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Abstract

We adopt the epistemic framework of Battigalli and Siniscalchi (J. Econ.
Theory, 1999) to model the distinction between a player�s contingent behav-
ior, which is part of the external state, and his plan, which is described by
his beliefs about his own behavior. This allows us to distinguish between
intentional and unintentional behavior, and to explicitly model how players�
revise their beliefs about the intentions of others upon observing their actions.
We illustrate our approach with detailed examples and with a new derivation
of backward induction from epistemic conditions. Speci�cally, we prove that
common full belief in optimal planning and in belief in continuation consis-
tency imply the backward induction strategies and beliefs. We also present
within our framework other relevant epistemic assumptions and relate them
to similar ones studied in the previous literature.
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ward induction, forward induction.

�We thank Federico Bobbio, Roberto Corrao, Enrico De Magistris and Davide Ferri for careful
proof-reading, and the partecipants to conference and seminar presentations at TARK 2017, EEA-
ESEM 2018, Heidelberg and Northwestern University for useful comments. Pierpaolo Battigalli
gratefully acknowledges the �nancial support of ERC, grant 324219.

1



1 Introduction

Players who reason strategically anticipate the moves of others under the assump-
tion that they are rational and �sophisticated.�In dynamic games, players have to
understand past moves in order to predict future moves. Assumptions about how
players would revise their beliefs upon observing unexpected moves are therefore
paramount. According to forward-induction thinking, past moves are interpreted, if
possible, as intentional choices carrying out strategically rational plans. According
to backward-induction thinking, instead, past unexpected moves are interpreted as
deviations from the strategically rational plans ascribed to opponents, but similar
deviations are not expected to occur in the future, as in the trembling-hand story by
Selten (1975).
A �exible theory of strategic reasoning in dynamic games should therefore allow

for the distinction between plan and choice and should allow to model the perception
of past moves by others as intentional or unintentional. Yet, most epistemic models
for games con�ate plan and contingent behavior, as they assume implicitly or explic-
itly that, at every state of the world, each player i knows (or at least holds a correct
belief about) his contingent behavior.1 Since they do not have states where plans
and behavior do not coincide, such models formally rule out the possibility that
unexpected moves are interpreted as deviations from the plans ascribed to other
players.
In this paper, we use the epistemic framework of Battigalli and Siniscalchi (1999a)

to model how players change their perceptions about the intentions of others. Play-
ers hold (�rst-order) beliefs about the behavior of everybody, including themselves,2

and plans are modeled as beliefs about own behavior. We illustrate the framework
with examples and results about the behavioral implications of di¤erent assump-
tions about strategic reasoning. In particular, our main result provides epistemic
conditions for the backward-induction strategies of generic games with perfect infor-
mation. To do this, we use three main ingredients, which correspond to events in
our framework:

� optimal planning (OP ), which is the result of �folding-back� calculations
given beliefs about the contingent behavior of others,

1See, for example, the surveys on epistemic game theory by Battigalli and Bonanno (1999), and
Dekel and Siniscalchi (2015). To be precise, we consider doxastic and epistemic models of games.
Yet, to be consistent with current use in game theory, we abuse the term �epistemic,�which refers
to the analysis of players� interactive knowledge, and extend it to encompass also the (doxastic)
analysis of interactive beliefs.

2Of course, players hold higher-order beliefs as well.
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� consistency (C), that is, coincidence between plan and contingent behavior,
and

� belief in continuation consistency (BCC), that is, upon reaching any his-
tory h, each player believes that the opponents�behavior will be consistent
with their plans starting from h, whether or not they were consistent in the
past.

Rationality is given by the conjunction of optimal planning and consistency
(R = OP \C). Much of the literature on epistemic game theory analyzes the behav-
ioral implications of rationality and some versions of �common belief�in rationality.
We instead take a di¤erent route and consider �common belief�in doxastic events,
that is, events concerning how players think, not how they behave. Say that a player
fully believes an event E if he assigns probability 1 to E conditional on every his-
tory h. Note that the assumption of full belief in doxastic events is not problematic
because they cannot be falsi�ed by the observation of behavior. With this, we show
the following (Theorem 1):
Common full belief in OP \ BCC implies the backward-induction plans and be-

liefs about others (if players are also consistent their behavior conforms to backward
induction).
We extend this result to cover all multistage games with observable actions: we

show (Theorem 2) that the aforementioned assumptions imply that players use back-
wards rationalizable strategies (Penta 2015, Perea 2014), which coincide with the
backward-induction strategies in generic games with perfect information. Further-
more, we prove that� in the universal type structure� rationality and common strong
belief in rationality (Battigalli and Siniscalchi 2002) imply that players use strongly
rationalizable strategies (Theorem 3).3 Finally, we illustrate our approach showing
that the same behavioral implications obtain under the following assumptions: Let
C� denote the set of states where C (consistency) holds and there is common full
belief of C; with this, we prove that in a complete type structure strong rational-
izability characterizes the behavioral implications of OP \ C� (a subset of R) and
common strong belief in OP \ C� (Theorem 4). We argue that these assumptions
are implicit in the framework of Battigalli and Siniscalchi (2002), where �rst-order
beliefs concern only the behavior of co-players.

The epistemic analysis of backward induction dates back to Aumann (1995).
Other articles with epistemic conditions for backward induction include Battigalli

3Our terminology is clari�ed and justi�ed in Section 6. Here we just mention that strong
rationalizability is often called �extensive-form rationalizability.�
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and Siniscalchi (2002), Bonanno (2013) and Perea (2014). We provide detailed com-
ments on the related literature in Section 7. Here we just note that the formal
language of the aforementioned papers does not allow to distinguish between plan
and contingent behavior, hence it cannot express our key assumptions of consistency
(C) and belief in continuation consistency (BCC).

The rest of the paper is structured as follows. Section 2 introduces the framework.
Section 3 illustrates it and heuristically introduces the main ideas with two examples.
Section 4 analyzes optimal planning, consistency and rationality. Section 5 contains
the main result of this paper, that is, an epistemic characterization of backward-
induction reasoning. Section 6 analyzes forward-induction reasoning. Finally, Section
7 discusses certain conceptual aspects and possible extensions of the analysis, and it
comments on the related literature.

2 Framework

In this section we present the building blocks of our analysis: �nite games with
observable actions (subsection 2.1), systems of conditional probabilities (subsection
2.2) and type structures (subsection 2.3).

2.1 Finite games with observable actions

We focus on �nite multistage games with perfect monitoring of past actions. Given
some preliminaries about sequences and trees, we de�ne these games and the external
states describing players�contingent behavior.

2.1.1 Sequences and trees

Let N0 be the set of natural numbers including 0, that is, N0 := N [ f0g. Given an
arbitrary nonempty set X, the set of all �nite sequences of elements of X is X<N0 :=
[n2N0Xn, where X0 := f?g and ? denotes the empty sequence. For all x 2 X<N0

and y 2 X<N0 , (x;y) denotes the concatenation of x with y. We write x � x0 if x is
a pre�x of x0, that is, x0 = (x;y) for some y. Note that (?;x) = (x;?) = x, hence
? � x and x � x for every x 2X<N0. We let � denote the asymmetric part of �.
A nonempty set Y � X<N0 is a tree if it is closed with respect to pre�xes, that

is, for every x0 2 Y and every pre�x x of x0, x 2 Y; therefore, ? 2 Y. For every
tree Y � X<N0, we say that a sequence x is terminal in Y if x � x0 implies x0 =2 Y
for all x0 2 X<N0.
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2.1.2 Games

A �nite game with observable actions is a structure

� =


I; �H; (Ai; ui)i2I

�
given by the following elements:

� I is a �nite set of players, and, for each i 2 I, Ai is a �nite, nonempty set of
potentially feasible actions.

� �H � A<N0 is a �nite tree of feasible histories, that is, �H is a tree of sequences
of elements of A :=

Q
i2I Ai with distinguished root ?. We let Z denote the

set of terminal histories, and H := �HnZ is the set of nonterminal histories.

� For each h 2 H, the set of feasible action pro�les

A(h) :=
�
a 2 A : (h; a) 2 �H

	
,

is such that A(h) =
Q
i2I Ai(h), where Ai(h) is the projection of A(h) on Ai.

� For each i 2 I, ui : Z ! R is the payo¤ (utility) function for player i.

Since the restrictions of � and � on �H represent the strict and weak precedence
relations between the histories/nodes of the game tree, we say that h (weakly)
precedes h0 if (h � h0) h � h0; equivalently, we say that h0 (weakly) follows h
and write (h0 � h) h0 � h.
Player i is active at history h 2 H if he has at least two feasible actions (jAi(h)j �

2), and he is inactive otherwise (that is, if jAi(h)j = 1).4 There are simultaneous
moves given h if at least two players are active at h. If there is only one active player
at each h 2 H, we say that the game has perfect information.

2.1.3 External states and contingent behavior

For each i 2 I, let Si :=
Q
h2H Ai(h) and S :=

Q
i2I Si. An external state is

a pro�le s = (si)i2I 2 S, and each si 2 Si is called personal external state of
player i. The set of external states of players other than i is S�i :=

Q
j2Infig Sj.

5

4When i is not active at h 2 H, think of the unique element of Ai (h) as the �action�of waiting
one�s turn to move.

5In keeping with standard game-theoretic notation, given any collection of sets Xi (i 2 I), we
let X�i :=

Q
j 6=iXj with typical element x�i 2 X�i.
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An external state (si)i2I 2 S is interpreted as an objective description of players�
contingent behavior, which may or may not coincide with what players plan to do.
Note that each si 2 Si corresponds technically to a strategy of player i, but we avoid
this terminology because we call �strategy�what player i plans to do, which is part
of his epistemic type (cf. Section 4).
Each external state s = (si)i2I 2 S induces a terminal history. Thus, we can

de�ne a path function � : S ! Z associating each external state with the corre-
sponding terminal history. So, for each h 2 H, we can de�ne the set of external
states inducing h:

S (h) := fs 2 S : h � � (s)g .
The projection

Si (h) := fsi 2 Si : 9s�i 2 S�i; (si; s�i) 2 S (h)g

is the set of external states of i that do not prevent h from being reached. Similarly,
the projection

S�i (h) := fs�i 2 S�i : 9si 2 Si; (si; s�i) 2 S (h)g

is the set of pro�les of external states of players other than i that do not prevent h
from being reached. Note that, in a game with observable actions,

S (h) =
Y
i2I
Si (h)

for every h 2 H.6
Finally,

Ui := ui � � : S ! R

determines the payo¤Ui (s) = ui (� (s)) of player i as a function of the external state
s.

2.2 Conditional beliefs

For every compact metrizable space X, we let �(X) denote the set of probability
measures on the Borel subsets of X, called events. For every � 2 �(X), the support
of � is denoted by supp�. The set �(X) is endowed with the weak*-topology, so
that �(X) becomes a compact metrizable space.

6In more general games, perfect recall implies the following factorization: S (hi) = Si (hi) �
S�i (hi) for each player i and each information set hi of i.
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We consider arrays of probability measures indexed by elements of a countable
collection C of �conditioning events,�i.e., � := (�(�jC))C2C 2 �(X)

C.7

De�nition 1 Let X be a compact metrizable space and C be a countable family of
clopen (i.e., both closed and open) and nonempty subsets of X. A conditional
probability system (CPS) on (X; C) is an array of probability measures � :=
(�(�jC))C2C such that, for all C;D 2 C and events E, �(CjC) = 1 and

E � D � C ) �(EjC) = �(EjD)�(DjC). (2.1)

Condition (2.1) is the so-called chain rule of conditional probabilities and it can
be written as follows: if E � D � C, then

�(DjC) > 0) �(EjD) = �(EjC)
�(DjC) .

We write �C (X) for the set of CPSs on (X; C). Under the stated assumptions,
�C (X) is a compact metrizable space (see Lemma 1 in Battigalli and Siniscalchi
1999a).
Given compact metrizable spaces X and Y , the set X � Y is endowed with the

product topology. Let C be a countable collection of clopen subsets of X such that
; =2 C. With a small abuse of notation, we write C�Y for the corresponding collection
of clopen �cylinders�in X � Y , that is,

C � Y := fC � X � Y : 9F 2 C; C = F � Y g .

For every probability measure � 2 �(X � Y ), we letmargX� denote the marginal
of � on X. Now consider a CPS � := (�(�jC � Y ))C2C 2 �C�Y (X � Y ). Then the
marginal of � on (X; C) is de�ned as the array of probability measures

margX� := (margX� (�jC))C2C 2 [� (X)]
C .

It can be easily veri�ed that margX� is a CPS on (X; C).
7For every pair of sets P and Q, QP denotes the collection of functions with domain P and

codomain Q. Thus, � is a function from C to �(X). We write �(�jC) to stress the interpretation
as a conditional probability given the conditioning event C 2 C.
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2.3 Type structures

We represent a player�s plan, or strategy, as a system of conditional beliefs about his
own behavior. If a player holds conditional beliefs about his own behavior as well as
other players�, �rst-order beliefs are CPSs on (S;S), where S is the common collection
of conditioning events about behavior corresponding to nonterminal histories:

S := fF � S : 9h 2 H;F = S (h)g .

For any i 2 I, let T�i denote the set of possible �types�of the other players, that
is, the set of their possible �ways to think.� Then the conditioning event for i
corresponding to history h 2 H is S(h) � T�i; thus, a CPS for i is an array of
probability measures �i := (�i(�jS(h)� T�i))h2H that satis�es the chain rule and
�i(S(h)� T�ijS(h)� T�i) = 1 for each h 2 H.

De�nition 2 A �-based type structure is a tuple

T =
�
S;H; (Ti; �i)i2I

�
such that, for every i 2 I,
(a) the type set Ti is a compact metrizable space,
(b) the belief map �i : Ti ! �S�T�i (S � T�i) is continuous.
A personal state of player i is a pair (si; ti) 2 Si � Ti. A state of the world

is a pro�le (si; ti)i2I 2
Q
i2I (Si � Ti).

To ease notation, we will often write �i;h (ti) to denote the beliefs of type ti
conditional on history h, that is,

�i;h (ti) (�) := �i (ti) (�jS (h)� T�i) .

