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1 Introduction

A cornerstone of many modern societies is the idea that public policy should be de-

termined through a democratic process and, in particular, through some “reasonable”

method of aggregating individuals’ preferences. Yet, the economic analysis of optimal

public policy is largely based on other principles, such as utilitarianism (Bentham

(1789), Mirrlees (1971)), Rawls’ maxmin principle (Rawls (1974), Piketty (1997)),

or equality of opportunity (Roemer (1998), Fleurbaey (2008)). The reason for this

disconnect can probably be traced back to Arrow’s Impossibility Theorem (Arrow

(1951)) which shows that, when there are three or more alternatives, any method of

aggregating individuals’ preferences must violate at least one of a number of seem-

ingly normatively appealing axioms. One of these axioms is Arrow’s independence of

irrelevant alternatives (IIA).

An important recent paper, Maskin (2020), argues that IIA is too stringent,

and proposes a normatively appealing weakening, called modified IIA.1 Furthermore,

Maskin shows that a social welfare function satisfies modified IIA as well as some

other, standard axioms (namely, unrestricted domain, anonymity, neutrality, and

positive responsiveness) if and only if it is the Borda count.2,3

Maskin’s paper opens the door for applying the idea of democracy, as embodied in

the Borda count, to the economic analysis of optimal public policy. The current paper

takes a step in this direction in the area of labour income taxation. In particular,

I make two contributions in the context of a Mirrlees-style model with quasilinear

1Unlike IIA, modified IIA allows society’s preference between two alternatives, x and y, to switch
even if no individual’s preference between x and y switches as long as, for some individuals, the
set of alternatives ranked between x and y changes. Thus, unlike IIA, modified IIA allows some
sensitivity of society’s preference to individuals’ preference intensities.

2The “only if” direction of this statement abstracts from what seems like a technical detail.
3The Borda count has the further advantage that its implementation does not rely on interper-

sonal comparisons of utilities. Thus, it avoids a frequent criticism of utilitarianism, Rawls’ maxmin
principle, and some criteria based on equality of opportunity (such as min of means or mean of
mins).
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utility and a constant elasticity of labour supply.

The first contribution is theoretical and deals with the following challenge: the

Borda count is defined for finitely many alternatives whereas there are infinitely many

possible direct mechanisms (DMs). To address this, I identify, given N ≥ 1, a subset

of the feasible DMs that (i) loosely speaking, corresponds to the set of continuous,

piecewise linear tax schedules with N or fewer pieces and (ii) lends itself to a natural,

finite discretisation.

The second contribution is to numerically compute, within the resulting finite set

of DMs for N = 4, Borda-optimal (i.e., optimal based on the Borda count) DMs for

the United States under different assumptions about the elasticity of labour supply.

In terms of the corresponding Borda-optimal tax schedules, the main findings are that

(a) all marginal rates are positive, (b) the marginal rate at the highest incomes need

not be strictly higher than the marginal rates at lower incomes, (c) average rates are

nevertheless (possibly, weakly) increasing in income (to a close approximation), and

(d) this progressivity is attenuated as the elasticity of labour supply increases. For

reasons discussed further below, I view these findings as merely indicative.

2 Preferences and Productivities

Individuals have preferences over consumption c ≥ 0 and labour l ≥ 0 represented

by the utility function c − σ
1+σ

l
1+σ
σ , where σ > 0 is the (Hicksian and Marshallian)

elasticity of labour supply. Each individual has a productivity (or type) which is her

private information. When type w puts in labour l, she earns (pre-tax) income wl.

The set of types is [w,w], where 0 < w < w. Types are distributed according to the

probability density function f which has full support on [w,w].
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3 DMs

3.1 Feasible DMs

Given the revelation principle, we can restrict attention to DMs. A DM is a tuple

(Y, C), where Y : [w,w] → [0,∞) and C : [w,w] → [0,∞). Y (w) and C(w) are the

income and the consumption, respectively, assigned to an individual reporting to be

of type w.

A DM is feasible if the following conditions hold.

(a) Incentive compatibility: Y is nondecreasing and, for all w ∈ [w,w],

C(w) = C(w)−
σ

1 + σ

(

Y (w)

w

)
1+σ
σ

+
σ

1 + σ

(

Y (w)

w

)
1+σ
σ

+

∫ w

w

(

Y (w̃)

w̃

)
1+σ
σ 1

w̃
dw̃.

(1)

(b) Government budget constraint:

∫ w

w

(Y (w)− C(w))f(w)dw = R, (2)

where R ≥ 0 is the exogenously given government consumption per capita.4

3.2 A Finite Subset of the Feasible DMs

Because the Borda count is defined for a finite set of alternatives, it is necessary

to restrict attention to a finite subset of the feasible DMs. To this end, I augment

conditions (a) and (b) with two further conditions, the first one being the following.

4By imposing equality in (2), I am not allowing the government to burn money. This may not be
inconsequential as the Borda rule can be sensitive to the deletion of alternatives. The justification
for imposing equality in (2) is twofold. First, this dramatically reduces the number of DMs we’ll need
to consider. Second, the model already implicitly leaves out many alternatives that are dominated
according to any reasonable preferences, such as alternatives that entail shooting everyone in the
foot. Ruling out the burning of money seems to be in the same spirit.
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(c) Y is of the form:

Y (w) =



































(1− t1)
σw1+σ if w = w0

(1− ti)
σw1+σ if wi−1 < w ≤ wi, ti−1 > ti

(1− ti−1)
σw1+σ

i−1 if wi−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ

wi−1, ti−1 < ti

(1− ti)
σw1+σ if

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < w ≤ wi, ti−1 < ti

, (3)

where (i) i ∈ {1, . . . , n}, n ≥ 1, (ii) w0 = w, wn = w, and wi−1 < wi for all i,

(iii) t0 = 1, ti < 1 for all i, and ti−1 6= ti for all i, (iv)
(

1−ti−1

1−ti

)
σ

1+σ
wi−1 ≤ wi for

all i such that ti−1 < ti, and (v)
(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < wi for all i < n such that

ti−1 < ti < ti+1.

The following proposition shows that a DM satisfying (a) and (c) can be inter-

preted in terms of a corresponding tax schedule.5

Proposition 1 Suppose (Y, C) satisfies (a) and (c). Then, there exists a unique tax

schedule, T , such that the following hold.

(i) T implements (Y, C).

(ii) T is continuous and piecewise linear with n pieces.

(iii) For each i ∈ {1, . . . , n}, ti is the slope of the ith piece of T .6

(iv) If n ≥ 2, then, for each i ∈ {2, . . . , n} such that ti−1 > ti, wi−1 is the highest

type that chooses a point on the (i− 1)st piece of T .

(v) If n ≥ 2, then, for each i ∈ {2, . . . , n} such that ti−1 < ti, wi−1 is the lowest

type that chooses at the kink between the (i− 1)st and ith pieces of T .7

5A tax schedule is a function T : [0,∞) → R such that T (y) ≤ y for all y ∈ [0,∞). T (y) is
the tax owed by a person earning income y. T implements (Y,C) if, for all w ∈ [w,w], Y (w) ∈

argmax
y≥0

y − T (y)− σ
1+σ

(

y

w

)
1+σ

σ and C(w) = Y (w) − T (Y (w)).

6I’m counting the pieces (in the graph) of T from left to right.
7All proofs are in the appendix.
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The next proposition provides a kind of converse of Proposition 1.

Proposition 2 Suppose that (i) (Y, C) is implemented by some continuous, piecewise

linear tax schedule with N pieces and (ii) if w = w or w is a jump point of Y , Y

is strictly increasing on (w,w + δ) for some δ > 0. Then (Y, C) satisfies (a) and Y

satisfies (c) almost everywhere for some n ≤ N .

