Skip to main content
Educational Scholarship Centre

Dr Tijana Timotijevic, PhD

Tijana

Senior Lecturer

Email: t.timotijevic@qmul.ac.uk
Telephone: +44 20 7882 5332
Room Number: Engineering, Eng E302
Website: http://www.elec.qmul.ac.uk/people/tijanat/
Office Hours: Tuesday 09:00-10:30

Teaching

Control Systems (Postgraduate)

The module provides a grounding in control systems modelling and analysis, using engineering mathematical techniques. It concludes with the examples of control systems design, underpinned by the modelling and analysis that precedes and informs the design. Syllabus: Control systems: what they are, examples of control systems, open-loop and closed-loop control systems, block diagrams of continuous (analog) and discrete-time (digital) control systems, system equations, differential equations, difference equations, linear and non-linear systems, free response, forced response, total response, steady state and transient responses, second-order systems, linearity and superposition, Laplace transform and its inverse , properties of Laplace transform, pole-zero mapping, application of Laplace transform to model systems, Routh-Hurwitz stability criterion, transfer functions and properties, analysis and design of feedback control systems, Bode analysis and design, Root-locus analysis and design, steady-state error analysis, introduction to advanced topics in control systems.

Control Systems (Undergraduate)

This module introduces the principles of control systems, particularly in respect of electronic systems. It covers: - feedback systems - modelling dynamic systems - the steady state response - the frequency response and s-plane analysis for the transient response - control of digital systems (sampled data systems) - use of the z-transform.

Electric and Magnetic Fields (Undergraduate)

This module covers the basic laws of electric and magnetic fields, their application to elementary problems involving steady and time changing fields and currents, and an introduction to electromagnetic radiation. The Maxwell Equations, which explain the relationships between time varying electric and magnetic fields, will be introduced. The emphasis is on physical intuition and visualisation supported by mathematical modelling and analysis and labs.

Electronic Devices and Applications (Undergraduate)

This module describes the physical basis behind common semiconductor devices including the pn junction diode, bipolar junction transistor, MOSFET and related devices (NMOS, PMOS, CMOS) and Operational Amplifiers. Basic circuits using these devices are discussed including rectifiers, amplifiers, inverters, integrators, differentiators, and summing circuits.

Back to top