A type structure provides an implicit representation of the higher-order beliefs of
the players. Speci�cally, each type ti in a type structure induces a corresponding hier-
archy of conditional beliefs satisfying an intuitive coherence condition. Battigalli and
Siniscalchi (1999a) show that a canonical type structure can always be constructed
by letting the set of types of each i be the collection of all possible hierarchies of CPSs
that satisfy coherence and common full belief in coherence.8 More precisely, each
type ti in the canonical structure is an in�nite hierarchy of CPSs, i.e., ti = (�ni )n2N

8Loosely speaking, this means that lower-order beliefs are the marginals of higher-order beliefs
and there is common belief of this conditional on each history� see Section 5 for a formal de�nition
of �full belief.�
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where �1i is the �rst-order belief, a CPS on (S;S), �2i is the second-order belief, a CPS
on
�
S �

�
�S (S)

�Infig
;S �

�
�S (S)

�Infig�
whose marginal is �1i , and so on. Denoting

by T �i the set of player i�s belief hierarchies satisfying coherence and common full be-
lief in coherence, there is a canonical homeomorphism ��i : T

�
i ! �S�T ��i

�
S � T ��i

�
that determines, for each type (hierarchy) ti, a CPS �

�
i (ti) on the set of external

states and the set of belief hierarchies of the co-players. Moreover, such canonical
type structure turns out to be �universal,�or �terminal�in the sense that every other
type structure can be mapped into it in a unique belief-preserving way.9 Hence, each
type structure is hierarchy-equivalent to a substructure of the canonical one.
With this in mind, we consider in the next section two illustrative examples with

type structures that are �small,�but nonetheless su¢ ciently rich for the purposes of
our epistemic analysis; that is, the essential epistemic features would not change if
we considered the corresponding belief hierarchies with the backdrop of the canonical
structure.
It is worthwhile to compare the notion of type structure as per De�nition 2 to

type structures that only describe players�beliefs about the behavior and beliefs of
other players. We refer to the latter type structures as �standard,� since they are
widely used in epistemic game theory.10 A �-based standard type structure is a
tuple T =

�
H; (S�i; Ti; �i)i2I

�
where, as in De�nition 2, Ti is a compact metrizable

space of player i�s types, but each belief map is a (continuous) function �i : Ti !
�S�i�T�i (S�i � T�i), where S�i denotes the collection of conditioning events about
the behavior of player i�s opponents, i.e., S�i := fF � S�i : 9h 2 H;F = S�i (h)g.
The epistemic approach via standard type structures has the advantage of provid-

ing a parsimonious description of beliefs that can in principle be elicited by observing
choices of side bets.11 Furthermore, the approach is adequate for the analysis of ex-
pected utility maximizing players in dynamic games.12

However, we argue that in the analysis of dynamic games there are conceptual
advantages in introducing players�beliefs about their own behavior.13 Such beliefs
explicitly represent how a player expects to choose at later histories, which guides
the player�s current choice. Also, they allow to formally distinguish between the

9In the terminology of Mertens and Zamir (1985), one can say that every type structure is a
�belief-closed substructure�of the canonical type structure.
10See De�nition 12.23 in Dekel and Siniscalchi (2015).
11Under the assumption that players choose rationally complemented by a strong invariance

assumption; see Siniscalchi (2016).
12See the monographs by Battigalli et al. (2017) and Perea (2012), and the comprehensive survey

by Dekel and Siniscalchi (2015).
13We will maintain the implicit assumption that players are introspective, hence know their own

way to think, and that this is commonly believed at every history.
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description of the contingent behavior of a player, which is what co-players ultimately
care about, and what this player plans to do and achieve, that is, his intentions. Of
course, intentions do not a¤ect payo¤s, but thinking about the intentions of co-players
helps interpret their past observed actions and predict their future actions, e.g., by
forward or backward-induction reasoning.14 By contrast, when we use standard type
structures, we implicitly assume that the personal external states si (i 2 I) in every
state of the world (si; ti)i2I simultaneously represent players� contingent behavior
and their plans. Since this is true for every state, it is implicitly assumed that it
is transparent (i.e., true and commonly believed also at every history) that players
execute their plans and that evidence about behavior is (regarded as) evidence about
intentions.

3 Two illustrative examples

In this section we illustrate the framework and informally introduce the building
blocks of our analysis by means of examples based on two well known games.

3.1 Perceived intentions in the Battle of Sexes with Outside
Option

Consider the game depicted in Figure 3.1 (�Battle of Sexes with Outside Option,�
BoSOO) between two players, Ann (a) and Bob (b). If Ann does not choose the
outside option, Ann and Bob play a simultaneous-moves game in which they have
to choose between a concert with music by Chopin or Mozart.

Figure 3.1: The BoSOO game.

14Furthermore, the theory of psychological games allows intentions, or beliefs about intentions to
a¤ect players�utility. See Battigalli and Dufwenberg (2009), and Battigalli et al. (2018).

10



The set of nonterminal histories is H = f?; (In)g, while the sets of personal
external states of each player are15

Sa = fIn:C; In:M;Out:C;Out:Mg , Sb = fc;mg .

This game has two pure subgame perfect equilibria, (In:C; c) and (Out:M;m),
where only the former conforms to the standard forward-induction story. We now
exhibit a type structure with types corresponding to both equilibria, where each type
is consistent with a kind of backward-induction condition. For each player i 2 fa; bg,
let Ti = ft1i ; t2i g; the belief maps are shown in Table 1.

�i ? (In)
t1i

�
(In:C; c) ; t1�i

�
; 1

�
(In:C; c) ; t1�i

�
; 1

t2i
�
(Out:M;m) ; t2�i

�
; 1

�
(In:M;m) ; t2�i

�
; 1

Table 1: Type structure for BoSOO game.

To understand the description of the type structure in Table 1, consider for in-
stance the beliefs of Ann�s type t1a conditional on the empty sequence ?, that is,
�a;? (t

1
a) (f((In:C; c) ; t1b)g) = 1.

At both states of the world�
s1; t1

�
=
��
In:C; t1a

�
;
�
c; t1b

��
and

�
s2; t2

�
=
��
Out:M; t2a

�
;
�
m; t2b

��
players �plan optimally� in the following sense: each player plans to take, at each
history where she or he is active, the best action given her or his (conditional) belief,
and this yields a dynamically optimal plan. For example, type t2a of Ann predicts
that� if the proper subgame were reached� Bob would choose m and she would
choose M ; given her conditional belief, M is the expected utility maximizing action;
thus, in a sense, Ann is planning to behave optimally in the subgame. Given her
prediction about what would happen in the subgame, Ann of type t2a plans to stay out
of it, that is, she is initially certain that she is going to choose Out. Overall, the plan
of type t2a is Out:M and� given t2a�s beliefs about Bob� it satis�es a folding-back
property that can be informally stated for general multi-stage games as follows:
Actions planned for the last stage are best replies to the last-stage conditional

beliefs about the other player; given the last-stage predictions, actions planned for
the second-to-last stage are best replies to the second-to-last-stage conditional beliefs,
and so on.
15We write X:Y for the personal external state of Ann that describes action X at history ? and

action Y at history (In).
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Thus, we say that Ann plans optimally at state (s2; t2). By itself, this is not
enough to deem Ann rational at (s2; t2): we say that a player is rational at a state
(s; t) if she plans optimally and her contingent behavior, as objectively described by
si, corresponds to her plan. In other words, we view the inconsistency between plan
and behavior as a form of irrationality. For example, at any state ((In:C; t2a) ; (sb; t

2
b))

(sb 2 fc;mg) Ann is irrational because� although type t2a satis�es optimal planning
(that is, the folding-back property)� behavior In:C is di¤erent from t2a�s planOut:M .
We say that player i

� strongly believes event E if i assigns probability 1 to E conditional on each
history h that does not contradict E;16

� fully believes event E if i assigns probability 1 to E conditional on each
history h.17

At state (s1; t1) = ((In:C; t1a) ; (c; t
1
b)), Bob�s belief conditional on (In) about

Ann�s plan is that she did what she planned to do, that she intends to continue
with the same plan In:C, and that she will actually behave as planned; that is, Bob
believes in Ann�s rationality also in the subgame. Given the interactive beliefs at
(s1; t1) conditional on (In), one can see that there is common belief in rationality
also in the subgame, which implies that there is rationality and common strong
belief in rationality (RCSBR) at state (s1; t1).
Consider now state (s2; t2) = ((Out:M; t2a) ; (m; t

2
b)). Upon observing In, Bob

could think that Ann�s personal state is (In:C; t1a), thus maintaining his belief in
Ann�s rationality. Instead, at (s2; t2) and conditional on (In), Bob maintains his
belief that Ann�s type is t2a, hence, that her plan was Out:M and she did not follow
through. Thus, Bob does not strongly believe that Ann is rational. However, Bob
also believes that� despite her initial deviation� Ann is going to follow her plan
in the subgame. In other words, Ann�s initial deviation from the plan she was
supposed to hold is not interpreted as evidence that her intentions are di¤erent,
but rather as a �mistake,�and such mistake is not deemed as evidence that further
�mistakes� are likely. Given the behavior and interactive beliefs at (s2; t2), there
cannot be common full belief in rationality, but there is common full belief that
players plan optimally (although deviations from the hypothesized plans would be
acknowledged ex post). Furthermore, conditional on each history, players believe

16See the formal de�nitions in Section 6.
17See the formal de�nition in Section 5. Note that it is impossible to fully believe an event E if

E implies that some history h 2 H cannot be reached. In this case, the event �i fully believes E�
is empty, but it is still well de�ned.
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that everybody�s behavior will be consistent with plan from that point onward, and
there is common belief in such �belief in continuation consistency.�We view
this as an epistemic representation of backward-induction thinking, as the following
example further illustrates.

3.2 Forward and backward-induction reasoning in a perfect
information game

Consider the game with perfect information depicted in Figure 3.2 between Ann (a)
and Bob (b).18

Figure 3.2: A game with perfect information.

The set of nonterminal histories is

H = f?; (Ia) ; (Ia; Ib) ; (Ia; Ib; ia)g ,

while the sets of personal external states of each player are

Sa = fIa:ia; Ia:oa; Oa:ia; Oa:oag ,
Sb = fIb:ib; Ib:ob; Ob:ib; Ob:obg .

As is well known, strong rationalizability (Pearce 1984, Battigalli 1997)19 and
backward induction yield the same path, (Oa), but have very di¤erent o¤-path be-
havioral implications: for Bob, the unique strongly rationalizable behavior is Ib:ob,

18Cf. Reny 1992, Figure 3.
19The solution concept of strong rationalizability is also known as �extensive-form rationalizabil-

ity.�We �nd such terminology ambiguous and hence we avoid it, because this solution concept refers
to just one out of several meaningful versions of rationalizability for extensive-form games. We �nd
it semantically and conceptually appropriate to use �strong�for this version of rationalizability in
light of its epistemic foundation, which is based on the notion of strong belief. See Section 6.
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while backward induction yields Ob:ob. We can formally interpret the di¤erence as
the result of di¤erent hypotheses about how players revise their beliefs about the
plans, or intentions, of co-players. We consider a type structure with types corre-
sponding to forward-induction reasoning (�), or backward-induction reasoning (bi),
plus a �simpleton�type (�) of Ann who plans optimally, but holds naively optimistic
beliefs about Bob. Each belief map is as shown in Table 2.

�a ? (Ia) (Ia; Ib) (Ia; Ib; ia)
t�a

�
(Oa:oa; Ib:ob) ; t

�
b

�
; 1

�
(Ia:oa; Ib:ob) ; t

�
b

�
; 1

�
(Ia:oa; Ib:ob) ; t

�
b

�
; 1

�
(Ia:ia; Ib:ob) ; t

�
b

�
; 1

tbia
�
(Oa:oa; Ob:ob) ; t

bi
b

�
; 1

�
(Ia:oa; Ob:ob) ; t

bi
b

�
; 1

�
(Ia:oa; Ib:ob) ; t

bi
b

�
; 1

�
(Ia:ia; Ib:ob) ; t

bi
b

�
; 1

t�a ((Ia:ia; Ib:ib) ; �) ; 1 ((Ia:ia; Ib:ib) ; �) ; 1 ((Ia:ia; Ib:ib) ; �) ; 1 ((Ia:ia; Ib:ib) ; �) ; 1
�b ? (Ia) (Ia; Ib) (Ia; Ib; ia)
t�b

�
(Oa:oa; Ib:ob) ; t

�
a

�
; 1 ((Ia:ia; Ib:ob) ; t

�
a) ; 1 ((Ia:ia; Ib:ob) ; t

�
a) ; 1 ((Ia:ia; Ib:ob) ; t

�
a) ; 1

tbib
�
(Oa:oa; Ob:ob) ; t

bi
a

�
; 1

�
(Ia:oa; Ob:ob) ; t

bi
a

�
; 1

�
(Ia:oa; Ib:ob) ; t

bi
a

�
; 1

�
(Ia:ia; Ib:ob) ; t

bi
a

�
; 1

Table 2: Type structure for the game of Figure 3.2.

We now explain in detail the features of the type structure.

Ann Type t�a has always the same beliefs about Bob: Bob�s type is t
�
b , he plans

Ib:ob, and he is going to execute his plan. The plan of t�a is Oa:oa in the following
sense: conditional on each history where she is active, t�a assigns probability one to
the corresponding action in Oa:oa (of course, given history (Ia; Ib), Ann of type t�a
must acknowledge that she deviated from her plan at the root). Given this, the plan
of t�a is folding-back optimal. See Figure 3.3, where marked arcs of Ann represent
her planned actions, marked arcs of Bob represent expected actions, the number in
parentheses above each node of Bob represents Ann�s expected payo¤s conditional on
reaching it, and the type of Bob in square brackets above each node of Ann represents
Ann�s conditional higher-order beliefs.

Figure 3.3: Plan and beliefs of type t�a of Ann:
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Type t�a of Ann is a �simpleton�who always believes that Bob plays Ib:ib and whose
plan is Ia:ia. (The higher-order beliefs of such type are irrelevant for the example,
hence the dot in Table 2.) Given this, the folding-back optimal plan of t�a is indeed
Ia:ia. See Figure 3.4.

Figure 3.4: Plan and (�rst-order) beliefs of t�a.

Type tbia of Ann conforms to backward induction. Speci�cally, �rst-order beliefs yield
the backward-induction pair (Oa:oa; Ob:ob), higher-order beliefs are always concen-
trated on the backward-induction type of Bob.

Bob Type t�b plans Ib:ob, believes at the beginning of the game that Ann�s type is
t�a and that she plays according to her plan Oa:oa; upon observing action Ia, Bob of
type t�b would believe that Ann�s type is the simpleton t

�
a, and that she is playing

Ia:ia as planned by t�a. See Figure 3.5, where the type of Ann on top of the root
represents the initial higher-order belief of tbib , and types above nodes of Bob represent
his conditional higher-order beliefs.

Figure 3.5: Plan and beliefs of type t�b of Bob.

Finally, it is immediate to check that type tbib of Bob conforms to backward induction.
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Rationality Recall that rationality within a type structure is characterized by
folding-back optimality of the subjective plan and consistency between subjective
plan and objective behavior. This implies that if player i believes in the rationality
of co-player �i conditional on observing history h, then i also believes that each
previous move of�i in h was made on purpose, in other words, that it was intentional.
We can verify that a player is rational at each personal state of the extended type
structure of Table 2 where she or he behaves as planned. In particular, Ann is
rational at each (sa; ta) 2

��
Oa:oa; t

�
a

�
;
�
Oa:oa; t

bi
a

�
; (Ia:ia; t

�
a)
	
, and Bob is rational

at each (sb; tb) 2
��
Ib:ob; t

�
b

�
;
�
Ob:ob; t

bi
b

�	
.