Condition (ii) seems weak: it applies to at most N , arbitrarily narrow intervals8

on each of which it, moreover, allows Y to be arbitrarily close to constant. Thus,

abstracting from what seem like technical details, Propositions 1 and 2 tell us that

a DM satisfies (a) and (c) for some n ≤ N if and only if it is implemented by a

continuous, piecewise linear tax schedule with N or fewer pieces.

Letting w(p) denote the pth type percentile, the next condition provides a finite,

numerically tractable discretisation of the set of Y functions satisfying (c).

(d) n ≤ 4. Given n, ti ∈ {−2,−1.5,−1,−.8,−.6,−.4,−.2, 0, .1, .2, .3, .4, .5, .6, .7, .8, .9}

for all i ∈ {1, . . . , n} and wi ∈ {w(10), w(20), w(30), w(40), w(50), w(60), w(70), w(80),

w(90), w(95), w(99), w(99.9)} for all i ∈ {1, . . . , n− 1}.

I have somewhat arbitrarily truncated marginal tax rates at−2 from below, noting

that even lower marginal tax rates could probably only apply to a small fraction of

the population if they are to be feasible.

From here on, I restrict attention to the set of DMs satisfying (a)-(d). LetD denote

this set.9 Because Y pins down C through constraints (1) and (2), D corresponds

to the set of Y functions such that (c) holds, (d) holds, and C(w) obtained after

plugging in for C(w) from (1) into (2) is nonnegative.10

8As made clear in the proof, condition (i) ensures that Y has at most N − 1 jump points.
9There are several reasons for optimising over D rather than over continuous, piecewise linear

tax schedules. These reasons are discussed in the appendix.
10Condition (c) ensures that Y is nondecreasing and Y (w) ≥ 0 for all w ∈ [w,w].
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4 The Borda Count

Given (Y, C) ∈ D, let ∆(Y, C, w) denote the number of DMs in D that are strictly

worse than (Y, C) according to type w minus the number of DMs in D that are strictly

better than (Y, C) according to type w.11 The Borda count of (Y, C) is:12,13

B(Y, C) =

∫ w

w

∆(Y, C, w)f(w)dw. (4)

(Y, C) ∈ D is Borda-optimal (BO) if B(Y, C) ≥ B(Ŷ , Ĉ) for all (Ŷ , Ĉ) ∈ D.

Note that evaluating B(Y, C) requires computing all types’ rankings over D, which

is numerically infeasible. Therefore, to obtain my numerical results, I approximate

the integral in (4) based on the rankings of a finite set of “representative” types. The

main idea is to approximate ∆(Y, C, ·) via a step function by (i) partitioning [w,w] into

14 subintervals and (ii) replacing ∆(Y, C, ·) over each subinterval with ∆(Y, C, wm),

where wm is the median (i.e., “representative”) type in that subinterval.14 I will refer

to a DM maximising the approximation of the integral in (4) as “BO” even though,

strictly speaking, it’s only BO if it maximises the actual integral in (4).

11Type w’s ranking over D is based on the indirect utility function φw(Y,C) = C(w) −

σ
1+σ

(

Y (w)
w

)

1+σ

σ

.
12I assume the integral in (4) exists.
13The Borda count in (4) generalizes the usual Borda count to the case in which individuals can

exhibit indifference between alternatives (which is the relevant case in the current context). Note
that Maskin (2020) assumes that individuals’ preferences over alternatives are strict. However, as
Ivanov (2021) shows, the Borda count in (4) satisfies (extensions to the case of weak preferences of)
the axioms in Maskin (2020) (as well as an additional normatively appealing axiom).

14The details are in the appendix.
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5 Illustrative Calculations for the United States

5.1 Calibration

5.1.1 Elasticity of Labour Supply

Given the considerable controversy in the literature on the elasticity of labour sup-

ply,15 I will perform the analysis separately for σ ∈ {0.25, 0.5, 1}. In choosing these

values, I am following Saez and Stantcheva (2018).

5.1.2 Distribution of Types

The main idea for calibrating the distribution of types goes as follows. First, I assume

that the actual labour-income tax schedule is a proportional 30 percent tax. Given

this tax schedule, type w’s optimal pretax labour income is y∗(w) = 0.7σw1+σ. Then,

I back out the distribution of types based on y∗(·) and data from the World Inequality

Database (WID) on the empirical distribution of pretax labour income for individuals

in the US in 2014.16

5.1.3 Government Consumption Per Capita

According to WID, US national income per individual over the age of 20 in 2014 was

$65,192.17 According to Piketty, Saez, and Zucman (2018), total (i.e., federal, state,

and local) government consumption in the US has been around 18 percent of national

income since the end of World War II. Thus, I set R = 65, 192× 0.18 ≈ 11, 735. This

calculation assumes that government consumption must be financed entirely from

labour income taxation, which seems like the natural theoretical benchmark based on

Atkinson and Stiglitz (1976).

15Keane (2011) and Saez et al. (2012) provide surveys of this literature.
16Section 6 discusses some important aspects of the WID data. The details of how I back out the

distribution of types from this data are in the appendix.
17All dollar amounts in the paper are in 2014 dollars.
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σ = 0.25 σ = 0.5 σ = 1
$7,708 $5,620 $3,823

Table 1: BO UBI.

σ=0.25

σ=0.5

σ=1

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

income

('000s of

dollars)

0.3

0.4

0.5

0.6

0.7

Figure 1: BO marginal tax rates. Although all lines should technically be perfectly
flat, some of them are drawn as squiggles to distinguish the marginal tax rates for
the different values of σ. The marginal rate for σ = 1 equals 0.7 for incomes up to
$3,154 (this is barely visible in the top left corner of the figure) and jumps to 0.4 at
income $925,653 (this is not shown in the figure).

5.2 Results

For each σ ∈ {0.25, 0.5, 1}, I compute the (as it turns out, unique) BO DM and the

corresponding (in the sense of Proposition 1) BO tax schedule.18 The main features

of the BO tax schedules are presented in Table 1 as well as in Figures 1 and 2. Table

1 shows, for each value of σ, the BO Universal Basic Income (UBI), i.e., the negative

of the intercept of the BO tax schedule. Figure 1 (Figure 2) depicts, for each value

18The computations were done in Mathematica 12.0.0.0. The code is provided in separate files.
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σ=0.25

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
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('000s of
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0.1

0.2

0.3

0.4

0.5

Figure 2: BO average tax rates. The average rates for σ = 0.25 and σ = 0.5 monoton-
ically increase towards 0.7 and 0.5, respectively, as income increases beyond the values
shown in the figure. The average rate for σ = 1 monotonically declines from 0.313 to
0.3 between incomes $32,878 and $925,653 and monotonically increases towards 0.4
at higher incomes.

of σ, the BO marginal (average, respectively) tax rate as a function of income.

The first finding is the following.

Finding 1 For σ ∈ {0.25, 0.5, 1}, all BO marginal tax rates are positive.

In particular, there is no equivalent to the the Earned Income Tax Credit at low

incomes.

The next finding is perhaps at odds with what is often taken for granted in popular

discourse.

Finding 2 In the BO tax schedule for σ ∈ {0.5, 1}, the marginal tax rate at the

highest incomes is not strictly higher than all marginal tax rates at lower incomes.
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Nevertheless, because of the UBI and marginal rates that don’t decrease suffi-

ciently with income, the BO tax schedule is either progressive or weakly progressive.

Finding 3 The BO average tax rate is strictly increasing in income for σ ∈ {0.25, 0.5}

and, to a close approximation, weakly increasing in income for σ = 1.

Furthermore, the following holds.

Finding 4 For any incomes y1 and y2 such that 0 < y1 < y2 < 925653, the dif-

ference between the average tax rate at y2 and at y1 is strictly decreasing in σ on

{0.25, 0.5, 1}.19

Thus, the progressivity of the BO tax schedule is decreasing in σ, at least at the

income levels that are relevant for the vast majority of the population.20 This occurs

because (i) the BO UBI falls substantially as σ increases and (ii) abstracting from

some minor exceptions at low incomes, at any income level the BO marginal tax

rate weakly decreases as σ increases on {0.25, 0.5, 1}. For σ = 1, the progressivity

is attenuated to the point that the average tax rate is approximately flat for a wide

range of incomes (for incomes between $32,878 and $925,653, to be precise).

