2
t

]
Et
{
exp
[
− αA2σt+1 − αA3σ

2
t+1

]}
.

But from (30) we know that

exp
[
− α(A0 −

1

β
A0)− α[(A1 + 1)(µc + φc∆ct−1,t)−

1

β
A1∆ct−1,t] +

1

2
α2(A1 + 1)2σ2

t +

αθn(x̄)(A1 + 1)σt + α
1

β
A2σt + α

1

β
A3σ

2
t

]
Et
{
exp
[
− αA2σt+1 − αA3σ

2
t+1

]}
= 1.

Therefore, the log risk-free rate must be approximately equal to

rf,t,t+1 ≈ −logβ + µc + φc∆ct−1,t −
1

2
[2α(A1 + 1) + 1]σ2

t − θn(x̄)σt

Appendix F.6 Proof of Proposition 2

We conjecture that the log price-payout ratio zm,t for a financial claim on a stream of aggregate
payments (dividends or earnings) is an affine function of the state variables ∆ct−1,t, σt, σ

2
t

zm,t = Am,0 +Am,1∆ct−1,t +Am,1σt +Am,2σ
2
t .

Combining equation (24) with our conjecture about zm,t, the Euler equation for asset returns
becomes

Et
[
Mt,t+1e

κm,0+κm,1(Am,0+Am,1∆ct,t+1+Am,2σt+1+Am,3σ2
t+1)−(Am,0+Am,1∆ct−1,t+Am,2σt+Am,3σ2

t )+∆om,t,t+1
]

= 1.

Substituting the result for the disappointment aversion discount factor Mt,t+1 from (10), we can
re-write the Euler equation as

Et
[
elog β−∆ct,t+1e

−α
{
A0(1− 1

β
)+[(A1+1)∆ct,t+1− 1

β
A1∆ct−1,t]+A2(σt+1− 1

β
σt)+A3(σ2

t+1−
1
β
σ2
t )
}
× (40)

1 + θ 1{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ
2
t+1 <

1
β (A0 +A1∆ct−1,t +A2σt +A3σ

2
t )}

Et[1 + θ 1{A0 + (A1 + 1)∆ct,t+1 +A2σt+1 +A3σ2
t+1 <

1
β (A0 +A1∆ct +A2σt +A3σ2

t )}]
×

eκm,0+κm,1(Am,0+Am,1∆ct,t+1+Am,2σt+1+Am,3σ2
t+1)−(Am,0+Am,1∆ct−1,t+Am,2σt+Am,3σ2

t )+∆om,t,t+1

]
= 1.
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Following the same line of arguments as in Appendix F.4, the Euler equation becomes

exp
[
log(β)− α(A0 −

1

β
A0)−

[
[α(A1 + 1) + 1− κm,1Am,1](µc + φc∆ct−1,t) + α

1

β
A1∆ct−1,t

]
(41)

+
1

2
[α(A1 + 1) + 1− κm,1Am,1]2σ2

t + θn(x̄)[α(A1 + 1) + 1− κm,1Am,1]σt + α
1

β
A2σt + α

1

β
A3σ

2
t

+κm,0 +Am,0(κm,1 − 1)−Am,1∆ct−1,t −Am,2σt −Am,3σ2
t + µm + φm∆ct−1,t +

1

2
σ2
mσ

2
t

]
×

exp
[0.5(αA2 − κm,1Am,2)ν2

σ − (αA2 − κm,1Am,2)µσ − (αA2 − κm,1Am,2)φσσt
1 + 2(αA3 − κm,1Am,3)ν2

σ

]
×

exp
[−(αA3 − κm,1Am,3)µ2

σ − (αA3 − κm,1Am,3)φ2
σσ

2
t − 2(αA3 − κm,1Am,3)µσφσσt

1 + 2(αA3 − κm,1Am,3)ν2
σ

]
×

1√
1 + 2(αA3 − κm,1Am,3)ν2

σ

= e0.