Forward induction: Strong belief in optimal planning and consistency
With this, we can further verify that there is (intuitively) RCSBR at state��

Oa:oa; t
�
a

�
;
�
Ib:ob; t

�
b

��
,

that is, at this state players reason by forward induction. Speci�cally, upon observing
the initially unexpected move Ia, type t�b keeps believing that Ann is rational, hence
that action Ia was intentional, although motivated by the rather naive beliefs of type
t�a.

Backward induction: Belief in continuation consistency At state��
Oa:oa; t

bi
a

�
;
�
Ob:ob; ; t

bi
b

��
Bob does not strongly believe in Ann�s rationality; hence, RCSBR does not hold.
Yet, there is something that players hold on to at this state: they always believe in
(folding-back) optimal planning, although this means they would give up their belief
in consistency between plan and behavior upon observing unexpected moves. Indeed,
since each type tbii (i = a; b) plans optimally and fully believes that the co-player�s
type is tbi�i, there is common full belief in optimal planning. On top of this, there
is something else these types hold on to: although they interpret unexpected moves
as unintentional mistakes, they expect that, in the continuation game, behavior
will be consistent with plan. Call this epistemic event �belief in continuation
consistency,�or BCC. Then, at state

��
Oa:oa; t

bi
a

�
;
�
Ob:ob; ; t

bi
b

��
there is BCC and

also common full belief in BCC. To sum up, at this state the following epistemic
hypotheses hold: (a) players are rational, i.e., they plan optimally and behavior is
consistent with plan, (b) there is BCC, and (c) there is common full belief in optimal
planning and BCC. We claim that this is an accurate epistemic representation of
backward-induction reasoning. We provide a formal motivation for this claim in
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Section 5, where we show that� in each �nite, perfect-information game without
relevant ties� epistemic hypotheses (a)-(c) yield the backward-induction behavior
and beliefs.

4 Beliefs, plans and intentions

We �rst introduce a natural independence assumption that cleanly separates between
plans and beliefs about others (4.1), next we analyze optimal planning (4.2), and
�nally we de�ne rationality as the conjunction of optimal planning and consistency
between plan and behavior (4.3).

4.1 Independence

For every �-based type structure T and every type of a player, viz. ti, let

�i;i (ti) :=
�
margSi�i (ti) (�jSi(h))

�
h2H

and
�i;�i (ti) :=

�
margS�i�T�i�i (ti) (�jS�i(h)� T�i)

�
h2H

respectively denote the marginal belief systems of ti about i�s own behavior and
about the co-players �i.

De�nition 3 We say that type ti in a �-based type structure T satis�es indepen-
dence if, for all h; h0 2 H,

S�i (h) = S�i (h
0)) �i;�i (ti) (�jS�i (h)� T�i) = �i;�i (ti) (�jS�i (h0)� T�i) ,

Si (h) = Si (h
0)) �i;i (ti) (�jSi (h)) = �i;i (ti) (�jSi (h0)) , (4.1)

and

�i (ti) (�jS (h)� T�i) = �i;i (ti) (�jSi (h))� �i;�i (ti) (�jS�i (h)� T�i) . (4.2)

In words, �i (ti) is the �product�of two marginal CPSs, one about i himself and
one about �i.20
20Condition (4.1) implies a weaker form of (4.2): if h � h0, then

�i (ti) (S(h
0)jS (h)� T�i) = �i;i (ti) (Si(h0)jSi (h))� �i;�i (ti) (S�i (h0)� T�ijS�i (h)� T�i) .

17



Note that from �i;i (ti) and �i;�i (ti) we can derive a plan

�ti;i 2
Y
h2H

�(Ai (h)) ,

which is� technically� a behavioral strategy (see Kuhn 1953), and a system of pos-
sibly correlated measures

�ti;�i 2
Y
h2H

�(A�i (h)) ;

again a behavioral strategy if �i is just one player. Formally, for all h 2 H, ai 2
Ai (h), anda�i 2 A�i (h),

�ti;i (aijh) : = �i;i (ti) (Si (h; ai) jSi (h)) ,
�ti;�i (a�ijh) : = �i;�i (ti) (S�i (h; a�i)� T�ijS�i (h)� T�i) ,

where Si (h; ai) := fsi 2 Si (h) : si (h) = aig is the set of personal external states of i
consistent with h and choosing ai given h, and S�i (h; a�i) :=

Q
j 6=i Sj (h; aj).

Remark 1 If ti satis�es independence, then

margS�i (ti) (S (h; a) jS (h)) = �ti;i (aijh)� �ti;�i (a�ijh)

for all h 2 H and a = (ai; a�i) 2 A (h).

We take independence to be a precondition for the rationality of player i. Refer
back to the type structure in Table 2. The key feature of types t�a and t

bi
a is that Ann�s

beliefs about the type tb and contingent behavior sb of Bob are independent of what
Ann does, and in particular do not depend on whether Ann deviated or not from
her plan. Indeed type t�a (resp. t

bi
a ) of Ann initially plans to go out immediately and

believes that Bob�s personal state is
�
Ib:ob; t

�
b

�
(resp.

�
Ob:ob; t

bi
b

�
); upon observing a

deviation to Ia from her own plan, Ann keeps the same belief about Bob.
Next we de�ne the other ingredients of the de�nition of rationality in this paper.

4.2 Optimal planning

For every �-based type structure T , the expected payo¤ of type ti conditional on
reaching history h0 2 �H is

Vti (h
0) :=

X
s2S(h0)

Ui (s)margS�i (ti) (sjS (h0))
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(in particular, Vti (z) = ui (z) for each z 2 Z). With this, the value of taking action
ai 2 Ai (h) conditional on h 2 H for a type ti that satis�es independence can be
meaningfully de�ned as follows:

Vti (h; ai) :=
X

a�i2A�i(h)

�ti;�i (a�ijh)Vti (h; (ai; a�i)) .

De�nition 4 Type ti in a �-based type structure T plans optimally if it satis�es
independence and

supp�ti;i (�jh) � arg max
ai2Ai(h)

Vti (h; ai)

for all h 2 H.

In other words, we say that a type satisfying independence plans optimally if his
plan has the one-shot-deviation (OSD) property. The set of types in T of player i
that satisfy optimal planning is denoted by

OP i :=

�
ti 2 Ti : (4.1)-(4.2) hold;8h 2 H; supp�ti;i (�jh) � arg max

ai2Ai(h)
Vti (h; ai)

�
.

The corresponding optimal-planning event about i is OPi := Si � OP i. We de�ne
OP :=

Q
i2I OPi, and we can call OPi and OP �events� because they are closed,

hence Borel.

Remark 2 OP i and OPi are closed.

This is a shortcut to de�ne optimality of a plan as the result of folding-back
optimization, as it is well known that the latter is equivalent to the OSD property
in every �nite-horizon decision problem. Intuitively, if h is a �pre-terminal�history,
that is, (h; a) 2 Z for every a 2 A (h), then the OSD property implies the same
maximization at h as folding-back optimality; thus, Vti (h) = V �ti (h), where V

�
ti
(h)

denotes the value of reaching h obtained by folding back. By backward recursion
one can then prove that Vti (h; ai) = V

�
ti
(h; ai) and Vti (h) = V

�
ti
(h) for each h 2 H

and ai 2 Ai (h).
The following dynamic programming result is standard.

Remark 3 Fix a type ti that satis�es independence; ti plans optimally if and only if

supp�i;i (ti) (�jSi (h)) � arg max
si2Si(h)

X
s�i2S�i(h)

Ui (si; s�i)margS�i�i;�i (ti) (s�ijS�i (h))

for all h 2 H.
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4.3 Consistency and rationality

Recall that a personal state of player i in a �-based type structure T is a pair (si; ti)
that contains two possibly distinct descriptions of the �strategy�of player i: si is
interpreted as an objective description of i�s contingent behavior, that is, what other
players have to predict in order to assess the likely consequences of their actions;
�ti;i� derived from �i;i (ti)� is the subjective plan of i. A consistent player behaves
as planned; a rational player plans optimally and is consistent:

De�nition 5 Player i is consistent from history h at personal state (si; ti) of a
�-based type structure T if si and �ti;i coincide on the subgame with root h, that is,
�ti;i (si (h

0) jh0) = 1 for all h0 2 H with h � h0; player i is consistent at (si; ti) if
he is consistent from the empty history ?; player i is rational at (si; ti) if he is
consistent at (si; ti) and type ti plans optimally.

To ease notation, for each h 2 H, let

H (h) := fh0 2 H : h � h0g

denote the set of nonterminal histories that weakly follow h. For every �-based type
structure T , the sets of personal states where i is consistent from h, consistent, and
rational are respectively denoted by

C�hi : = f(si; ti) 2 Si � Ti : 8h0 2 H (h) ; �ti;i (si (h0) jh0) = 1g ,
Ci : = C�?i ,

Ri : = Ci \OPi.

Also these sets are events about i, because they are closed, hence Borel.

Remark 4 C�hi (h 2 H) and Ri are closed.

We de�ne the set of all states of the world where each player is consistent as

C :=
Y
i2I
Ci;

by Remark 4, C is a Borel subset of
Q
i2I (Si � Ti).

For example, in the type structure of Section 3 for the game of Figure 3.2, all
types plan optimally, and so the players are rational at all personal states at which
they are consistent and irrational at the other states. Furthermore, all types of Bob
believe at the beginning of the game that Ann is consistent (and rational). But there
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is a key di¤erence in epistemic attitudes conditional on the unexpected move Ia of
Ann: forward-induction type t�b of Bob would keep believing that Ann is consistent
also if he observed Ia, hence t�b must change belief about the plan of Ann conditional
on Ia; backward-induction type tbib instead would keep the initial belief in Ann�s plan
to go out and would think� upon observing Ia� that Ann is not (globally) consistent
and yet she will be consistent from h.
Some remarks on the notion of rationality are in order. First note that the notion

of rationality considered here is richer and stronger than the notion of rationality
usually adopted in epistemic game theory. It is richer because here we distinguish
between plan and objective behavior, and the requirement that they coincide is part
of the rationality conditions. It is stronger because, if i is rational at (si; ti), then si is
optimal given �i;�i (ti) conditional on every history h, not only those consistent with
si itself. There are two related reasons for this stronger requirement. First, here we
take the perspective that players can only (irreversibly) choose actions, rather than
strategies; therefore, the conceptually primary notion of optimization must concern
the choice of actions at di¤erent histories, and a dynamically optimal plan must
satisfy such �action optimality�at every history of i, otherwise early choices of i may
be based on the prediction that i himself would choose irrationally in some future
contingency. Second, we interpret optimality as the result of folding-back planning:
when i is considering what action he would choose, should history h occur, he has
already determined his contingent plan for histories following h, but not yet for those
preceding h.
Finally, note that our notion of consistency requires that players hold determin-

istic plans. It makes sense to consider a weaker notion of consistency whereby si
is in the �support� of �ti;i, that is, �ti;i (si (h) jh) > 0 for all h 2 H.21 But this
generalization would not change the substance of our results.

5 Backward-induction reasoning: neglect of per-
ceived deviations

In this section we present epistemic assumptions that� we claim� capture faithfully
the spirit of backward-induction (henceforth BI) reasoning. We �rst show that these
assumptions yield the BI plans and beliefs in perfect-information games without
relevant ties. Next we generalize the result to games with observable actions, showing

21This means that si is in the support of the mixed strategy that corresponds to �ti;i according
to Kuhn�s (1953) transformation.
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that they yield a solution concept called �backwards rationalizability� (cf. Perea
2014, Penta 2015).22

Although our notion of type structure allows us to represent subjective plans and
consistency between plan and behavior, we focus on what each player believes about
other players. Speci�cally, for any player i 2 I, event E�i � S�i � T�i, and history
h 2 H, we let

Bi;h (E�i) := Si �
�
ti 2 Ti : �i;h (ti) (Si � E�i) = 1

	
denote the event that i believes E�i given h. Thus,

Bi (E�i) :=
\
h2H

Bi;h (E�i)

denotes the event that i fully believes E�i. Note that these belief operators satisfy
conjunction and monotonicity. Furthermore, if E�i is closed then Bi;h (E�i) and
Bi (E�i) are closed as well. We let B (�) denote themutual full belief operator, that
is, B (E) :=

Q
i2I Bi (E�i) for each event E :=

Q
i2I Ei; as standard, B

m = B � Bm�1
denotes the m-th iteration (m 2 N) of the selfmap B, that is,

Bm (E) := B
�
Bm�1 (E)

�
,

where B0 (E) := E by convention.
Our representation of BI reasoning is based on the following epistemic assump-

tion: each player i believes in the continuation consistency of the other players,
that is, for each history h 2 H, i would believe C�h�i :=

Q
j 6=iC

�h
j upon observing h.

The corresponding events are

BCCi : =
\
h2H

Bi;h

�
C�h�i

�
,

BCC : =
Y
i2I
BCCi.

In a sense, a player who believes in continuation consistency stubbornly neglects the
past: no evidence of deviations from what he believes to be the plans of co-players
makes him doubt that in the future they will follow such plans, as in the �trembling-
hand�story by Selten (1975). Since each C�h�i is a product of closed sets, hence itself
closed, BCCi is closed as well.
With this, de�ne recursively the following epistemic events:

22A version of our result about BI in games with perfect information can be obtained as a corollary
of the theorem on backwards rationalizability. But we present it �rst as a separate result (with the
proof in the main text) because it is simpler and it allows to better appreciate our framework.
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� OP 1i := OPi \BCCi,

� OPm+1i := OPmi \ Bi
�
OPm�i

�
, where OPm�i :=

Q
j 6=iOP

m
j .

For each m 2 N, we de�ne the set OPm �
Q
i2I (Si � Ti) in the usual way, that

is, OPm :=
Q
i2I OP

m
i . Note that each OP

1
i is closed (i 2 I); furthermore, if OPm�i

is closed, then Bi
�
OPm�i

�
and OPm+1i = OPmi \ Bi

�
OPm�i

�
are closed. It follows by

induction that (OPmi )m2N is a well de�ned decreasing sequence of closed sets.

Remark 5 For each m 2 N,

OPm+1 = (OP \BCC) \
m\
k=1

Bk (OP \BCC)

=

 
OP \

m\
k=1

Bk (OP )

!
\
 
BCC \

m\
k=1

Bk (BCC)

!
.