Note that Findings 1-4 are not necessarily novel within a utilitarian or Rawlsian

framework. For example, Saez (2001) numerically computes optimal tax schedules

for the United States based on these normative frameworks and his findings are in

line with Findings 1 and 2.21 Also, as shown in Seade (1982), Finding 1 must hold

theoretically in a Mirrlees-style model with a utilitarian criterion. What’s new in the

19To establish this, I compute, for each σ ∈ {0.25, 0.5, 1}, the derivative of the BO average
tax rate with respect to income. Denoting this derivative at income y by a(y, σ), I obtain that
a(y, 0.25) > a(y, 0.5) > a(y, 1) for almost all y ∈ (0, 925653). The finding follows because the BO
average tax rate is an absolutely continuous function of income so that the increase in the average
tax rate over [y1, y2] equals

∫ y2

y1
a(y, σ)dy.

20For σ ∈ {0.25, 0.5, 1}, around 99.9 percent of the population choose an income below $925,653
when faced with the BO tax schedule.

21I believe that Saez’s findings are also in line with Findings 3 and 4, though it’s hard to be sure
based on the information provided in his paper.
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current paper is that Findings 1-4 have been derived based on a different normative

foundation.22

6 Comments on the WID Data

A few comments regarding the WID data on pretax labour income are in order. First,

this data is based on all individuals over age 20 and it counts income from public and

private pensions as labour income. This is not ideal for the purpose of backing out

productivities because the relationship between pension income and productivity is

probably different from the relationship between a working-age individual’s labour

income and productivity.

Second, income is split equally within couples, which forces us to treat spouses as

having the same productivity. This seems preferable for the purposes of the current

paper because it ensures that the same preference over tax schedules is imputed to

both spouses.

Third, although using cross-sectional data on the distribution of annual income

to back out productivities is common (e.g., see Saez (2001)), this probably leads us

to exaggerate the dispersion in lifetime productivities. The latter are probably more

relevant if we are concerned with the design of a long-term tax system.23

22One may ask: How do the BO tax schedules compare not just qualitatively but quantitatively
(i.e., in terms of the absolute levels of the UBI or the marginal tax rates) to ones that are optimal
based on, say, a utiltarian criterion? In the appendix, I address this question (without reaching any
firm conclusions).

23Guvenen et al. (2021) have recently provided data on the distribution of lifetime labour incomes.
This data is also not ideal for the purposes of the current paper. Remarkably, in the WID data and
the Guvenen et al. data, the distribution of income across the population is very similar. I elaborate
on these points in the appendix.
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7 An Implicit Assumption

The analysis so far has made the implicit assumption that each individual’s preference

over DMs is driven solely by each DM’s implications for her own consumption-labour

bundle. Although this is a nontrivial assumption, I believe it provides a reasonable

normative benchmark for two reasons.

First, Hvidberg et al. (2021) find that people’s views on inequality vary with their

own position in the income distribution–the higher one’s position, the more tolerant

one is of inequality. Thus, selfish preferences may be a reasonable approximation.

Second, even if people do care about others’ outcomes, it’s plausible that they

consider the Borda count with selfish preferences as inputs to be procedurally fair, so

that there is no need for additional fairness considerations to be brought in by feeding

other-regarding preferences into the Borda count.

8 Concluding Remarks

This paper is an attempt to apply the idea of democracy, as embodied in the Borda

count, to the optimal taxation of labour income. Undoubtedly, the analysis has

important limitations. Notably, it relies on (i) a simple, static model of labour supply

with quasi-linear utilities and a constant elasticity of labour supply, (ii) a particular

finite discretisation of the set of feasible DMs, and (iii) imperfect data on pretax

labour income. For these reasons, Findings 1-4 focused on qualitative aspects of the

BO tax schedules and, even so, I view these findings as no more than indicative.24

More broadly, I hope the current paper will encourage research on optimal public

policy based on the Borda count.

24I would put hardly any stock in the absolute levels of the UBI in Table 1 or the marginal and
average tax rates in Figures 1 and 2.
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9 Appendix: Optimising over D vs. over Continu-

ous, Piecewise Linear Tax Schedules

Why look for an BO DM in D rather than for a BO continuous, piecewise linear

tax schedule with four or fewer pieces? There are three disadvantages to the latter

approach. First, to discretise the set of continuous, piecewise linear tax schedules with

four or fewer pieces, one would need to come up with a grid of income levels where

the tax schedules’ kinks can lie. There is no obvious way to do this. In contrast, the

grid for the wi’s in (d) seems more transparent and natural.

Second, one would need to solve each type’s labour-supply optimisation problem

given each tax schedule, and this is likely to considerably slow down the numerical

calculations.

Third, there can be multiple continuous, piecewise linear tax schedules with four

or fewer pieces implementing the same (Y, C). Including such duplicate tax schedules

would not only slow down the numerical calculations. Because the Borda winner is

not necessarily invariant to the inclusion of duplicates,25 it could also change the BO

tax schedule. Given that the model already implicitly leaves out many duplicates

(e.g., we do not consider as different alternatives (i) tax schedule T and a tax form

with a blue background and (ii) the same tax schedule T and a tax form with a green

background), leaving out duplicate tax schedules seems to be in the same spirit.

25Consider the following example. There are three alternatives: a, b, and c. 35 individuals have
preference � and 65 individuals have preference �′. Let ≻, ∼, ≻′, and ∼′ have the usual meaning.
Further, assume a ≻ c ≻ b and b ≻′ a ≻′ c. Then, a gets 35 × 2 + 65 × 0 = 70 points, b gets
35× (−2) + 65× 2 = 60 points, and c gets 35× 0 + 65× (−2) = −130 points. Thus, a is the Borda
winner. Next, suppose we add a duplicate of a, ã, where a ∼ ã and a ∼′ ã. Then, a and ã each get
35×2+65×0 = 70 points, b gets 35×(−3)+65×3 = 90 points, and c gets 35×(−1)+65×(−3) = −230
points. Thus, b is now the Borda winner. (In line with the definition of the Borda count in expression
4, the number of points an alternative, x, gets from an individual equals the number of alternatives
the individual ranks strictly below x minus the number of alternatives the individual ranks strictly
above x.)
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10 Appendix: Approximating B(Y, C)

I approximate B(Y, C) by:

B̂(Y, C) =
14
∑

k=1

∆(Y, C, w(0.5qk + 0.5qk+1))
qk+1 − qk

100
, (5)

where qk denotes the kth element of (0, 10, . . . , 90, 95, 99, 99.9, 99.99, 1). This approx-

imation effectively assumes that, for each 1 ≤ k ≤ 14, the preferences of all types

between the qthk and qthk+1 percentiles coincide with the preferences of the median

type between these percentiles. To see this, note that B(Y, C) can be written as
∑14

k=1

∫ w(qk+1)

w(qk)
∆(Y, C, w)f(w)dw. Replacing ∆(Y, C, w) in the latter expression by

∆(Y, C, w(0.5qk + 0.5qk+1)) yields (5).

11 Appendix: Distribution of Types

I assume that the actual labour-income tax schedule is a proportional tax with a 30

percent tax rate. Given this tax schedule, type w’s optimal pretax labour income is

y∗(w) = 0.7σw1+σ.

I use data from WID on pretax labour income for individuals over the age of 20

in the US in 2014.26 In particular, I obtain from WID the data presented in Table 2.