We are now able to solve for Am,0, Am,1, Am,2, and Am,3 using the method of undetermined
coefficients. Specifically, for Am,1 we get

−φc − α(A1 + 1)φc +
1

β
αA1 + κm,1Am,1φc −Am,1 + φm = 0.

Using the expression for A1 from (32), we conclude that

Am,1 =
φm − φc

1− κm,1φc
. (42)

Collecting σ2
t terms from (40), Am,3 must satisfy the quadratic equation

1

2
β
[
[α(A1 + 1) + 1− κm,1Am,1]2 + σ2

m

]
[1 + 2(αA3 − κm,1Am,3)ν2

σ] + αA3(1 + 2αA3ν
2
σ − βφ2

σ)

−2αA3κm,1Am,3ν
2
σ − βAm,3 − 2αA3ν

2
σβAm,3 + 2βκm,1ν

2
σA

2
m,3 + βκm,1φ

2
σAm,3 = 0.

After tedious algebra, the solution for Am,3 is equal to

Am,3 =
−b̃±

√
b̃2 − 4ãc̃

2ã
, (43)

with

ã = 2βκm,1ν
2
σ,

b̃ = −β + βκm,1φ
2
σ − 2αA3κm,1ν

2
σ − 2αβA3ν

2
σ,

c̃ =
1

2
β
[
[α(A1 + 1) + 1− κm,1Am,1]2 + σ2

m

]
(1 + 2αA3ν

2
σ) + αA3(1 + 2αA3ν

2
σ − βφ2

σ).

We will pick the largest negative root so that the quadratic solution in (43) is very close to the
linear approximation in (44) below. As in Appendix F.4, we need to make sure that 1 + 2(αA3 −
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κm,1Am,3)ν2
σ is positive, and that the determinant in (43) is real. Both conditions are satisfied for

very small ν2
σ, and reasonable values for the risk aversion coefficient α. Finally, since ν2

σ is a small
number close to zero, we can obtain an approximate solution for Am,3 using equation (35) for A3

Am,3 ≈
1

2

[α(A1 + 1) + 1− κm,1Am,1]2 + σ2
m − α2(A1 + 1)2

1− κm,1φ2
σ

. (44)

Collecting σt terms from (40), the solution for A2,m is given by

Am,2 =
θβn(x̄)[α(A1 + 1) + 1− κm,1Am,1][1 + 2(αA3 − κm,1Am,3)ν2

σ]

β + 2β(αA3 − κm,1Am,3)ν2
σ − βκm,1φσ

(45)

+αA2[1 + 2(αA3 − κm,1Am,3)ν2
σ − βφσ]− 2β(αA3 − κm,1Am,3)µσφσ

β + 2β(αA3 − κm,1Am,3)ν2
σ − βκm,1φσ

.

For ν2
σ ≈ 0, and the approximate expressions for A3 and A2 in (35) and (37) respectively, we

conclude that

Am,2 ≈
θn(x̄)(1− κm,1Am,1) + 2κm,1Am,3µσφσ

1− κm,1φσ
. (46)

Finally, collecting all the constant terms in (41), we get

Am,0 =
1

1− κm,1

[
logβ + κm,0 + µm − αA0

β − 1

β
− [α(A1 + 1) + 1− κm,1Am,1]µc (47)

−(αA2 − κm,1Am,2)µσ + (αA3 − κm,1Am,3)µ2
σ − 0.5(αA2 − κm,1Am,2)2ν2

σ

1 + 2(αA3 − κm,1Am,3)ν2
σ

−0.5log
(
1 + 2(αA3 − κm,1Am,3)ν2

σ

)]
.

Exploiting the fact that ν2
σ ≈ 0, and the expression for A0 in (39), an approximation for Am,0 is

Am,0 ≈
1

1− κm,1
[
logβ + κm,0 + µm + (κm,1Am,1 − 1)µc + κm,1Am,2µσ + κm,1Am,3µ

2
σ

]
. (48)
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