5.1 Backward induction in games with perfect information

Consider a game � that can be solved by BI and let sbi denote its BI external
state, that is, the outcome of the BI algorithm. We claim that optimal planning,
belief in continuation consistency, and common belief in both imply that players
believe, conditional on each h 2 H, that everybody will play according to sbi in the
subgame with root h. To simplify the exposition, we focus on games with perfect
information (PI games) and without relevant ties, but the result can be extended to
other BI-solvable games, such as �nitely repeated Prisoners�Dilemmas. Recall that
a PI game � is without relevant ties if for all z; z0 2 Z and all i 2 I, if z 6= z0 and i
is the active player at the last common predecessor of z and z0, then ui (z) 6= ui (z0).
The game of Figure 3.2 is an instance of a PI game without relevant ties.
We �rst note that the aforementioned epistemic assumptions can be satis�ed in

every game with a pure subgame perfect equilibrium, hence in every BI-solvable
game. For each si 2 Si and h 2 H, let shi denote the minimal modi�cation of si that
makes h reachable.23

Remark 6 For every �nite game � with observable actions, if there is a pure sub-
game perfect equilibrium �s then there exists a �-based type structure T such that

23Note that, for any pair of related histories h0 � h, there is a unique action pro�le �(h0; h) =
(�i(h

0; h))i2I 2 A (h0) such that (h0; �(h0; h)) � h. With this, given si 2 Si and history h 2 H,
shi is de�ned as the personal external state that coincides with si at every history h

0 that does not
precede h and takes action �i (h0; h) at every h0 � h.
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OP1 := \m2NOPm 6= ; and C \OP1 6= ;. To see this, consider the following type
structure: the type set of each player is a singleton, that is, Ti := f�tig for each i 2 I;
furthermore, each belief map is such that �i;h (�ti)

�n�
�shj
�
j2I

o
� T�i

�
= 1 for every

h 2 H. It is immediate to check that in this type structure OP1 = S � f�tg and
C \OP1 = f(�s; �t)g.

In BI-solvable games with perfect information, the number of steps of the BI
algorithm necessary to obtain belief in the BI continuation behavior in a subgame
with root h is given by the height of h, L (h) := maxz2Z;z�h ` (z)� ` (h), where ` (�)
denotes the length of a sequence. To state the following result it is convenient to
let �ti (ajh) := �i (ti) (S (h; a)� T�ijS (h)� T�i) denote the probability assigned by
type ti to action pro�le a 2 A (h) conditional on h. In a PI game, this is just the
probability assigned by ti to a�(h), the action of the only player � (h) who is active
at h.

Lemma 1 Fix a �nite PI game � without relevant ties and a �-based type structure
T . For each history h 2 H and each personal state

�
s�(h); t�(h)

�
2 C�(h) \ OPL(h)�(h) of

the player who is active at h, this player believes that the BI contingent behavior will
be followed in the subgame with root h and, furthermore, his behavior conforms to BI
in the same subgame, that is, �t�(h)(s

bi(h0)jh0) = 1 and s�(h) (h0) = sbi�(h) (h0) for each
h0 2 H (h).

Proof. Let
T bi;1i (h) :=

�
ti 2 Ti : 8h0 2 H(h); �ti(sbi(h0)jh0) = 1

	
denote the set of types of i whose �rst-order beliefs conform to BI in the subgame
with root h, and let�

sbii
��h

:=
�
si 2 Si : 8h0 2 H(h); si (h0) = sbii (h0)

	
denote the set of external states of i that coincide with sbii on H (h). First note that,
for every h 2 H and t�(h) 2 T bi;1�(h)(h),

arg max
a�(h)2A�(h)(h)

Vt�(h)
�
h; a�(h)

�
= sbi�(h)(h),

because of perfect information, no relevant ties and t�(h)�s belief in the BI continuation
after every action. We prove by induction on the height of history h that

OP
L(h)
�(h) � S�(h) � T bi;1�(h)(h),

C�h�(h) \OP
L(h)
�(h) � [sbi�(h)]

�h � T�(h),
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for each h 2 H.
Basis step. Suppose that L(h) = 1. Then, H(h) = fhg, OPL(h)�(h) = OP�(h) \

BCC�(h) and BCC�(h) puts no restriction on beliefs about future moves. Thus,

OP
L(h)
�(h) = OP 1�(h)

= OP�(h) \BCC�(h)

� S�(h) �
�
t�(h) 2 T�(h) : supp�t�(h);�(h)(�jh) � arg max

a�(h)2A�(h)(h)
Vt�(h)

�
h; a�(h)

��
= S�(h) �

n
t�(h) 2 T�(h) : �t�(h)(s

bi(h)jh) = 1
o

= S�(h) � T bi;1�(h)(h),

and
C�h�(h) \OP

L(h)
�(h) � [s

bi
�(h)]

�h � T bi;1�(h)(h).

Inductive step. Fix an integer k with 1 � k < L(?). Suppose by way of induction
that, for every history h0 with L(h0) � k;

OP
L(h0)
�(h0) � S�(h0) � T bi;1�(h0) (h

0) ,

C�h
0

�(h0) \OP
L(h0)
�(h0) � [sbi�(h0)]

�h0 � T�(h0).

Let L(h) = k + 1. Note that, by de�nition of the sequences
�
OPmj

�
m2N (j 2 I),

OP
L(h)
�(h) = OP k+1�(h)

= OP k�(h) \ B�(h)(OP k��(h))
= OP k�(h) \BCC�(h) \ B�(h)(OP k��(h)),

where the latter equality holds because, by de�nition, OP kj � BCCj for each j and
k.
Next note that OP k�(h0) � OP

L(h0)
�(h0) for every h0 � h, because

�
OPmj

�
m2N is a

nested sequence of subsets for each j, and L(h0) � k = L(h) � 1 by assumption.
By de�nition of BCC�(h) and of full belief, by monotonicity, and by the inductive
hypothesis, BCC�(h) \B�(h)(OP k��(h)) implies that �(h) expects his co-players to take
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the BI actions at future histories, which must have height k or less:

BCC�(h) \ B�(h)
�
OP k��(h)

�
� B�(h)

0@0@ Y
h0�h:�(h0) 6=�(h)

C�h
0

�(h0) \OP
L(h0)
�(h0)

1A� S��(h)�(h0) � T��(h)�(h0)
1A

� B�(h)

0@0@ Y
h0�h:�(h0) 6=�(h)

�
[sbi�(h0)]

�h0 � T�(h0)
�1A� S��(h)�(h0) � T��(h)�(h0)

1A
� S�(h) �

n
t�(h) : 8h0 2 H(h); �(h0) 6= �(h)) �t�(h)(s

bi(h0)jh0) = 1
o
,

where�ij denotes Infi; jg. With this, (folding-back) optimal planning of �(h) implies
that he plans to choose the BI action at h and every h0 � h with �(h0) = �(h):

OP
L(h)
�(h) � OP�(h) \

�
S�(h) �

n
t�(h) : 8h0 2 H(h); �(h0) 6= �(h)) �t�(h)(s

bi(h0)jh0) = 1
o�

� S�(h) �
n
t�(h) : 8h0 2 H(h); �t�(h)(s

bi(h0)jh0) = 1
o

= S�(h) � T bi;1�(h)(h).

Adding consistency from h, we get that � (h) would indeed take the BI action at each
history in the subgame with root h:

C�h�(h) \OP
L(h)
�(h) � [s

bi
�(h)]

�h � T�(h).

�

Say that player i has the backward-induction plan at personal state (si; ti) if
he plans to follow the BI contingent behavior. This gives the epistemic event

BIPi :=
�
(si; ti) : 8h 2 H; �ti;i(sbii (h)jh) = 1

	
.

We let BIP :=
Q
i2I BIPi denote the set of all states of the world in which each

player has the backward-induction plan at his personal state.

Corollary 1 Fix a �nite PI game � without relevant ties and a �-based type structure
T . Then OPL(?)i � BIPi and OPL(?)i \ Ci � fsbii g � Ti for every i 2 I.

Proof. Let H1
i denote the set of histories where player i is active for the �rst time.

Then fsbii g =
T
h2H1

i
[sbii ]

�h and BIPi �
T
h2H1

i
Si � T bi;1i (h). Also, L(?) � L(h),

26



Ci = C�?i � C�hi = C�h�(h) and OP
L(?)
i � OP

L(h)
i = OP

L(h)
�(h) for every h 2 H1

i .
Therefore, Lemma 1 implies

OP
L(?)
i \ Ci �

\
h2H1

i

OP
L(h)
i \ C�hi

�
\
h2H1

i

[sbii ]
�h � T bi;1i (h)

�
�
fsbii g � Ti

�
\BIPi.

�

We say that an event E :=
Q
i2I Ei is transparent at state (s; t) if (s; t) 2 E

and there is common full belief in E at (s; t); thus, the set of states where E is
transparent is

E \
\
m2N

Bm (E) =
\
n2N0

Bn (E) .

Corollary 2 Fix a �nite PI game � without relevant ties and a �-based type struc-
ture T . Then consistency and transparency of optimal planning and of belief in
continuation consistency imply BI behavior:

C \
\
n2N0

Bn (OP \BCC) � fsbig � T .

Proof. By Remark 5,

C \
\
m2N0

Bm (OP \BCC)

� C \
L(?)\
n=0

Bn (OP \BCC) = C \OPL(?).

By Corollary 1,
C \OPL(?) � fsbig � T .

�

The foregoing analysis yields our main result about BI reasoning.
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Theorem 1 Fix a �nite PI game � without relevant ties and a �-based type structure
T . Then transparency of optimal planning and of belief in continuation consistency
implies transparency of BI planning:\

n2N0

Bn (OP \BCC) �
\
n2N0

Bn (BIP ) .

Proof. The mutual full belief operator B (�) satis�es conjunction and (as a conse-
quence) monotonicity. Therefore, one can show by standard arguments that, for all
m 2 N0 and events E;F ,

m\
k=0

Bk(E) � F )
\
n2N0

Bn (E) �
\
n2N0

Bn (F ) .

Remark 5 and Corollary 1 imply that

L(?)�1\
k=0

Bk (OP \BCC) = OPL(?) � BIP .

Therefore, \
n2N0

Bn (OP \BCC) �
\
n2N0

Bn (BIP ) .

�

5.2 Backwards rationalizability

We now show how the foregoing analysis on BI reasoning can be extended to the gen-
eral class of �nite multistage games with perfect monitoring of past actions. Specif-
ically, we show that the behavioral implications of the aforementioned epistemic
assumptions are characterized by the solution concept of backwards rationalizability
(cf. Penta 2015, Perea 2014), which we introduce next.
Let Q be the collection of all subsets of S with the form Q =

Q
i2I Qi, where

Qi � Si for every i. For every h 2 H, let �h : Q ! Q be the operator de�ned as
follows: for all Q 2 Q,

�hi (Qi) : = fsi 2 Si (h) : 9�si 2 Qi;8h0 2 H (h) ; si (h0) = �si (h0)g ,
�h (Q) : =

Y
i2I
�hi (Qi) .
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In words, each �hi (Qi) is the set of all si 2 Si (h) whose continuation in subgame
with root h coincides with those in Qi. Note that �? (Q) = Q, and �h (S) = S (h)
for all h 2 H.
For every CPS �i on (S�i;S�i), we let �i (�i) denote the set of all sequential

best replies to �i, that is,

�i (�i) :=

�
si 2 Si : 8h 2 H; shi 2 arg max

ri2Si(h)
E�i [Ui (ri; �) jh]

�
,

where E�i [Ui (ri; �) jh] denotes the expected payo¤ of ri conditional on h given CPS
�i.

24

De�nition 6 Consider the following procedure.

(Step 0) For every i 2 I, let Ŝ0i := Si. Also, let Ŝ0�i :=
Q
j 6=i Ŝ

0
j and Ŝ

0 :=
Q
i2I Ŝ

0
i .

(Step n > 0) For every i 2 I and every si 2 Si, let si 2 Ŝni if and only if there
exists �i 2 �S�i (S�i) such that

1. si 2 �i (�i);

2. �i
�
�h�i

�
Ŝn�1�i

�
jS�i (h)

�
= 1 for every h 2 H.

Also, let Ŝn�i :=
Q
j 6=i Ŝ

n
j and Ŝ

n :=
Q
i2I Ŝ

n
i .

Finally, let Ŝ1 := \n2N0Ŝn. The pro�les in Ŝ1 are called backwards rational-
izable.

One can show by standard arguments that backwards rationalizability is a non-
empty solution procedure:

Remark 7 Ŝ1 6= ;.

We illustrate the above iterative procedure by means of the PI game of Figure
3.2. At the �rst step, we have

Ŝ1 = fIa:ia; Oa:ia; Oa:oag � fIb:ob; Ob:obg .

For Ann, we rule out Ia:oa because Ann plans to choose action oa only if her condi-
tional belief at history (Ia; Ib) assigns su¢ ciently low probability to Ib:ib and Ob:ib;

24Recall that shi denotes the minimal modi�cation of si that makes h reachable.
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given this conditional belief, the optimal action for Ann at history ? is Oa. For Bob,
we rule out both Ib:ib and Ob:ib because action ib is not optimal at history (Ia; Ib; ia).
One can verify that at the second step

Ŝ2 = fOa:oag � fIb:ob; Ob:obg ,

and the procedure ends at the third step, i.e.,

Ŝ1 = Ŝ3 = fOa:oag � fOb:obg .

In Appendix B, we show how the solution concept of backwards rationalizability
can be given a characterization in terms of the so-called �backwards procedure�
(Penta 2015), which is an extension of the BI algorithm to the general class of
�nite multistage games with observable past actions. Speci�cally, the �backwards
procedure�coincides with the BI algorithm in PI games without relevant ties.
We now show that backwards rationalizability characterizes the behavioral im-

plications of consistency and common full belief of optimal planning and belief in
continuation consistency in the canonical type structure.
We say that a �-based type structure T is complete if each belief map �i is

onto. As is well known, the canonical type structure is complete (see Proposition 2
in Battigalli and Siniscalchi 1999a).25 With this, we can now state the main result
of this section.26

Theorem 2 Fix a �nite game � and a �-based complete type structure T . Then,
(i) for every n 2 N, projS (OP n \ C) = Ŝn;
(ii) projS (OP

1 \ C) = Ŝ1.

The proof of Theorem 2 is in Appendix A.

6 Forward-induction reasoning: rationalization of
past moves

In Section 3, we have informally claimed that forward-induction reasoning can be
modelled by the epistemic assumption of strong belief in rationality, that is, strong
belief in consistency and optimal planning. Here we make this claim precise.