Percentile Pretax labour income

5 1264.5269

10 4906.4861

15 7233.2855

20 9610.6254

26WID defines pretax labour income as the sum of all pretax personal income flows accruing to
the individual owners of labor as a production factor, before taking into account the operation of the
tax/transfer system, but after taking into account the operation of the pension system. The base
unit is the individual (rather than the household) but resources are split equally within couples.
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25 12139.6792

30 14567.6519

35 17096.7977

40 20030.5452

45 22964.2909

50 26403.9035

55 30652.7167

60 35407.4916

65 40465.6912

70 46434.3576

75 52807.7141

80 60698.4899

85 71017.3259

90 85989.5812

91 90238.4864

92 95195.5111

93 101063.0963

94 108245.7491

95 117350.5085

96 129490.1877

97 148711.4384

98 182095.5655

99 261003.6644

99.1 277189.9954

99.2 295399.505

99.3 315632.3865
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99.4 342946.6831

99.5 377342.5145

99.6 426912.9817

99.7 495704.6629

99.8 621148.3276

99.9 925652.6564

99.91 987362.7844

99.92 1062224.324

99.93 1153272.102

99.94 1264552.771

99.95 1416299.129

99.96 1638860.375

99.97 1962585.89

99.98 2508872.558

99.99 3864473.291

99.991 4117383.735

99.992 4420876.636

99.993 4805300.271

99.994 5260539.622

99.995 5887757.761

99.996 6717304.348

99.997 7981856.566

99.998 10318750.34

99.999 15579289.96

Table 2: Various percentiles of pretax labour income.
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I augment this data in two ways.27 First, I assume that the lowest income equals

$1.28 Second, WID does not report the income of the highest earner. It does report

that the 99.999th income percentile equals $15,579,290 and the average income in the

top 0.001 percent equals $32,134,644. I impute an income to the highest earner by

assuming that this income and the 99.999th income percentile are symmetrically situ-

ated around $32,134,644. That is, I assume that the highest earner has an income of

$48,689,999. I make this assumption on simplicity grounds. Given that the top 0.001

of earners earned only 0.7 percent of all income, it is unlikely that this assumption is

of much consequence.

Then, using y∗(·) and the augmented WID income data, I back out the various

type percentiles (i.e., the 0th percentile, the 100th percentile, and all the percentiles

listed in Table 2). E.g., given that the 5th income percentile equals 1264.5269, I infer

that the 5th type percentile is w(5) = y∗−1(1264.5269) = 1264.5269
1

1+σ /0.7
σ

1+σ , where

y∗−1(·) denotes the inverse of y∗(·).

Finally, equipped with the various type percentiles, I specify the cumulative den-

sity function, F , of the distribution of types through linear interpolation. E.g., I

assume that on [w(10), w(15)], F (w) = 0.1 + 0.15−0.1
w(15)−w(10)

(w − w(10)).

12 Appendix: BO vs. Utilitarian-Optimal Tax Sched-

ules

How do the BO tax schedules compare to utilitarian-optimal (UO) ones quantitatively

(i.e., in terms of the absolute levels of the UBI or the marginal tax rates) ? To address

27For brevity, in the rest of this section I will write “income” although in fact I mean “pretax
labour income”

28WID reports a negative 0th income percentile. (I believe this is largely due to the partial
imputation of the losses of privately owned businesses to labour income.) However, this is not
consistent with the assumption w > 0.

21



this question, I assume that the utilitarian planner solves

max
(Y,C)∈D

∫ w

w

ln

(

C(w)−
σ

1 + σ

(

Y (w)

w

)
1+σ
σ

)

f(w)dw.

In choosing the objective function for the planner, I am following Saez (2001).29 Note

that, to aid comparability to the BO tax schedules, I require that the planner restrict

attention to DMs in D.

The UO UBI equals $11,965, $7,305, and $3,975 for σ = 0.25, σ = 0.5, and σ = 1,

respectively. Comparing these numbers to the ones in Table 1 reveals the following.

Finding 5 For σ ∈ {0.25, 0.5, 1}, the BO UBI is lower than the UO UBI. The dif-

ference shrinks as σ increases on {0.25, 0.5, 1}.

The top/middle/bottom panel in Figure 3 shows the BO and UO marginal tax

rates for σ = 0.25/σ = 0.5/σ = 1. The figure reveals the following.

Finding 6 For σ ∈ {0.25, 0.5, 1}, at each level of income the BO marginal tax rate

is weakly lower than the UO marginal tax rate.

Findings 5 and 6 suggest that low types fare better under the utilitarian criterion

while high types fare better under the Borda count.

Unfortunately, I have low confidence in Findings 5 and 6 for the following reason.

At an earlier stage of the project I was using different finite discretisations of the set

of feasible DMs.30 Findings 5 and 6 were not robust to these different approaches.

29As is typical in the utilitarian approach, I (and Saez) offer no justification for the choice of a
particular utility representation of each individual’s ordinal preferences.

30In particular, I was either assuming that Y (w) is continuous and piecewise linear in w or I was
assuming that Y (w)/w is continuous and piecewise linear in w. These approaches involved various
ad hoc assumptions and were sensitive to changes in these assumptions. Thus, I abanodoned them
when I came up with the finite discretisation of the set of feasible DMs based on conditions (c) and
(d).
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Figure 3: BO and UO marginal tax rates. Although all lines should technically be
perfectly flat, the BO marginal rates are drawn as squiggles to distinguish them from
the UO ones. For σ = 1, both the BO and the UO marginal rate jumps to 0.4 at
income $925,653 (this is not shown in the figure).
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13 Data on Lifetime Incomes in Guvenen et. al

(2021)

Guvenen et al. (2021) have recently provided data on the distribution of pretax

lifetime labour incomes. This data is also less than ideal for the purposes of the

current paper. For example, it does not include the distribution of fringe benefits,

income is computed at the individual level without any splitting within couples, and

no information is provided on the distribution of income within the top 1 percent of

earners.

Remarkably, the methodological differences in constructing the WID data and the

Guvenen et al. data seem to largely offset so that the distribution (in terms of income

shares) of annual pretax labour income in 2014 according to WID is very similar to

the distribution (in terms of income shares) of pretax lifetime labour income (between

the ages of 25 and 55) for the cohort that turned 25 in 1983 according to Guvenen

et. al.31 To see this, consider Table 3. It juxtaposes the share of income earned by

individuals falling between different percentiles of the income distribution according

to data from each of these two sources. In particular, the first column refers to the

WID data and the second column is computed as an average from the last lines of

Tables E.1 and E.2. in Guvenen et al.32

31This cohort is the most recent cohort for which data for the whole period between the ages of
25 and 55 is available.

32If I understand correctly, these two tables display the same information based on different
samples from the same data. Also, these tables (like most of the analysis in that paper) restrict
attention to individuals who have had sufficient attachment to the labour market and have been
employed in certain sectors. However, comparing data on the distribution of income for this narrower
subset of the population (see the last six lines in Table C.12 in Guvenen et al.) and for the whole
population (see Table F.2 in Guvenen et al.) reveals that the distribution of earnings in the narrower
subset and in the whole population are quite similar.
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Percentile range WID Guvenen et al.

0-20 0.021 0.026
20-40 0.068 0.065
40-60 0.125 0.125
60-80 0.217 0.220
80-90 0.166 0.173
90-95 0.115 0.122
95-97 0.061 0.065
97-99 0.088 0.091
99-100 0.140 0.116

Table 3: Shares of pretax labour income for different percentile ranges.

14 Appendix: Proofs

A consumption schedule is a function Z : [0,∞) → R such that Z(y) ≥ 0 for all

y ∈ [0,∞). Z(y) is the after-tax income of a person earning income y.

Type w’s problem given a consumption schedule Z is:

max
y≥0

Z(y)−
σ

1 + σ

( y

w

)
1+σ
σ

. (6)

Z implements a DM (Y, C) if, for all w ∈ [w,w], Y (w) solves problem (6) and

C(w) = Z(Y (w)).