25Although the canonical type structure is the conceptual backdrop of our epistemic analysis, we
do not need to use it explicitly for the statements of the formal results.
26For any pair of sets X and Y , we let projX denote the canonical projection map from X � Y

onto X.
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A player strongly believes a nonempty event E if he is certain of E at all histories
consistent with E. Formally, �x a game � and an associated �-based type structure
T . For every i 2 I and event E�i � S�i � T�i, let

SBi (E�i) :=
\

h2H:S�i(h)�T�i\E�i 6=;

Bi;h (E�i)

denote the event that i strongly believes E�i. With this, rationality and common
strong belief in rationality (RCSBR) can be de�ned as follows. For each i 2 I, let
R1i := Ri (recall that Ri is the set of personal states (si; ti) where i is consistent and
ti plans optimally: Ri = Ci\OPi); for each n 2 N, de�ne Rn+1i recursively as follows:

Rn+1i := Rni \ SBi
�
Rn�i
�
,

where Rn�i :=
Q
j 6=iR

n
j . An easy induction argument shows that each set R

n
i is closed

in Si�Ti, hence Borel.27 The set of states consistent with RCSBR is therefore de�ned
as

R1 :=
Y
i2I

\
n2N

Rni .

De�nition 7 Consider the following procedure.

(Step 0) For every i 2 I, let S0i := Si. Also, let S0�i :=
Q
j 6=i Sj and S

0 := S.

(Step n > 0) For every i 2 I and every si 2 Si, let si 2 Sni if and only if there
exists �i 2 �S�i (S�i) such that

1. si 2 �i (�i);
2. for every m 2 f0; :::; n� 1g and h 2 H,

Sm�i \ S�i (h) 6= ; ) �i
�
Sm�ijS�i (h)

�
= 1.

Also, let Sn�i :=
Q
j 6=i S

n
j and S

n :=
Q
i2I S

n
i .

Finally, let S1 := \n2NSn. The external states in S1 are called strongly ra-
tionalizable.
27Recall that if E�i � S�i � T�i is closed, so is Bi;h (E�i). By �niteness of the game, SBi (E�i)

is a �nite intersection of closed sets, hence it is closed. Using this fact and Remark 4, it follows by
induction that each set Rni is closed.
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As for backwards rationalizability, one can show by standard arguments that
strong rationalizability is a nonempty solution procedure:

Remark 8 S1 6= ;.

In Section 7 we will compare strong rationalizability as per De�nition 7 to the
extensive-form rationalizability concept put forward by Pearce (1984) and further
analyzed by Battigalli (1996, 1997).
The following result states that strong rationalizability characterizes the behav-

ioral implications of RCSBR.

Theorem 3 Fix a �nite game � and a �-based complete type structure T . Then,
(i) for every n 2 N, projS

Q
i2I R

n
i = S

n;
(ii) projSR

1 = S1.

The proof of Theorem 3 is omitted, since it is very similar to the proof of Theorem
4 below.
Comparing Theorem 3 and the characterization result of Battigalli and Siniscalchi

(2002, Proposition 6) we see that there is a key di¤erence in the de�nition of RCSBR:
Battigalli and Siniscalchi (2002) use standard type structures, so they implicitly
assume that the personal external states simultaneously represent players�contingent
behavior and their plans. In the current framework such implicit assumption can be
naturally interpreted as follows: the players execute their plans, and this is commonly
believed at every history; formally, event C (consistency) is transparent. We support
this interpretation by showing that strong rationalizability characterizes also the
behavioral implications of (a) optimal planning and transparency of consistency, and
(b) common strong belief in (a).
Formally, for each player i 2 I,

Bi (C�i) :=
\
h2H

Bi;h (C�i)

is the event that i fully believes C�i; and

B (C) :=
Y
i2I
Bi (C�i)

is the set of states consistent with mutual full belief in consistency. So,

C� :=
\
m2N0

Bm (C)
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is the set of states where there is transparency of consistency, that is, consis-
tency holds and there is common full belief in it. Note that each Bm (C) is closed.
So (Bm (C))m2N0 is a decreasing sequence of closed sets and C

� is closed as well.
Moreover,

C� =
Y
i2I
C�i ,

where C�i := projSi�TiC
�.

For each player i 2 I, let
R�;1i := C�i \OPi,

and, for each n 2 N, de�ne R�;n+1i recursively by

R�;n+1i := R�;ni \ SBi
�
R�;n�i

�
,

where R�;n�i :=
Q
j 6=iR

�;n
j . A standard induction argument shows that each set R

�;n
i

is closed in Si � Ti, hence Borel. We let

R�;1i : =
\
n2N0

R�;ni ,

R�;1 : =
Y
i2I
R�;1i .

Therefore R�;1 is the set of states consistent with optimal planning and transparency
of consistency, and common strong belief thereof.

Theorem 4 Fix a �nite game � and a �-based complete type structure T . Then,
(i) for every n 2 N, projS

Q
i2I R

�;n
i = Sn;

(ii) projSR
�;1 = S1.

The proof of Theorem 4 is in Appendix A.

7 Discussion

In this section we consider alternative solution concepts and epistemic assumptions,
we discuss an extension of our framework, and we compare our work with the clos-
est related literature. A note on terminology: throughout the discussion, the word
�strategy�will be used in its technical meaning as referred to both plans and con-
tingent behavior.
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Forward induction and solution concepts It can be shown that strong rational-
izability is behaviorally equivalent to (the correlated version of) the extensive-form
rationalizability concept put forward by Pearce (1984) and clari�ed by Battigalli
(1996, 1997).28 Speci�cally, let

Hi (si) := fh 2 H : si 2 Si (h)g

denote the set on nonterminal histories made reachable by strategy si. We say that
s0i and s

00
i are behaviorally equivalent if Hi (s

0
i) = Hi (s

00
i ) and s

0
i (h) = s

00
i (h) for

each h 2 Hi (s
0
i). Kuhn (1953) shows that s

0
i and s

00
i are behaviorally equivalent

if and only if they are realization equivalent, that is, � (s0i; s�i) = � (s00i ; s�i) for
all s�i, which means they induce the same consequences and are observationally
indistinguishable. A class of behaviorally equivalent strategies is called �plan of
action�by Rubinstein (1991).29 Essentially, Pearce�s solution concept replaces the
best reply correspondence �i (�) with the following weaker version:

��i (�i) =

�
si 2 Si : 8h 2 Hi (si) ; shi 2 arg max

ri2Si(h)
E�i [Ui (ri; �) jh]

�
.

Let
�
�Sni
�
i2I;n2N denote the solution procedure obtained by replacing �i (�) with ��i (�)

in De�nition 7. Much of the literature on epistemic game theory and rationalizability
for games in extensive form (including Battigalli and Siniscalchi 2002) refers to this
solution concept. Yet, it is well known that, for every player i, belief �i and strategy
�si, we have that �si 2 ��i (�i) if and only if there is some behaviorally equivalent
strategy si such that si 2 �i (�i). Thus, a straightforward induction argument shows
that, for all i, n, and �si, we have that �si 2 �Sni if and only if there is some behaviorally
equivalent si 2 Sni .30

28In Section 3.2 we explained why we avoid the �extensive-form rationalizability� terminology.
Note also that, for n-person games, the literature following Pearce (1984) mostly focused on the
�correlated� version, that can be characterized by iterated conditional dominance (Shimoji and
Watson 1998). Furthermore, Battigalli (1996) criticizes Pearce�s �uncorrelated� solution concept
because his condition of independence of beliefs across opponents is �awed. Battigalli (1996) pro-
poses an alternative de�nition of independent rationalizability for which Battigalli and Siniscalchi
(1999b) provide an epistemic justi�cation.
29Rubinstein (1991) considers a notion of �forward planning�according to which it is not nec-

essary to plan what to do after deviations from one�s own plan. Much of the epistemic literature
on dynamic games relies (implicitly or explicitly) on this notion of forward planning. Instead we
consider a folding-back interpretation that makes sense of planning for every contingency, including
own deviations.
30This is noticed, for example, by Battigalli et al. (2013) and Heifetz and Perea (2015).
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According to De�nition 7, the unique strongly rationalizable pair in the BoSOO
game of Figure 3.1 is (In:C; c), and the unique strongly rationalizable pair in the PI
game of Figure 3.2 is (Oa:oa; Ib:ob). In the second game, the earlier de�nition due
to Pearce also allows for strategy Oa:ia; instead, we rule out this strategy because,
if Ann believes that the strategy of Bob is Ib:ob, then her folding-back optimal plan
is Oa:oa, that is, Oa:oa 2 �S1a . These di¤erences are immaterial because Oa:oa and
Oa:ia are behaviorally equivalent, hence also realization equivalent.
Let zbi denote the BI path of any �nite PI game � without relevant ties. If T is

a �-based complete type structure T , then

� (projSR
1) = � (projSR

�;1) =
�
zbi
	
;

that is, forward-induction reasoning yields the BI path. This result is the analogue of
Proposition 8 in Battigalli and Siniscalchi (2002) and it follows from Theorems 3 and
4, the equivalence between (Sni )i2I;n2N and

�
�Sni
�
i2I;n2N, and Theorem 4 in Battigalli

(1997).31

Common initial belief in rationality The notion of initial, or weak rationaliz-
ability (Battigalli 2003) is an extension to games with observable actions of a solution
concept put forward and analyzed by Ben Porath (1997) for games with perfect infor-
mation. This solution concept is weaker than strong and backwards rationalizability
because it allows a player to believe anything about the co-players if he is surprised.
For example, in the BoSOO game of Figure 3.1 only strategy In:M is deleted. In
PI games without relevant ties, initial rationalizability is behaviorally equivalent to
one round of elimination of weakly dominated strategies followed by the iterated
deletion of strictly dominated strategies (see Ben Porath 1997). Such equivalence
holds generically in games with observable actions.32

Say that player i initially believes event E if i assigns probability 1 to E
at the beginning of the game. Using arguments similar to those in the proof of
Theorem 4, it can be shown� as an analogue of Theorem 3� that the behavioral
implications of rationality and common initial belief in rationality are characterized
by initial rationalizability (cf. Battigalli and Siniscalchi 2007). A similar result holds
for �optimal planning and transparency of consistency� and common initial belief
thereof.
31Like a related proof by Reny (1992), Battigalli�s proof relies on properties of stable sets. Heifetz

and Perea (2015), and Perea (2018) provide more transparent proofs.
32Fix a strategy si. There is no �rst-order CPS �i such that si 2 ��i (�i) if and only if si is strictly

dominated conditional on reaching some h 2 Hi (si). The latter condition implies that si is weakly
dominated, and the converse fails only for a negligible set of payo¤ functions ui. See Shimoji (2004)
and Shimoji and Watson (1998).
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Extension to dynamically inconsistent and belief-dependent preferences
Our perspective on rationality and the ensuing epistemic approach can be extended
to cover dynamically inconsistent preferences due, for example, to non-exponential
discounting (Frederick et al. 2002), or some versions of ambiguity aversion (Mari-
nacci 2015), and belief-dependent preferences, which in turn may be dynamically
inconsistent when preferences over outcomes depend on one�s own plan (Battigalli
and Dufwenberg 2009).33 Given beliefs about other players (or nature), sophisticated
planning is an intra-personal equilibrium condition expressed by the OSD property,
which in this case is not equivalent to sequential optimality.34 Rationality is given
by the conjunction of sophisticated planning and consistency between plan and be-
havior. With this, the epistemic assumptions analyzed in this paper can be applied
to a much wider set of interactive situations.
Compared to the traditional multi-self approach to games with dynamically in-

consistent preferences, we bring a di¤erent perspective. The traditional approach
does not really distinguish between the �selves�at di¤erent nodes of di¤erent play-
ers, or the same player: preferences may di¤er in both cases, but belief systems are
presumed to be the same (barring asymmetric information, as we do here); thus
an inter-personal (e.g., sequential) equilibrium is assumed. We instead only main-
tain that each player is introspective and sophisticated, which justi�es intra-personal
equilibrium as a starting point. But we do not assume that players know each other
as they know themselves. Therefore, inter-personal equilibrium can only be a conclu-
sion of the analysis that holds under special circumstances (e.g., games with complete
and perfect information) and epistemic assumptions (e.g., versions of �common belief
in rationality�).

Related literature Starting with the seminal contribution of Aumann (1995),
various epistemic justi�cations for BI behavior have been o¤ered in the literature (see
the review by Perea 2007).35 Here we outline the di¤erences between our epistemic

33In the context of dynamic games, see� for example� Battigalli et al. (2017) on ambiguity
aversion, and Battigalli et al. (2018) on the role of emotions and belief-dependent preferences.
Note that own-plan dependence of preferences over outcomes may require non-deterministic plans
to satisfy the OSD property given beliefs about others.
34The plan of a sophisticated player with dynamically inconsistent preferences may be �sophisti-

cated�and yet not �optimal� in an obvious sense, because the OSD principle fails. Hence, in this
case it is better to talk about sophisticated, rather than optimal planning.
35The survey by Perea (2007) restricts attention to su¢ cient epistemic conditions for the BI

behavior. By contrast, the result in Battigalli and Siniscalchi (2002) pertains to the BI path. Arieli
and Aumann (2015) adopt a syntactic approach to provide epistemic conditions for BI behavior
in PI games where each player moves at most once. A similar result not relying on strong belief,
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conditions for BI behavior (Theorem 1 and Theorem 2) and those that appear to
be conceptually closest, namely Baltag et al. (2009) and Perea (2014). Baltag et
al. (2009) use a dynamic epistemic-logic formalism related to, but di¤erent from,
the one we have adopted in this paper. Their approach is based on the framework
of the so called �plausibility models� (see van Benthem 2007), which can be seen
as an extension of standard knowledge spaces to take into account the dynamics of
beliefs and knowledge. They use this formalism to capture a future-oriented concept
of rationality, called �dynamic rationality�: at any stage of the game, the rationality
of a player depends only on his current beliefs and knowledge; so a player can be
dynamically rational at history h even if he has made �irrational�moves at some
history h0 � h. This is somewhat similar to our event that player i is consistent
from h (C�h) and plans optimally (OP ). As the authors show, dynamic rationality
is a coarsening of Aumann�s (1995) concept of �substantive rationality�in a belief-
revision context;36 then they use the notion of �stable belief�to show that dynamic
rationality and common knowledge of stable belief in dynamic rationality entails BI
behavior in generic PI games.
Perea (2014) de�nes �common belief in future rationality� within a standard

type-structure formalism (i.e., without players�beliefs about their own behavior),
and he shows that its behavioral implications are characterized by a version of back-
wards rationalizability which is weaker than ours (De�nition 6). As in all standard
type structures, and di¤erently from our framework, it is implicitly assumed in Perea
(2014) that the personal external states si (i 2 I) simultaneously represent players�
contingent behavior and their plans. In particular, the personal external states are
de�ned as �plans of action,� that is, classes of behaviorally equivalent strategies
(Rubinstein 1991), hence, maximization is required only at histories consistent with
the given plan si, that is, h 2 Hi (si). Perea�s version of backwards rationalizability
is based on best reply correspondence ��i (�) rather than �i (�); with this, it can be
shown that a strategy �si is backwards rationalizable in Perea�s sense if and only if it
is behaviorally equivalent to some si that is backwards rationalizable in our sense.
Speci�cally, in PI games without relevant ties, backwards rationalizability à la Perea
yields the set of pro�les (si)i2I such that each si is behaviorally equivalent to s

bi
i : for

but rather on epistemic independence is obtained within standard type structures by Battigalli and
Siniscalchi (1999b).
36As is well known (see, for instance, Halpern 2001), Aumann�s framework is �static� in the

sense that it does not allow the players to revise their beliefs about co-players�behavior when doing
hypothetical reasoning. Aumann de�nes �substantive rationality�in terms of knowledge, and shows
that common knowledge of �substantive rationality�yields BI. Samet (2013) shows that common
(probability 1) belief of �substantive rationality�yields BI, provided that �substantive rationality�
is de�ned in doxastic terms, that is, in terms of belief.
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instance, in the game of Figure 3.2, both (Oa:oa; Ob:ob) and (Oa:ia; Ob:ob) are back-
wards rationalizable in Perea�s sense. This shows that Perea�s su¢ cient conditions for
BI and backwards rationalizability (Theorems 6.1 and 4.3 in Perea 2014) are some-
what di¤erent from ours,37 although they are similar in spirit and have equivalent
implications: indeed, our representation of BI reasoning in BI-solvable games yields
precisely the unique pro�le sbi.
Like us, Battigalli et al. (2013) model plans as beliefs about own behavior, but

in their framework� di¤erently from us� the set of external states is Z, i.e., the set
of complete paths. While in our framework the external personal state of a player is
(technically) also a strategy, in their framework the only mathematical objects that
correspond to (behavior) strategies are players�systems of conditional beliefs about
their own actions. Furthermore, Battigalli et al. (2013) focus only on RCSBR38 in
PI games, proving a result analogous to Theorem 3. We conjecture that we could
reformulate our analysis having Z as the set of external states. Battigalli et al. (2018)
make steps in this direction while also allowing for belief-dependent preferences.

37Asheim (2002) and Asheim and Perea (2005) also provide epistemic analyses of BI, but use
formalisms di¤erent from the one in Perea (2014). In Asheim (2002) and Asheim and Perea (2005)
type structures do not include players�beliefs about their own behavior, and� more importantly�
beliefs are represented by �Conditional Lexicographic Probability Systems� (Blume et al. 1991),
rather than CPSs. As in Perea (2014), they obtain su¢ cient epistemic conditions for BI �plans of
actions,�rather than the BI strategies.
38As de�ned in their di¤erent framework.
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Appendix A: Proofs of Theorems 2 and 4

We �rst record the following result that will be useful for the proofs of Theorems 2
and 4.

Lemma 2 Let X and Y be compact metrizable spaces. If (Em)1m=1 is a decreasing
sequence of nonempty, closed subsets of X � Y , then

projX \1m=1 Em = \1m=1projXEm.

Proof. The inclusion� is obvious. For the other direction, let x 2 \1m=1projXEm.
For each m, let Emx := fy 2 Y : (x; y) 2 Emg. So, we need to establish the existence
of some y 2 Y such that y 2 \1m=1Emx , that is, \1m=1Emx 6= ;. This will imply
the thesis. First note that each Emx is a nonempty closed subset of Y , so compact.
Speci�cally, non-emptiness of each Emx follows from the fact that x 2 \1m=1projXEm.
Moreover, (Emx )

1
m=1 is a decreasing sequence of sets; therefore, by the �nite intersec-

tion property, \1m=1Emx 6= ;. �

Proof of Theorem 2

For the proof of the theorem, we �nd it convenient to introduce further notation and
preliminary results.
Fix a �nite game �. For a given h 2 H, let

��hi (�i) :=

�
si 2 Si : 8h0 2 H (h) ; sh

0

i 2 arg max
ri2Si(h0)

E�i [Ui (ri; :) jh
0]

�
.

Note that ��?i (�i) = �i (�i).

Lemma 3 Fix h 2 H and a CPS �i on (S�i;S�i).
(i) If si 2 �i (�i), then si 2 ��hi (�i).
(ii) If si 2 ��hi (�i), then there exists �si 2 Si such that �si 2 �i (�i) and si (h0) =

�si (h
0) for all h0 2 H (h).

Proof. Part (i) is immediate. Part (ii) follows from standard dynamic program-
ming results. �

Lemma 4 For every i 2 I, h 2 H and n 2 N,

�hi

�
Ŝni

�
=

8><>:
si 2 Si (h) : 9�i 2 �S�i (S�i) ;

1) si 2 ��hi (�i) ;

2) 8h0 2 H;�i
�
�h

0
�i

�
Ŝn�1�i

�
jS�i (h0)

�
= 1

9>=>; .
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Proof. Let si 2 �hi
�
Ŝni

�
. Then, by de�nition, there exists �si 2 Ŝni such that

si (h
0) = �si (h

0) for all h0 2 H (h). Hence �si 2 �i (�i) for some �i 2 �S�i (S�i)

satisfying �i
�
�h

0
�i

�
Ŝn�1�i

�
jS�i (h0)

�
= 1 for all h0 2 H. Part (i) of Lemma 3 implies

that �si 2 ��hi (�i), and since �si coincides with si at all histories weakly following h,
we have si 2 ��hi (�i).
For the other direction, let si 2 Si (h) such that si 2 ��hi (�i) for some �i 2

�S�i (S�i) satisfying �i
�
�h

0
�i

�
Ŝn�1�i

�
jS�i (h0)

�
= 1 for all h0 2 H. Part (ii) of Lemma

3 yields the existence of �si 2 Si such that �si 2 �i (�i) and si (h0) = �si (h
0) for all

h0 2 H (h). By De�nition 6, we have �si 2 Ŝni . Hence si 2 �hi
�
Ŝni

�
. �

The proof of Theorem 2 relies on Lemma 5 below. To formally state and prove
Lemma 5, we need some additional notation. Fix a �nite game � and a �-based type
structure T . For each i 2 I, let

OP 0i := Si � Ti.

The sets OP 0 and OP 0�i are de�ned in the usual way, that is, OP
0 :=

Q
i2I OP

0
i and

OP 0�i :=
Q
j 6=iOP

0
j .

Lemma 5 Fix a �nite game � and a �-based type structure T . The following state-
ments hold:
(i) for all n 2 N0 and h 2 H,

�h (projS (OP
n \ C)) � �h

�
Ŝn
�
;

(ii) if T is complete, then, for all n 2 N0 and h 2 H,

�h (projS (OP
n \ C)) = �h

�
Ŝn
�
.

Proof. We �rst prove the following preliminary result:

Claim 1 Fix n 2 N0 and h 2 H. Then

8i 2 I; �hi
�
projSi (OP

n
i \ Ci)

�
� projSi

�
OP ni \ C�hi

�
\ Si (h) .
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Proof of Claim 1. First note that Ci � C�hi and �hi
�
projSi (OP

n
i \ Ci)

�
� Si (h)

for each i 2 I. Consequently, if OP ni \Ci or OP ni \C�hi are empty, then the result is
immediate. So in what follows we will assume that OP ni \ Ci is nonempty. Let si 2
�hi
�
projSi (OP

n
i \ Ci)

�
. Then si 2 Si (h), and so we only need to show the existence

of ti 2 Ti such that (si; ti) 2 OP ni \ C�hi ; this will imply si 2 projSi
�
OP ni \ C�hi

�
\

Si (h), as required. By de�nition, there exists �si 2 projSi (OP
n
i \ Ci) such that

si (h
0) = �si (h

0) for every h0 � h. Hence (�si; ti) 2 OP ni \Ci for some ti 2 Ti. Optimal
planning and consistency at (�si; ti) entails that �si 2 �i (�i), where �i denotes the
marginal of �i (ti) on (S�i;S�i). Part (i) of Lemma 3 implies that �si 2 ��

h

i (�i), and
since �si and si coincide at every history weakly following h, we obtain si 2 ��

h

i (�i).
Therefore (si; ti) 2 OP ni \ C�hi . �

Part (i): We prove the following claim:

8i 2 I; 8h 2 H; 8n 2 N0; projSi
�
OP ni \ C�hi

�
\ Si (h) � �hi

�
Ŝni

�
.

Then Claim 1 will give the result. The proof is by induction on n 2 N0.
Basis step. Note that, for every i 2 I and h 2 H,

projSi

�
OP 0i \ C�hi

�
\ Si (h) = projSi

�
C�hi

�
\ Si (h)

� Si (h)

= �hi

�
Ŝ0i

�
,

so the result follows immediately.
Inductive step. Assume that the result is true for each m = 0; :::; n. We show

that it is also true for m = n+ 1.
Fix any i 2 I and h 2 H arbitrarily. Let si 2 projSi

�
OP n+1i \ C�hi

�
\ Si (h), so

that (si; ti) 2 OP n+1i \ C�hi for some ti 2 Ti. Since OP n+1i � OP ni , it follows that

(si; ti) 2 OP ni \C�hi , and so, by the induction hypothesis, si 2 �hi
�
Ŝni

�
. By Lemma

4, we get that si 2 ��hi (�i), where �i denotes the marginal of �i (ti) on (S�i;S�i).
So, in order to show that si 2 �h

�
Ŝn+1i

�
, it is enough to show (by Lemma 4) that

�i

�
�h

0
�i

�
Ŝn�i

�
jS�i (h0)

�
= 1 for every h0 2 H.

To this end, �rst note that (si; ti) 2 OP n+1i implies (si; ti) 2 Bi
�
OP n�i

�
=

\h02HBi;h0
�
OP n�i

�
. Note also that (si; ti) 2 BCCi = \h02HBi;h0

�
C�h

0

�i

�
; hence, by
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the conjunction property of the operator Bi;h0 (�), it follows that, for each h0 2 H,
(si; ti) 2 Bi;h0

�
OP n�i \ C�h

0

�i

�
. Using this fact, we get that, for all h0 2 H,

�i

�
�h

0

�i

�
Ŝn�i

�
jS�i (h0)

�
� �i

�
projS�i

�
OP n�i \ C�h

0

�i

�
\ S�i (h0) jS�i (h0)

�
= �i

�
projS�i

�
OP n�i \ C�h

0

�i

�
jS�i (h0)

�
= margS�i�i;h0 (ti)

�
projS�i

�
OP n�i \ C�h

0

�i

��
= �i;h0 (ti)

�
proj�1S�i

�
projS�i

�
OP n�i \ C�h

0

�i

���
� �i;h0 (ti)

�
Si �

�
OP n�i \ C�h

0

�i

��
= 1,

where the �rst inequality follows from the induction hypothesis, the �rst equality
follows from basic properties of a CPS,39 the second and third equalities follow by
de�nition, the second inequality follows from a trivial fact about the inverse images of
functions, and the last equality follows from the conjunction property of the operator
Bi;h0 (�). This shows that �i satis�es the required properties. Since i 2 I and h 2 H
are arbitrary, the conclusion follows.
Part (ii): Let T be complete. First note that

8i 2 I; Si = projSi (Ci) . (7.1)

To see this, let si 2 Si, and consider the CPS �si 2 �S�T�i (S � T�i) de�ned as
follows: �x an arbitrary �si;�i 2 �S�i�T�i (S�i � T�i), and, for all h 2 H, let

�si (�jS (h)� T�i) := �i;i (�jSi (h))� �si;�i (�jS�i (h)� T�i) ,

where �i;i is the CPS on (Si;Si) that satis�es �i;i
�
shi jSi (h)

�
= 1 for all h 2 H. By

completeness, there exists tsi 2 Ti such that �i(tsi) = �si. Then (si; tsi) 2 Ci because,
for all h 2 H,

�tsi ;i (si (h) jh) � �i;i (tsi)
�
shi jSi (h)

�
= �i;i

�
shi jSi (h)

�
= 1.

Therefore si 2 projSi (Ci). The inclusion projSi (Ci) � Si is obvious.
39Let � be a CPS on (S;S), and �x a conditioning event C 2 S. Then � (CjC) = 1 implies

� (E \ CjC) = � (EjC) for every event E � S.
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We now prove the following claim: for every i 2 I, h 2 H and n 2 N0,

�hi

�
Ŝni

�
= �hi

�
projSi (OP

n
i \ Ci)

�
and there exists a map 'ni : Si ! Si � Ti such that 'ni

�
�hi

�
Ŝni

��
� OP ni \ C�hi .

This will imply the thesis. The proof is by induction on n 2 N0.
Basis step. Fix any i 2 I and h 2 H arbitrarily. Note that, by (7.1),

projSi
�
OP 0i \ Ci

�
= projSi (Ci) = Si = Ŝ

0
i ,

and so �hi
�
Ŝ0i

�
= �hi

�
projSi (OP

0
i \ Ci)

�
. It also follows from (7.1) that, for each

si 2 Si, there exists tsi 2 Ti such that (si; tsi) 2 Ci. So, for every si 2 Si, we choose
and �x some tsi satisfying (si; tsi) 2 Ci, and we de�ne the map

'0i : Si ! Si � Ti
si 7! (si; tsi) .

This map satis�es the required properties, in that if si 2 �hi
�
Ŝ0i

�
= Si (h), then

'0i (si) 2 Ci = OP 0i \ Ci � OP 0i \ C�hi .

Since i 2 I and h 2 H are arbitrary, this concludes the proof of the basis step.
Inductive step. Assume that the result is true for each m = 0; :::; n. We show

that it is also true for m = n + 1. Towards this end, we �rst record the following
implication of the induction hypothesis: for all i 2 I and h 2 H,

'ni

�
�hi

�
Ŝni

��
� OP ni \ C�hi ) �hi

�
Ŝni

�
� ('ni )

�1
�
OP ni \ C�hi

�
.

Fix i 2 I and h 2 H arbitrarily. Part (i) gives that �hi
�
projSi

�
OP n+1i \ Ci

��
�

�hi

�
Ŝn+1i

�
. For the converse, let si 2 �hi

�
Ŝn+1i

�
. So, there exists �si 2 Ŝn+1i such

that si (h0) = �si (h
0) for every h0 � h. Moreover, there exists ��si 2 �S�i (S�i) such

that �si 2 �i(��si) and ��si
�
�h

0
�i

�
Ŝn�i

�
jS�i (h0)

�
= 1 for every h0 2 H. Consider the

CPS �
�si ;�i

2 �S�i�T�i (S�i � T�i) de�ned as follows: for all events E�i � S�i � T�i
and h0 2 H,

�
�si ;�i

(E�ijS�i (h0)� T�i) := ��si
��
'n�i
��1

(E�i) jS�i (h0)
�
.
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Note that this is a well-de�ned CPS on (S�i � T�i;S�i � T�i) whose marginal on
(S�i;S�i) is ��si. Note also that, for all h0 2 H,

�
�si ;�i

�
OP n�i \ C�h

0

�i jS�i (h0)� T�i
�
= ��si

��
'n�i
��1 �

OP n�i \ C�h
0

�i

�
jS�i (h0)

�
� ��si

�
�h

0

�i

�
Ŝn�i

�
jS�i (h0)

�
= 1,

where the inequality follows from the implication of the induction hypothesis.
So we get that, for all h0 2 H,

�
�si ;�i

�
OP n�ijS�i (h0)� T�i

�
= �

�si ;�i

�
C�h

0

�i jS�i (h0)� T�i
�
= 1; (7.2)

we will make use of this fact below.
Let �i;i be the CPS on (Si;Si) that satis�es �i;i

�
�sh

0
i jSi (h0)

�
= 1 for every h0 2 H.