For future use, let Y(w) denote the set of solutions to problem (6). Note that, by

the maximum theorem, Y : [w,w] ⇒ [0,∞) is an upper hemicontinuous correspon-

dence with nonempty and compact values if Z is continuous and piecewise linear with

finitely many pieces.33

Because it is more convenient to work with consumption schedules than with tax

schedules, I will prove, instead of Proposition 1, the following claim which restates

33To apply the maximum theorem, we need the constraint set in problem (6) to be compact. Let y
denote an income level such that (i) it is strictly higher than the income level where the last kink in
Z occurs and (ii) type w’s indifference curves in income-consumption space at income y are steeper
than the last piece of Z. Because no type would choose an income level above y, the constraint
y ≥ 0 in problem (6) can be replaced by the constraint 0 ≤ y ≤ y.
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Proposition 1 in terms of a consumption schedule.

Claim 1 Suppose (Y, C) satisfies (a) and (c). Then, there exists a unique consump-

tion schedule, Z, such that the following hold.

(i) Z implements (Y, C).

(ii) Z is continuous and piecewise linear with n pieces.

(iii) For each i ∈ {1, . . . , n}, 1− ti is the slope of the ith piece of Z.

(iv) If n ≥ 2, then, for each i ∈ {2, . . . , n} such that ti−1 > ti, wi−1 is the highest

type that chooses a point on the (i− 1)st piece of Z.

(v) If n ≥ 2, then, for each i ∈ {2, . . . , n} such that ti−1 < ti, wi−1 is the lowest

type that chooses at the kink between the (i− 1)st and ith pieces of Z.

14.1 Proof of Claim 1

Suppose (Y, C) satisfies conditions (a) and (c). Observe the following. To show that

a consumption schedule, Z, implements (Y, C), it suffices to show that (i) for all

w ∈ [w,w], Y (w) solves problem (6) and (ii) Z(Y (w)) = C(w).34

Next, I prove by induction the existence of a consumption schedule satisfying

(i)-(v) in Claim 1. After that, I will turn to proving uniqueness.

34The fact that types’ optimal consumption-income choices under Z must be incentive compatible
(because each type could have mimicked any other type’s consumption-income choice), (i), and (ii)
imply that, for all w ∈ [w,w],

Z(Y (w)) =

Z(Y (w))−
σ

1 + σ

(

Y (w)

w

)

1+σ

σ

+
σ

1 + σ

(

Y (w)

w

)

1+σ

σ

+

∫ w

w

(

Y (w̃)

w̃

)

1+σ

σ 1

w̃
dw̃ =

C(w)−
σ

1 + σ

(

Y (w)

w

)

1+σ

σ

+
σ

1 + σ

(

Y (w)

w

)

1+σ

σ

+

∫ w

w

(

Y (w̃)

w̃

)

1+σ

σ 1

w̃
dw̃ =

C(w).
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Case n = 1

Define Z by

Z(y) = C(w)− (1− t1)Y (w) + (1− t1)y.

It is straightforward to show that, for all w ∈ [w,w], Y (w) = (1 − t1)
σw1+σ satisfies

the first-order condition for problem (6).35 Also, Z(Y (w)) = C(w) holds.

Case n = k − 1 (where k ≥ 2)

Assume that Claim 1 holds for this case.

Case n = k (where k ≥ 2)

Define Y−1 by

Y−1(w) =



































(1− t1)
σw1+σ if w = w̃0

(1− ti)
σw1+σ if w̃i−1 < w ≤ w̃i, ti−1 > ti

(1− ti−1)
σw̃1+σ

i−1 if w̃i−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ
w̃i−1, ti−1 < ti

(1− ti)
σw1+σ if

(

1−ti−1

1−ti

)
σ

1+σ
w̃i−1 < w ≤ w̃i, ti−1 < ti

,

where (i) i ∈ {1, . . . , k − 1} and (ii) w̃0 = w, w̃i = wi for all i ≤ k − 2 and w̃k−1 = w.

Observe that Y−1 is of the form (c) with n = k−1.36 Also, observe that Y−1 coincides

with Y on [w,wk−1] and Y−1(w) = (1− tk−1)
σw1+σ on (wk−1, w].

37

Also, let C−1 : [w,w] → [0,∞) be such that C−1(w) = C(w) and (Y−1, C−1)

satisfies incentive compatibility as in (1).

35Given the concavity in y of the maximand in problem (6), the first-order condition is sufficient.

36For all i ∈ {1, . . . , k − 1}, “
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 ≤ wi whenever ti−1 < ti” implies

“
(

1−ti−1

1−ti

)
σ

1+σ

w̃i−1 ≤ w̃i whenever ti−1 < ti”. For all i ∈ {1, . . . , k − 2}, “
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 < wi

whenever ti−1 < ti < ti+1” implies “
(

1−ti−1

1−ti

)
σ

1+σ

w̃i−1 < w̃i whenever ti−1 < ti < ti+1”.
37It should be clear that Y−1 coincides with Y on [w,wk−2]. To see that the rest of the statement
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By the assumption in the “n = k − 1” case, there exists a consumption schedule,

Z−1, such that the following hold.

(i) Z−1 implements (Y−1, C−1).

(ii) Z−1 is continuous and piecewise linear with k − 1 pieces.

(iii) For each i ∈ {1, . . . , k − 1}, 1− ti is the slope of the ith piece of Z−1.

(iv) If k − 1 ≥ 2, then, for each i ∈ {2, . . . , k − 1} such that ti−1 > ti, wi−1 is the

highest type that chooses a point on the (i− 1)st piece of Z−1.

(v) If k − 1 ≥ 2, then, for each i ∈ {2, . . . , k − 1} such that ti−1 < ti, wi−1 is the

lowest type that chooses at the kink between the (i− 1)st and ith pieces of Z−1.

Define Z by

Z(y) =







Z−1(y) if 0 ≤ y ≤ K

Z−1(K) + (1− tk)(y −K) if y > K
.

The value of K will depend on whether tk−1 > tk or tk−1 < tk. Given that in either

case K ≥ Y (w) will hold, we will have Z(Y (w)) = Z−1(Y (w)) = C−1(w) = C(w).

Subcase tk−1 > tk

Define K as follows. Referring to Figure 4, consider the (k − 1)st piece of Z−1. Note

is true, note that, for w ∈ (wk−2, w], we have

Y−1(w) =























(1− tk−1)
σw1+σ if wk−2 < w ≤ wk, tk−2 > tk−1

(1− tk−2)
σw1+σ

k−2 if wk−2 < w ≤
(

1−tk−2

1−tk−1

)
σ

1+σ

wk−2, tk−2 < tk−1

(1− tk−1)
σw1+σ if

(

1−tk−2

1−tk−1

)
σ

1+σ

wk−2 < w ≤ wk−1, tk−2 < tk−1

(1− tk−1)
σw1+σ if wk−1 < w ≤ wk, tk−2 < tk−1

.
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Y(wk-1) K y
income

consumption

(k-1)st piece of Z-1 and Z

Indifference curve of type w�-1

k
th piece of Z

Figure 4: Determination ofK, the income level at which the kink between the (k−1)st

and kth pieces of Z occurs for the case tk−1 > tk.

that income level Y (wk−1) lies below (the graph of) this piece.38 Take the indifference

curve of type wk−1 through the point (Y (wk−1), Z−1(Y (wk−1))).
39 Compute K as the

income level at which the (k − 1)st piece of Z−1 intersects a straight line that has

slope 1− tk and is tangent to the indifference curve.40 Let ŷ denote the income level

where the line with slope 1− tk is tangent to the indifference curve.

Because income Y (wk−1) is optimal for type wk−1 given Z−1, it is obvious from the

way Z was constructed that incomes Y (wk−1) and ŷ are optimal for type wk−1 given

Z. Thus, when faced with Z, all types below wk−1 find it optimal to choose incomes

weakly below Y (wk−1) and all types above wk−1 find it optimal to choose incomes

weakly above ŷ.41 Because (i) Y (w) ≤ Y (wk−1) is optimal for all w ∈ [w,wk−1] given

Z−1 and (ii) Z and Z−1 coincide over [0, Y (wk−1)], it must be that Y (w) is optimal

38This is clear when k = 2. Now assume k ≥ 3. Given that wk−1 > wk−2 and Y is nondecreasing,
it must be that Y (wk−1) is weakly higher than the income level at which the kink between the
(k− 2)nd and (k− 1)st pieces of Z−1 occurs. (Figure 4 is drawn assuming Y (wk−1) is strictly to the
right of that kink, but nothing in the logic of what follows relies on that.)

39It is straightforward to verify that this indifference curve has slope 1− tk−1 at that point.
40Straightforward computations yield K =

(1−tk)
1+σ−(1−tk−1)

1+σ

(1+σ)(tk−1−tk)
w1+σ

k−1 .

41This follows because y − σ
1+σ

(

y

w

)
1+σ

σ satisfies the single-crossing property.
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for all w ∈ [w,wk−1] given Z. For w ∈ (wk−1, w], it is straightforward to show that

the optimal income above ŷ given Z is Y (w) = (1 − tk)
σw1+σ. Thus, Z implements

(Y, C). Moreover, it should be clear that Z is continuous and piecewise linear with k

pieces and satisfies (i)-(v) in Claim 1 with n = k.

Subcase tk−1 < tk

Set K = Y (wk−1). Note that K is the location of the kink between the (k − 1)st

and kth pieces of Z. This is clear when k = 2. Now assume k ≥ 3. Given that

wk−1 > wk−2, Y is nondecreasing, and Y is strictly increasing on (wk−1 − δ, wk−1] for

some δ > 0,42 it must be that Y (wk−1) is strictly higher than the income level at

which the kink between the (k − 2)nd and (k − 1)st pieces of Z−1 occurs.

Given that income Y (wk−1) is optimal for type wk−1 given Z−1, it must be optimal

given Z.43 Thus, when faced with Z, all types below wk−1 find it optimal to choose

incomes weakly below Y (wk−1) and all types above wk−1 find it optimal to choose

incomes weakly above Y (wk−1).
44 Because (i) Y (w) ≤ Y (wk−1) is optimal for all

w ∈ [w,wk−1] given Z−1 and (ii) Z and Z−1 coincide over [0, Y (wk−1)], it must be

that Y (w) is optimal for all w ∈ [w,wk−1] given Z.45 For w ∈ (wk−1, w], it is

straightforward to show that the optimal income above K given Z is

Y (w) =











(1− tk−1)
σw1+σ

k−1 if wk−1 < w ≤
(

1−tk−1

1−tk

)
σ

1+σ

wk−1

(1− tk)
σw1+σ if

(

1−tk−1

1−tk

)
σ

1+σ
wk−1 < w ≤ wk

.

42The only way for Y to be flat immediately to the left of wk−1 is if
(

1−tk−2

1−tk−1

)
σ

1+σ

wk−2 = wk−1

and tk−2 < tk−1. However, tk−2 < tk−1 < tk implies
(

1−tk−2

1−tk−1

)
σ

1+σ

wk−2 < wk−1.
43This follows because (Y (wk−1), Z(Y (wk−1))) is available both given Z and given Z−1 while the

budget set defined by Z in income-consumption space is a subset of the one defined by Z−1.
44This follows because y − σ

1+σ

(

y

w

)
1+σ

σ satisfies the single-crossing property.
45Note that, because Y is strictly increasing on (wk−1−δ, wk−1] for some δ > 0, wk−1 is the lowest

type to choose at the kink in Z at income K = Y (wk−1).
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Thus, Z implements (Y, C). Moreover, it should be clear that Z is continuous and

piecewise linear with k pieces and satisfies (i)-(v) in Claim 1 with n = k.

It remains to show uniqueness. Suppose Z ′ and Z ′′ are consumption schedules

such that (i)-(v) in Claim 1 hold (when applied to Z ′ and Z ′′, respectively).

Let us make the following observations. First, for each i ∈ {1, . . . , n}, the ith piece

of Z ′ has the same slope as the ith piece of Z ′′ (by (iii) in Claim 1). Second, we must

have Z ′(Y (w)) = Z ′′(Y (w)) = C(w) (by (i) in Claim 1). Thus, if n = 1, we must

have Z ′ = Z ′′.

From here on, suppose n ≥ 2. Assume Z ′ 6= Z ′′. The two observations in the

previous paragraph and Z ′ 6= Z ′′ imply that, for some i ∈ {2, . . . , n}, the kink between

the (i−1)st and ith pieces of Z ′ occurs at a different income level than the kink between

the (i−1)st and ith pieces of Z ′′. Let k be the lowest i for which this occurs. We need

to consider two cases, tk−1 > tk and tk−1 < tk.

First, suppose tk−1 > tk. Then, wk−1 must be the highest type that chooses a

point on the (k − 1)st piece of both Z ′ and Z ′′ (by (iv) in Claim 1). Moreover, each

type w ∈ (wk−1, wk] chooses on the kth piece of Z ′ and Z ′′.46 By the fact that Y is

upper hemicontinuous with nonempty and compact values, we have limw̃↓wk−1
Y (w̃) ∈

Y(wk−1). Thus, it must also be optimal for type wk−1 to choose on the kth piece of

Z ′ and Z ′′. That is, type wk−1 is indifferent between choosing on the (k − 1)st and

on the kth piece of Z ′ and is also indifferent between choosing on the (k− 1)st and on

the kth piece of Z ′′. But then, for Z ′ and Z ′′, the kink between the (k − 1)st and kth

pieces must occur at the same income level. We have reached a contradiction.

Next suppose, tk−1 < tk. Then, wk−1 chooses at the kink between the (k − 1)st

and kth pieces of both Z ′ and Z ′′ (by (v) in Claim 1). Hence, for both Z ′ and Z ′′, this

46This follows because Y is nondecreasing (so that Y (wk−1) ≤ Y (w) ≤ Y (wk) for all w ∈
(wk−1, wk]) and wk chooses on the kth piece of Z ′ and Z ′′ (by (iv) and (v) in Claim 1 applied
to i = k + 1 if k < n and by the fact that Y is nondecreasing if k = n).
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kink must occur at the same income level, namely Y (wk−1). We have again reached

a contradiction. Q.E.D.

14.2 Proof of Proposition 2

Suppose that (i) (Y, C) is implemented by some continuous, piecewise linear con-

sumption schedule, Z, with N pieces and (ii) if w = w or w is a jump point of

Y , Y is strictly increasing on (w,w + δ) for some δ > 0.47 Note that types’ op-

timal consumption-income choices under Z must be incentive compatible (because

each type could have mimicked any other type’s consumption-income choice), so that

(Y, C) must satisfy (a). It remains to show that Y satisfies (c) almost everywhere.

Let us begin with a few lemmas.

Lemma 1 If Y (w) equals some constant y on (w′, w′′), then Z has a kink at y.

Proof:

Assume Z has no kink at y and take wa and wb such that w′ < wa < wb < w′′. Given

that Z must be linear in some neighbourhood of y, it must be that, for each type wa

and wb, its indifference curve in income-consumption space is tangent to Z at income

level y.48 This is impossible because two types’ indifference curves cannot have the

same slope at the same income level. Q.E.D.

Lemma 2 If w is a jump point of Y , then Z has a kink on (limw̃↑wY (w̃), limw̃↓wY (w̃)).49

Proof:

Assume that Z exhibits no kinks on (limw̃↑wY (w̃), limw̃↓wY (w̃)). Then, given the

47Clearly, (i) is equivalent to the assumption that (Y,C) is implemented by some continuous,
piecewise linear tax schedule with N pieces.

48Because Y is strictly increasing near w, we must have y > 0. Thus, Y (wa) and Y (wb) aren’t
corner solutions of problem (6) and the tangency condition must hold.