Consider the CPS ��si 2 �S�T�i (S � T�i) de�ned as follows: for all h0 2 H,
��si (�jS (h

0)� T�i) := �i;i (�jSi (h0))� ��si ;�i (�jS�i (h
0)� T�i) .

By completeness, there exists ti 2 Ti such that and �i (ti) = ��si. We now show that

(�si; ti) 2 OP n+1i \ Ci = OPi \BCCi \
n\
l=0

Bi
�
OP l�i

�
\ Ci.

To this end, �rst note that, by inspection of the de�nition of ��si, type ti satis�es
independence; moreover, type ti plans optimally because, for all h0 2 H,
supp�i;i (ti) (�jSi (h0)) = supp�i;i (�jSi (h0))

=
n
�sh

0

i

o
� arg max

ri2Si(h0)

X
s�i2S�i(h0)

Ui (ri; s�i)margS�i�i;�i (ti) (s�ijS�i (h
0))

= arg max
ri2Si(h0)

X
s�i2S�i(h0)

Ui (ri; s�i)margS�i��si ;�i (s�ijS�i (h
0))

= arg max
ri2Si(h0)

X
s�i2S�i(h0)

Ui (ri; s�i) ��si (s�ijS�i (h0)) .

Hence (�si; ti) 2 OPi. Furthermore, (�si; ti) 2 Ci because for all h0 2 H,

�ti;i (�si (h
0) jh0) � �i;i (ti)

�
�sh

0

i jSi (h0)
�

= �i;i

�
�sh

0

i jSi (h0)
�

= 1.
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We now check that (�si; ti) 2 BCCi = \h02HBi;h0
�
C�h

0

�i

�
: for every h0 2 H,

�i;h0 (ti)
�
Si � C�h

0

�i

�
= �i (ti)

�
Si � C�h

0

�i jS (h0)� T�i
�

= �i;i (SijSi (h0))� ��si ;�i
�
C�h

0

�i jS�i (h0)� T�i)
�

= 1,

where the third equality follows from (7.2) and from the de�nition of �i;i. It re-
mains to show that (�si; ti) 2 Bi

�
OP n�i

�
= \h02HBi;h0

�
OP n�i

�
; since the sequence�

OP l�i
�
l=0;1;:::;n

is decreasing, monotonicity of the operator Bi (�) will imply (�si; ti) 2
\nl=0Bi

�
OP l�i

�
. Using again (7.2), we get that, for all h0 2 H,

�i;h0 (ti)
�
Si �OP n�i

�
= �i (ti)

�
Si �OP n�ijS (h0)� T�i

�
= �i;i (SijSi (h0))� ��si ;�i

�
OP n�ijS�i (h0)� T�i

�
= 1.

This concludes the proof that (�si; ti) 2 OP n+1i \ Ci.
It follows that �si 2 projSi

�
OP n+1i \ Ci

�
, and so si 2 �hi

�
projSi

�
OP n+1i \ Ci

��
.

Hence we have shown that

�hi

�
Ŝn+1i

�
= �hi

�
projSi

�
OP n+1i \ Ci

��
.

Then, part (i) and Claim 1 yield

�hi

�
Ŝn+1i

�
= projSi

�
OP n+1i \ C�hi

�
\ Si (h) . (7.3)

To conclude the proof of the inductive step, we show the existence of a map
'n+1i : Si ! Si � Ti such that

'n+1i

�
�hi

�
Ŝn+1i

��
� OP n+1i \ C�hi .

By (7.3), it follows that if si 2 �hi

�
Ŝn+1i

�
, then there exists tsi 2 Ti such that

(si; tsi) 2 OP n+1i \C�hi . Therefore, for each si 2 �hi
�
Ŝn+1i

�
, we choose and �x some

tsi satisfying the above condition. We also �x an arbitrary �ti 2 Ti, and we de�ne the
map 'n+1i : Si ! Si � Ti as follows:

'n+1i (si) =

8<: (si; tsi), if si 2 �hi
�
Ŝn+1i

�
,

(si; �ti), if si 2 Sin�hi
�
Ŝn+1i

�
.
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This map satis�es the required properties. Since i 2 I and h 2 H are arbitrary, the
proof of the inductive step is complete. �

We can now provide the proof of Theorem 2.

Proof of Theorem 2. Part (i) follows from Lemma 5. As far as part (ii) is
concerned, �rst note that (OP n \ C)n2N is a decreasing sequence of compact sets.
Part (i) implies that OP n \C 6= ; for every n 2 N. Hence, by the �nite intersection
property, OP1 \ C 6= ;. By part (i) and Lemma 2, projS (OP1 \ C) = Ŝ1, as
required. �

Proof of Theorem 4

For the proof of Theorem 4, we �rst record an abstract result (Lemma 6) for CPSs.
LetX and Y be compact metrizable spaces, and �x a CPS � := (�(�jC � Y ))C2C 2

�C�Y (X � Y ). We say that � strongly believes a nonempty event E � X � Y if,
for every C 2 C,

E \ (C � Y ) 6= ; ) � (EjC � Y ) = 1.
We say that � strongly believes a sequence of nonempty events (E0; :::; En) in X�Y
if, for each m = 0; :::; n, � strongly believes Em. We say that � fully believes a
nonempty event E � X � Y if � (EjC � Y ) = 1 for every C 2 C.

Lemma 6 Fix a �nite decreasing sequence of closed events (E0; :::; En) in X � Y .
(i) If � 2 �C�Y (X � Y ) strongly believes (Em)nm=0, then margX� strongly believes

(projXEm)
n
m=0.

(ii) Let � 2 �C (X). If � fully believes projXE0 and strongly believes (projXEm)
n
m=1,

then there exists � 2 �C�Y (X � Y ) such that (a) � fully believes E0, (b) � strongly
believes (Em)

n
m=1, and (c) margX� = �.

Proof. Part (i) follows from the marginalization property of strong belief (see
Battigalli and Friedenberg 2012). The proof of part (ii) follows the same lines as
those of Lemma 3 in Battigalli and Tebaldi (2018). �

We also need the following facts pertaining to the epistemic events of interest.

Lemma 7 Fix a �nite game � and a �-based type structure T . Then (si; ti) 2 C�i if
and only if (si; ti) 2 Ci and �i;�i (ti) fully believes C��i :=

Q
j 6=iC

�
j .
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Proof. Note that, by de�nition and the conjunction property of B (�), we have

C� = \m2N0Bm (C)
= B0 (C) \ (\m2NBm (C))
= C \ (\m2N0B (Bm (C)))
= C \ B (\m2N0 (Bm (C)))
= C \ B (C�) .

So the statement immediately follows. �

Lemma 8 Fix a �nite game � and a �-based type structure T . If T is complete,
then, for every i 2 I and h 2 H,

C�i \ (Si (h)� Ti) 6= ;.

Proof. Note that, for all m 2 N,

Bm (C) =
Y
i2I
Bi
�
projS�i�T�iB

m�1 (C)
�
.

We show by induction on m 2 N0 that, for each i 2 I and h 2 H,�
projSi�TiB

m (C)
�
\ (Si(h)� Ti) 6= ;.

Since C� :=
T
m2N0 B

m (C), this will imply the thesis.
Basis step. Fix i 2 I and h 2 H. Let si 2 Si (h), and consider the CPS

�i 2 �S�T�i (S � T�i) de�ned as follows: pick any �i;�i 2 �S�i�T�i (S�i � T�i), and,
for all h0 2 H, let

�i (�jS (h0)� T�i) := �i;i (�jSi (h0))� �i;�i (�jS�i(h0)� T�i) ,

where �i;i is the CPS on (Si;Si) that satis�es �i;i
�
sh

0
i jSi (h)

�
= 1 for all h0 2 H. By

completeness, there exists ti 2 Ti such that �i(ti) = �i. Then (si; ti) 2 Ci because,
for all h0 2 H,

�ti;i (si (h
0) jh0) � �i;i (tsi)

�
sh

0

i jSi (h0)
�

= �i;i

�
sh

0

i jSi (h0)
�

= 1.
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Hence projSi�TiB
0 (C) \ (Si (h)� Ti) = Ci \ (Si (h)� Ti) 6= ;. As i and h are

arbitrary, the proof of the basis step is complete.
Inductive step. Assume that the result is true for each m = 0; :::; n. We show

that it is also true for m = n+ 1.
Fix i 2 I and h 2 H. Let si 2 Si (h). By the induction hypothesis, the (closed)

set projS�i�T�iB
n (C) is nonempty, and for all h0 2 H,

projS�i�T�iB
n (C) \ (S�i(h0)� T�i) 6= ;.

So there exists �i;�i 2 �S�i�T�i (S�i � T�i) such that �i;�i fully believes event
projS�i�T�iB

n (C). With this, consider the CPS �i 2 �S�T�i (S � T�i) de�ned as
follows: for all h0 2 H,

�i (�jS (h0)� T�i) := �i;i (�jSi (h0))� �i;�i (�jS�i(h0)� T�i) ,

where �i;i is the CPS on (Si;Si) that satis�es �i;i
�
sh

0
i jSi (h0)

�
= 1 for all h0 2 H. By

completeness, there exists ti 2 Ti such that �i(ti) = �i. The same argument as in
the basis step yields (si; ti) 2 Ci. Moreover (si; ti) 2 Bi

�
projS�i�T�iB

n (C)
�
, because

�i;�i (ti) = �i;�i. It follows that (si; ti) 2 projSi�TiBn+1 (C) \ (Si (h)� Ti). Since i
and h are arbitrary, the conclusion follows. �

Remark 9 Fix a �nite game � and a �-based type structure T . Then, for each i 2 I
and n > 1,

R�;n+1i = R�;1i \
 

n\
m=1

SBi
�
R�;m�i

�!
.

With this, we are ready to provide the proof of Theorem 4.

Proof of Theorem 4. Part (i): First note that, by Lemma 8, C�i 6= ; for each
i 2 I. Moreover

8i 2 I; Si = projSi (C
�
i ) . (7.4)

The inclusion projSi (C
�
i ) � Si is obvious. Conversely, let si 2 Si. By Lemma 8, there

exists �si;�i 2 �S�i�T�i (S�i � T�i) such that �si;�i fully believes C��i. So consider
the CPS �si 2 �S�T�i (S � T�i) de�ned as follows: for all h 2 H, let

�si (�jS (h)� T�i) := �i;i (�jSi (h))� �si;�i (�jS�i (h)� T�i) ,

where �i;i is the CPS on (Si;Si) that satis�es �i;i
�
shi jSi (h)

�
= 1 for all h 2 H. By

completeness, there exists tsi 2 Ti such that �i(tsi) = �si. Then (si; tsi) 2 Ci because,
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for all h 2 H,
�tsi ;i (si (h) jh) � �i;i (tsi)

�
shi jSi (h)

�
= �i;i

�
shi jSi (h)

�
= 1.

Since �i;�i (ti) := �si;�i fully believes C
�
�i, Lemma 7 yields (si; tsi) 2 C�i . Therefore

si 2 projSi (C�i ).
We now prove the following claim:

8i 2 I; 8n 2 N; projSiR
�;n
i = Sni .

The proof is by induction on n 2 N.
Basis step. Let si 2 projSiR

�;1
i , so that (si; ti) 2 R�;1i := C�i \ OPi for some

ti 2 Ti. Transparency of consistency at (si; ti) and optimal planning implies that si
satis�es the OSD property given margS�i�i (ti); so the OSD principle (Remark 3)
implies that si 2 �

�
margS�i�i (ti)

�
. Thus si 2 S1i .

Conversely, let si 2 S1i . By de�nition, there exists �i 2 �S�i (S�i) such that
si 2 � (�i). Part (ii) of Lemma 6 yields the existence of �i;�i 2 �S�i�T�i (S�i � T�i)
such that �i;�i fully believes C

�
�i and margS�i�i;�i = �i. Let �i;i be the CPS on

(Si;Si) that satis�es �i;i
�
shi jSi (h)

�
= 1 for each h 2 H. Consider the CPS �i 2

�S�T�i (S � T�i) de�ned as follows: for all h 2 H,
�i (�jS (h)� T�i) := �i;i (�jSi (h))� �i;�i (�jS�i (h)� T�i) .

Since �i is surjective, there exists ti 2 Ti such that �i (ti) = �i. We now show that
(si; ti) 2 C�i \OPi. Player i is consistent at (si; ti), because

�ti;i (si (h) jh) � �i;i (ti)
�
shi jSi (h)

�
= margSi�i (ti)

�
shi jSi(h)

�
= �i;i

�
shi jSi (h)

�
= 1

for all h 2 H. Since �i;�i fully believes C
�
�i, Lemma 7 yields (si; ti) 2 C�i . By

inspection of the de�nition of �i, we see that type ti satis�es independence; moreover,
type ti plans optimally because, for all h 2 H,
supp�i;i (ti) (�jSi (h)) =

�
shi
	

� arg max
ri2Si(h)

X
s�i2S�i(h)

Ui (ri; s�i)margS�i�i;�i (ti) (s�ijS�i (h))

= arg max
ri2Si(h)

X
s�i2S�i(h)

Ui (ri; s�i) �i (s�ijS�i (h)) .
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Hence (si; ti) 2 OPi.
Inductive step. Assume that the result is true for each m � n. We show that it

is also true for each m � n+ 1.
Let si 2 projSiR

�;n+1
i , so that (si; ti) 2 R�;n+1i for some ti 2 Ti. Then, by Remark

9, (si; ti) 2 R�;1i \
�
\m�nSBi

�
R�;m�i

��
. Transparency of consistency at (si; ti) and

optimal planning implies that si satis�es the OSD property given �i := margS�i�i (ti);
so the OSD principle (Remark 3) implies that si 2 � (�i). Part (i) of Lemma 6 entails
that �i strongly believes

�
projS�iR

�;m
�i
�n
m=1

, hence, by the induction hypothesis, �i
strongly believes

�
Sm�i
�n
m=1

; that is, Condition 2 in the recursive step of De�nition 7
is satis�ed. Thus si 2 Sn+1i .
Conversely, let si 2 Sn+1i . By de�nition, there exists �i 2 �S�i (S�i) such that

si 2 � (�i) and �i strongly believes
�
Sm�i
�n
m=1

. By the induction hypothesis, �i
strongly believes

�
projS�iR

�;m
�i
�n
m=1

. Moreover, �i fully believes S�i by de�nition,
and so, by (7.4), �i fully believes projS�iC

�
�i. Hence part (ii) of Lemma 6 yields the

existence of �i;�i 2 �S�i�T�i (S�i � T�i) such that
(a) �i;�i strongly believes

�
R�;m�i

�n
m=1

,
(b) �i;�i fully believes C

�
�i, and

(c) margS�i�i;�i = �i.
Let �i;i be the CPS on (Si;Si) that satis�es �i;i

�
shi jSi (h)

�
= 1 for each h 2 H.