49The limits exist because Y is nondecreasing.
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strict convexity of type w’s indifference curves in income-consumption space, it is

impossible for both income limw̃↑wY (w̃) and income limw̃↓wY (w̃) to be optimal for

type w. On the other hand, by the fact that Y is upper hemicontinuous with nonempty

and compact values, limw̃↑wY (w̃) ∈ Y(w) and limw̃↓wY (w̃) ∈ Y(w). We have reached

a contradiction. Q.E.D.

Lemma 3 Suppose Y is continuous and strictly increasing on (w′, w′′). Then, Z is

linear with strictly positive slope on (limw̃↓w′ Y (w̃), limw̃↑w′′ Y (w̃)). Moreover, denoting

this slope by 1− t, we have Y (w) = (1− t)σw1+σ on (w′, w′′).

Proof:

Suppose Z has a kink at y ∈ (limw̃↓w′ Y (w̃), limw̃↑w′′ Y (w̃)). Let w ∈ (w′, w′′) be such

that Y (w) = y. Let z− and z+ denote the slopes of Z just to the left and just to the

right, respectively, of y.

First suppose z− > z+. In that case, there must exist δ > 0 such that, for all

0 < ǫ < δ, type (w− ǫ)’s indifference curve has slope z− at income Y (w− ǫ) and type

(w+ ǫ)’s indifference curve has slope z+ at income Y (w− ǫ),50 i.e., Y (w−ǫ)1/σ

(w−ǫ)1+1/σ = z− <

z+ = Y (w+ǫ)1/σ

(w+ǫ)1+1/σ . However, taking the limit of the left-most and right-most terms in

the last expression as ǫ ↓ 0 yields Y (w)1/σ

w1+1/σ = z− < z+ = Y (w)1/σ

w1+1/σ , a contradiction.

Next, suppose z− < z+. Then, given the smoothness of indifference curves in

income-consumption space, either the piece of Z just to the left of y or the piece of Z

just to the right of y would cut into the upper-countour set of type w’s indifference

curve passing through (y, Z(y)). This contradicts Y (w) = y being optimal for type

w.

Now suppose 1− t ≤ 0. Then, for types in (w′, w′′) earning more does not increase

consumption, so that Y (w) must be flat on (w′, w′′), a contradiction.

50Because Y is strictly increasing near w, Y (w−ǫ) and Y (w+ǫ) aren’t corner solutions of problem
(6) and the tangency condition must hold.
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Finally, Y (w) = (1−t)σw1+σ on (w′, w′′) follows immediately from the requirement

that the indifference curve of type w ∈ (w′, w′′) in income-consumption space be

tangent to the piece of Z over (limw̃↓w′ Y (w̃), limw̃↑w′′ Y (w̃)). Q.E.D.

The plan for the rest of the proof is to define w0, w1, . . . , wn, define t0, t1, . . . , tn,

show that these wi’s and ti’s satisfy the requirements in condition (c), and show that

Y must be of the form in expression (3) on each (wi−1, wi).

Let us start by defining w0, w1, . . . , wn recursively as follows. Let w0 = w and,

given wi−1 < w (where i ≥ 1), define wi as follows. Let wi,1 = min{w ∈ [w,w]|w >

wi−1 and Y (w−ǫ) < Y (w+ǫ) for all ǫ > 0 and Y is constant on (w,w+δ) for some δ >

0} and wi,2 = min{w ∈ [w,w]|w > wi−1 and w is a jump point of Y }, where I adopt

the convention that the minimum of the empty set equals∞.51 Let wi = min{wi,1, wi,2, w}.

That is, wi is the lowest value of w ∈ [w,w] strictly to the right of wi−1 where either

a flat segment of Y begins or Y jumps. If no such value exists, wi = w.

The wi’s thus constructed satisfy the following requirements.

Lemma 4 w0 = w, wn = w for some n ≤ N , and wi−1 < wi for all i ∈ {1, . . . , n}.

Proof:

The only nonobvious statement is that wn = w for some n ≤ N . Let us prove that.

Suppose N = 1 so that Z has a single piece. Then, Y cannot have flat segments

or jumps (by Lemmas 1 and 2) so that w1,1 = w1,2 = ∞ and w1 = w.

Next, suppose N ≥ 2 and consider some i such that 1 ≤ i < N . If wi = w, then

n = i < N and we are done. Assume wi < w. If wi is a jump point of Y , Z has a

kink in (limw̃↑wi
Y (w̃), limw̃↓wi

Y (w̃)) (by Lemma 2). If wi is where a flat segment of

51Given Lemma 1, the fact that Y is nondecreasing, and the fact that Z has at most N − 1 kinks,
there must be at most finitely many intervals on which Y is constant. Thus, the first minimum
exists. Given Lemma 2, the fact that Y is nondecreasing, and the fact that Z has at most N − 1
kinks, it must be that Y has finitely many (in fact, at most N − 1) jump points. Thus, the second
minimum also exists.
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Y begins, Z has a kink at limw̃↓wi
Y (w̃) (by Lemma 1).52 Thus, wi “eats up” at least

one kink of Z. Moreover, this has to be a new kink, one not “eaten up” by wj for

some 1 ≤ j < i. To see this last point, suppose j is such that 1 ≤ j < i, and consider

the following exhaustive cases.

1. If wi is a jump point (i.e., wi = wi,2), Z must have a kink in (limw̃↑wi
Y (w̃), limw̃↓wi

Y (w̃))

as well as in (limw̃↑wj
Y (w̃), limw̃↓wj

Y (w̃))∪{limw̃↓wj
Y (w̃)}. Given that wj < wi

and Y is nondecreasing, these sets are disjoint so the two kinks must be distinct.

2. The case in which wj is a jump point is analogous to the previous case.

3. If both wj and wi are where a flat segment of Y begins (i.e., wj = wj,1 and

wi = wi,1), Z must have a kink at limw̃↓wj
Y (w̃) as well as at limw̃↓wi

Y (w̃).

Given that wj < wi and Y is nondecreasing, the flat segment of Y starting at

wi must lie higher than the flat segment of Y starting at wj. Thus, we have

limw̃↓wj
Y (w̃) < limw̃↓wi

Y (w̃) so that the two kinks must be distinct.

Thus, for some n ≤ N , w1, . . . , wn−1 must definitely have “eaten up” all N − 1

kinks of Z. Then, by Lemmas 1 and 2, we must have wn,1 = wn,2 = ∞ and, hence,

wn = w. Q.E.D.

Before we can define the ti’s, we need the following lemma.

Lemma 5 For all i ∈ {1, . . . , n}, the following hold.

1) Y is continuous on (wi−1, wi).

2) For all w′, w′′, w′′′ ∈ (wi−1, wi) such that w′ < w′′ < w′′′, Y (w′) < Y (w′′) implies

Y (w′′) < Y (w′′′).53

52By requirement (ii) in Proposition 2, if wi is where a flat segment of Y begins, wi cannot be a
jump point. Hence, limw̃↓wi

Y (w̃) = Y (wi), but we don’t need to make use of this in the proof of
Lemma 4.

53That is, on (wi−1, wi), once Y starts increasing, it cannot stop.
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3) Y is nonconstant in any neighbourhood of wi−1.

Proof:

The lemma follows directly from the definition of w0, w1, . . . , wn and the requirement

in Proposition 2 that Y be strictly increasing near w. Q.E.D.

Let us proceed by defining t0, t1, . . . , tn as follows. Let t0 = 1. For i ∈ {1, . . . , n},

consider the following exhaustive cases: (i) Y is nonconstant on (wi−1, wi) and (ii)

Y (w) = ŷ for all w ∈ (wi−1, wi).
54 In case (i), we know from Lemma 3 and part 2) of

Lemma 5 that Z is linear with strictly positive slope on (limw̃↓ŵ Y (w̃), limw̃↑wi
Y (w̃))

for some ŵ such that wi−1 ≤ ŵ < wi. Set ti to be such that 1− ti equals this slope.

In case (ii), define ti by the equation (1− ti)
σw1+σ

i = ŷ.

The next lemma, taken in conjunction with Lemma 4, demonstrates that the wi’s

and ti’s fulfil the requirements in condition (c).

Lemma 6

1) For all i ∈ {1, . . . , n}, ti < 1.

2) For all i ∈ {1, . . . , n}, ti−1 6= ti.

3) For all i ∈ {1, . . . , n} such that ti−1 < ti, we have
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 ≤ wi.

4) For all i ∈ {1, . . . , n−1} such that ti−1 < ti < ti+1, we have
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 <

wi.

Proof:

Statement 1) is obvious. Statements 2)-4) are obvious for i = 1. Let us take an

arbitrary i ∈ {2, . . . , n} and let us consider the following exhaustive cases.

54ŷ > 0 given that Y is strictly increasing near w.
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1. Y is strictly increasing on (wi−1, wi).

In this case, wi−1 must be a jump point of Y (because it cannot be a point

where a flat segment of Y starts). Also, by the way ti was defined and Lemma

3, we have Y (w) = (1− ti)
σw1+σ on (wi−1, wi). If Y (w) = ŷ on (wi−2, wi−1), the

following must hold: for some ǫ > 0,55 ŷ+ǫ = (1−ti−1)
σw1+σ

i−1 +ǫ < (1−ti)
σw1+σ

for w arbitrarily close to wi−1. If Y is nonconstant on (wi−2, wi−1), the following

must hold: for some ǫ > 0,56 (1− ti−1)
σw1+σ

a + ǫ < (1− ti)
σw1+σ

b for wa and wb

arbitrarily close to wi−1. Thus, both when Y is constant on (wi−2, wi−1) and

when Y is nonconstant on (wi−2, wi−1), we must have ti−1 > ti.

2. Y (w) = ŷ on (wi−1, wi).

In this case, wi−1 cannot be a jump point of Y (by condition (ii) in Proposition

2). Hence, wi−1 must be where a flat segment of Y begins so that Y must be

strictly increasing just to the left of wi−1. Thus, we must have (1−ti−1)
σw1+σ

i−1 =

ŷ.57 Also, from the definition of ti, (1 − ti)
σw1+σ

i = ŷ. Thus, ti−1 < ti and
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 = wi.

Moreover, if i ≤ n−1, we must have ti > ti+1. To see this, note that wi must be a

jump point of Y and, hence, Y must be strictly increasing just to the right of wi

(by condition (ii) in Proposition 2). Hence, Y (w) = (1−ti+1)
σw1+σ on (wi, wi+1)

and the following must hold: for some ǫ > 0,58 ŷ + ǫ = (1 − ti)
σw1+σ

i + ǫ <

(1− ti+1)
σw1+σ for w arbitrarily close to wi. Thus, we must have ti > ti+1.

3. For some ŵ such that wi−1 < ŵ < wi, Y (w) = ŷ on (wi−1, ŵ] and Y is strictly

increasing on (ŵ, wi).

55We need ǫ to be smaller than the size of the jump in Y at wi−1.
56We need ǫ to be smaller than the size of the jump in Y at wi−1.
57By the definition of ti−1 and Lemma 3, the left-hand side is the expression for Y just to the left

of wi−1. The equality holds because Y is continuous at wi−1.
58We need ǫ to be smaller than the size of the jump in Y at wi.
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In this case, wi−1 cannot be a jump point of Y (by condition (ii) in Proposition

2). Hence, wi−1 must be where a flat segment of Y begins so that Y must be

strictly increasing just to the left of wi−1. Thus, we must have (1−ti−1)
σw1+σ

i−1 =

ŷ.

Further, by the definition of ti and Lemma 3, Y (w) = (1 − ti)
σw1+σ > ŷ for

all w ∈ (ŵ, wi). Thus,
(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < wi. Also, by the continuity of Y on

(wi−1, wi),
59 we must have (1− ti−1)

σw1+σ
i−1 = (1− ti)

σŵ1+σ so that ti−1 < ti and

ŵ =
(

1−ti−1

1−ti

)
σ

1+σ

wi−1.

Q.E.D.

Let us now turn to the functional form of Y on (wi−1, wi) for each i ∈ {1, . . . , n}.

First, consider i = 1. Y must be strictly increasing on (w,w1) so that, by the definition

of t1 and Lemma 3, Y (w) = (1− t1)
σw1+σ. Also, t0 > t1. Thus, Y has the functional

form (3) on (w,w1).

Next consider i ∈ {2, . . . , n}. In the proof of Lemma 6, we have that

– case 1 implies ti−1 > ti,

– case 2 implies ti−1 < ti and
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 = wi, and

– case 3 implies ti−1 < ti and
(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < wi.

Thus, if ti−1 > ti, case 1 in that proof applies and we must have Y (w) = (1 −

ti)
σw1+σ on (wi−1, wi). If ti−1 < ti and

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 = wi, case 2 in that proof

applies and Y (w) = (1− ti−1)
σw1+σ

i−1 on (wi−1, wi). If ti−1 < ti and
(

1−ti−1

1−ti

)
σ

1+σ
wi−1 <

wi, case 3 in that proof applies and

Y (w) =











(1− ti−1)
σw1+σ

i−1 if wi−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ
wi−1

(1− ti)
σw1+σ if

(

1−ti−1

1−ti

)
σ

1+σ

wi−1 < w ≤ wi

59See part 1) of Lemma 5.
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on (wi−1, wi).

The bottom line is that, for i ∈ {1, . . . , n}, the functional form of Y on (wi−1, wi)

can be written as:

Y (w) =














































(1− t1)
σw1+σ if w = w0

(1− ti)
σw1+σ if wi−1 < w ≤ wi, ti−1 > ti

(1− ti−1)
σw1+σ

i−1 if wi−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ
wi−1, ti−1 < ti,

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 = wi

(1− ti−1)
σw1+σ

i−1 if wi−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ

wi−1, ti−1 < ti,
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 < wi

(1− ti)
σw1+σ if

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < w ≤ wi, ti−1 < ti,

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < wi

=































































(1− t1)
σw1+σ if w = w0

(1− ti)
σw1+σ if wi−1 < w ≤ wi, ti−1 > ti

(1− ti−1)
σw1+σ

i−1 if wi−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ
wi−1, ti−1 < ti,

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 = wi

(1− ti−1)
σw1+σ

i−1 if wi−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ
wi−1, ti−1 < ti,

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < wi

(1− ti)
σw1+σ if

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < w ≤ wi, ti−1 < ti,

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < wi

(1− ti)
σw1+σ if

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 < w ≤ wi, ti−1 < ti,

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 = wi

=



































(1− t1)
σw1+σ if w = w0

(1− ti)
σw1+σ if wi−1 < w ≤ wi, ti−1 > ti

(1− ti−1)
σw1+σ

i−1 if wi−1 < w ≤
(

1−ti−1

1−ti

)
σ

1+σ
wi−1, ti−1 < ti,

(

1−ti−1

1−ti

)
σ

1+σ
wi−1 ≤ wi

(1− ti)
σw1+σ if

(

1−ti−1

1−ti

)
σ

1+σ

wi−1 < w ≤ wi, ti−1 < ti,
(

1−ti−1

1−ti

)
σ

1+σ

wi−1 ≤ wi

.

The penultimate equality holds because the expression after that equality just adds

a redundant case. The last equality holds because the expression after that equality

just combines the middle two cases as well as the last two cases from the previous

expression. Finally, note that, given part 3) in Lemma 6,
(

1−ti−1

1−ti

)
σ

1+σ
wi−1 ≤ wi is
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guaranteed to hold if ti−1 < ti and can hence be dropped from the last expression

above. Q.E.D.
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