Consider the CPS �i 2 �S�T�i (S � T�i) de�ned as follows: for all h 2 H,

�i (�jS (h)� T�i) := �i;i (�jSi (h))� �i;�i (�jS�i (h)� T�i) .

Since �i is surjective, there exists ti 2 Ti such that �i (ti) = �i. It remains to
show that (si; ti) 2 R�;n+1i . By Remark 9, this is equivalent to show that (si; ti) 2
R�;1i \

�
\m�nSBi

�
R�;m�i

��
. Since �i;�i (ti) = �i;�i, it immediately follows that (si; ti) 2

\m�nSBi
�
R�;m�i

�
. The proof that (si; ti) 2 R�;1i is the same as that of the basis step.

Therefore (si; ti) 2 R�;n+1i .
Part (ii): Note that

�Q
i2I R

�;n
i

�
n2N0

is a decreasing sequence of compact sets.
Part (i) implies that

Q
i2I R

�;n
i 6= ; for every n 2 N. Hence, by the �nite intersection

property, R�;1 6= ;. By part (i) and Lemma 2, it follows that projSR�;1 = S1, as
required. �
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Appendix B: An algorithmic characterization of back-
wards rationalizability

Penta (2015) shows that backwards rationalizability can be given an algorithmic
characterization by a procedure, called �backwards procedure,� which is a gener-
alization of the BI algorithm to a wide class of games. In what follows, we will
introduce formally the �backwards procedure� and show its equivalence with the
solution concept of backwards rationalizability in De�nition 6. Towards this end,
we need additional notations and de�nitions. To ease language, in this appendix we
slightly modify our terminology. Since the elements si that we call �personal external
states of i�mathematically correspond to the strategies of player i, even though they
do not represent the plan in i�s mind, we call them �objective strategies.�
Fix a game �. The set of objective sub-strategies of player i in the sub-tree with

root h 2 H is denoted by S�hi , that is,

S�hi :=
Y

h02H(h)

Ai(h
0).

A generic element of S�hi is denoted by s�hi . For each h 2 H, the objective sub-
strategy induced by s�hi 2 S�hi in the sub-tree with root �h � h is denoted by

(s�hi j�h) := (si(h0))h02H(�h) 2 S
��h
i .

Recall that L(h) denotes the height of the sub-tree starting at h 2 �H, that is,
L(h) := maxz2Z(h) `(z)� `(h), where `(h) denotes the length of h. For convenience,
we let K := L(?) denote the �height of the game.�
We also �nd it convenient to use the following notation: for every k 2 f1; :::; Kg,

let
Hk := fh 2 H : L(h) = kg .

Next, �x some k > 1. For each h 2 Hk, let

Hk�1 (h) :=
�
h0 2 Hk�1 : h0 � h

	
.

Recall that
Ui := ui � � : S ! R

is the utility of player i as a function of the external state. Following Penta (2015),
we de�ne (objective) strategic-form payo¤ functions for continuations from a given
history: for each h 2 H and each s 2 S, let Ui (sjh) := ui (� (sjh)), where � (sjh)
denotes the terminal history induced by pro�le s from history h.
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Finally, for each �i 2 �
�
S�h�i

�
, let

BRhi (�i) := arg max
s�hi 2S�hi

X
s�h�i 2S

�h
�i

Ui

�
s�hi ; s

�h
�i jh

�
�i

�
s�h�i

�
.

If h = ?, we simply write BRi (�i) instead of BR?i (�i).
We can formally introduce the �backwards procedure,�which starts by consider-

ing �rst all histories of height 1, and then proceeding recursively for all histories of
height k > 1.

De�nition 8 Consider the following procedure.

(k = 1) For every i 2 I and every h 2 H1, let

P 1;0i (h) : = S�hi ,

P 1;0�i (h) : =
Y
j 6=i

S�hj ,

and, for all n 2 N,

P 1;ni (h) : =
n
s�hi 2 P 1;n�1i (h) : 9�i 2 �

�
P 1;n�1�i (h)

�
; s�hi 2 BRhi (�i)

o
,

P 1;n�i (h) : =
Y
j 6=i

P 1;nj (h) .

Also, for every i 2 I and every h 2 H1, let

P 1;1i (h) : = \n2N0P
1;n
i (h) ,

P 1;1�i (h) : =
Y
j 6=i

P 1;1j (h) .

(k > 1) For every i 2 I and every h 2 Hk, let

P k;0i (h) : =
n
s�hi 2 S�hi : 8h0 2 Hk�1 (h) ; (s�hi jh0) 2 P

k�1;1
i (h0)

o
,

P k;0�i (h) : =
Y
j 6=i

P k;0j (h) ,

and, for all n 2 N,

P k;ni (h) : =
n
s�hi 2 P k;n�1i (h) : 9�i 2 �

�
P k;n�1�i (h)

�
; s�hi 2 BRhi (�i)

o
,

P k;n�i (h) : =
Y
j 6=i

P k;nj (h) .
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Also, for every i 2 I and every h 2 Hk, let

P k;1i (h) : = \n2N0P
k;n
i (h) ,

P k;1�i (h) : =
Y
j 6=i

P k;1j (h) .

We say that s 2 S survives the backwards procedure if s 2 PK;1 (?) :=
Q
i2I P

K;1
i (?).

The main result of this section is the following:

Proposition 1 Fix a �nite game with observable actions �. Then Ŝ1 = PK;1 (?).

To prove the result, some further notation and auxiliary results are needed.
For each i 2 I and h 2 H, let �hi : Si ! S�hi be the projection map that associates

each si 2 Si with the induced objective sub-strategy in the sub-tree with root h, that
is, �hi (si) = (sijh). Clearly, each map �hi : Si ! S�hi is onto. Moreover, for every
i 2 I and h 2 H, we let �h�i : S�i ! S�h�i denote the �product� of the maps �

h
j

(j 6= i), that is, �h�i (s�i) =
�
�hj (sj)

�
j 6=i.

We record an ancillary result that will be used in the proof below.

Lemma 9 Fix i 2 I, h 2 H and a nonempty set Qi � Si. Then, for all h0 2 H(h),
the following hold:
(i) �h

0
i

�
�hi (Qi)

�
= �h

0
i (Qi);

(ii) �hi (Qi) \ Si (h0) � �h
0
i (Qi).

Proof : Begin with part (i). Let s�h
0

i 2 �h0i
�
�hi (Qi)

�
. We need to show the existence

of �si 2 Qi such that (�sijh0) = s�h
0

i . By de�nition, there exists si 2 �hi (Qi) such
that (sijh0) = s�h

0

i . Moreover, since si 2 �hi (Qi), there exists �si 2 Qi such that
si (h

00) = �si (h
00) for all h00 2 H (h). Since h0 2 H(h), we obtain (�sijh0) = s�h

0

i , as
required.
For the converse, let s�h

0

i 2 �h0i (Qi). We show the existence of si 2 �hi (Qi) such
that (sijh0) = s�h

0

i . By de�nition, there exists �si 2 Qi such that (�sijh0) = s�h
0

i . Pick
any si 2 �hi (Qi) such that si (h00) = �si (h00) for all h00 2 H (h). Since h0 2 H(h), we
get (�sijh0) = (sijh0), and so (sijh0) = s�h

0

i .
To show part (ii), pick any si 2 Si (h0) such that si 2 �hi (Qi). We show that

si 2 �h
0
i (Qi), i.e., there exists �si 2 Qi such that si (h00) = �si (h00) for all h00 2 H (h0).

To this end, note that, since si 2 �hi (Qi), it follows that there exists �si 2 Qi such that
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si (h
00) = �si (h

00) for all h00 2 H (h). But h0 � h, so this implies that si (h00) = �si (h00)
for all h00 � h0. Therefore si 2 �h

0
i (Qi). �

Proof of Proposition 1: We �rst show that Ŝ1 � PK;1 (?). Speci�cally, we will
prove the following claim:

8i 2 I; 8k 2 f1; :::; Kg ;8h 2 Hk; si 2 Ŝ1i ) (sijh) 2 P k;1i (h) .

The proof is by induction on the height of histories.
(Step k = 1) Fix any h 2 H1. We prove that, for all i 2 I and n 2 N0, if

si 2 Ŝ1i then (sijh) 2 P 1;ni (h). The proof is by induction on n 2 N0. For n = 0 the
result is immediate. Then suppose that the result is true for each m = 0; :::; n. We
show that it is true for m = n + 1. Pick any si 2 Ŝ1i , so that there exists a CPS
�i 2 �S�i (S�i) such that si 2 �i (�i) and �i

�
�h

0
�i

�
Ŝ1�i

�
jS�i (h0)

�
= 1 for all h0 2 H.

Note that part (i) of Lemma 9 yields �h�i
�
�h�i

�
Ŝ1�i

��
= �h�i

�
Ŝ1�i

�
; hence it follows

from the induction hypothesis that �h�i (s�i) 2 P 1;n�i (h) provided that s�i 2 Ŝ1�i.
We can therefore de�ne a probability measure �i 2 �

�
P 1;n�i (h)

�
as follows: for all

s�h�i 2 S
�h
�i ,

�i

�
s�h�i

�
:= �i

��
�h�i
��1 �

s�h�i

�
jS�i (h)

�
.

In other words, �i is the image measure of �i (:jS�i (h)) on S�h�i under the map
�h�i : S�i ! S�h�i . The conclusion that (sijh) 2 BRhi (�i) follows from the fact that
si 2 �i (�i) and (shi jh) = (sijh). Hence (sijh) 2 P

1;n+1
i (h).

(Step k > 1) Suppose that the statement has been proved to hold for all histories
of height l = 1; :::; k � 1. Fix any h 2 Hk. We show that, for all i 2 I and n 2 N0, if
si 2 Ŝ1i then (sijh) 2 P k;ni (h). The argument proceeds by induction on n 2 N0.
(n = 0) Pick any si 2 Ŝ1i . By the induction hypothesis on the height of histories,

it follows that (sijh0) 2 P k�1;1i (h0) for all h0 2 Hk�1 (h). Hence, by de�nition,
(sijh) 2 P k;0i (h).
(n � 0) Suppose that the result is true for each m = 0; :::; n. We show that

it is true for m = n + 1. The argument proceeds in the same way as in step
k = 1. Let si 2 Ŝ1i . There is a CPS �i 2 �S�i (S�i) such that si 2 �i (�i) and
�i

�
�h

0
�i

�
Ŝ1�i

�
jS�i (h0)

�
= 1 for all h0 2 H. Using again part (i) of Lemma 9 and the

induction hypothesis, we obtain that �h�i (s�i) 2 P
k;n
�i (h) for all s�i 2 Ŝ1�i. We can

de�ne a probability measure �i 2 �
�
P k;n�i (h)

�
as the image measure of �i (:jS�i (h))

on S�h�i under the map �
h
�i : S�i ! S�h�i . Hence, the same argument as above entails

that (sijh) 2 BRhi (�i).
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We now show that PK;1 (?) � Ŝ1. We do this by showing that PK;1 (?) � Ŝn
for all n 2 N0. For n = 0, the result follows from the fact that Ŝ0 = S. Then suppose
that the result is true for each m = 0; :::; n. We prove the result for m = n+ 1.
We �rst record a consequence of the induction hypothesis.

Claim 2 For every i 2 I, k 2 f1; :::; Kg and h 2 Hk,

P k;1i (h) = �hi

�
PK;1i (?)

�
� �hi

�
Ŝni

�
= �hi

�
�hi

�
Ŝni

��
Proof of Claim 2. The �rst equality follows from the de�nition of the backwards

procedure, while the set inclusion follows from the induction hypothesis. Part (i) of
Lemma 9 yields the last equality. �

We make use of this result to construct, for each h 2 H, a pro�le of maps�
'hi : S

�h
i ! Si

�
i2I
satisfying some desirable properties.

Fix i 2 I and h 2 H. There exists k 2 f1; :::; Kg such that h 2 Hk. Claim 2

yields, for each s�hi 2 P k;1i (h), the existence of si 2 �hi
�
Ŝni

�
such that �hi (si) =

s�hi . Hence, for every s
�h
i 2 P k;1i (h), we choose and �x some si 2 �hi

�
Ŝni

�
such

that �hi (si) = s�hi , we also choose an arbitrary s
0
i 2 Si, and we de�ne the map

'hi : S
�h
i ! Si as follows:

'hi

�
s�hi

�
=

�
si, if s�hi 2 P k;1i (h),
s0i , otherwise.

By construction, each map 'hi satis�es '
h
i

�
P k;1i (h)

�
� �hi

�
Ŝni

�
, which in turn

implies
P k;1i (h) �

�
'hi
��1 �

�hi

�
Ŝni

��
. (7.5)

For every i 2 I and h 2 H, we let 'h�i : S�h�i ! S�i denote the �product�of the

maps 'hj (j 6= i), that is, 'h�i
�
s�h�i

�
:=
�
'hj

�
s�hj

��
j 6=i
.

Having done these preparations, we are now ready to provide the proof of the
inductive step.
Let si 2 PK;1i (?). We show the existence of a CPS �i 2 �S�i (S�i) such that

si 2 �i (�i) and �i
�
�h�i

�
Ŝn�i

�
jS�i (h)

�
= 1 for all h 2 H. For every k 2 f1; :::; Kg

and every h 2 Hk, there exists �hi 2 �
�
P k;1�i (h)

�
such that s�hi 2 BRhi

�
�hi
�
. We
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carefully select some of these probability measures to construct a CPS �i 2 �S�i (S�i)
that satis�es the required properties. The construction goes as follows.
For all h 2 H such that �?i (S�i (h)) > 0, and for all E�i � S�i, let

�i (E�ijS�i (h)) :=
�?i (E�i \ S�i (h))
�?i (S�i (h))

.

Next, consider some h0 = (h; a) 2 Hk (k 6= K) such that �?i (S�i (h)) > 0 and
�?i (S�i (h

0)) = 0. In this case, for all E�i � S�i, let

�i (E�ijS�i (h0)) := �h
0

i

��
'h

0

�i

��1
(E�i)

�
,

and, for all h00 � h0 such that �h0i
��
'h

0
�i
��1

(S�i (h
00))
�
> 0, let

�i (E�ijS�i (h00)) :=
�h

0
i

��
'h

0
�i
��1

(E�i \ S�i (h00))
�

�h
0
i

��
'h

0
�i
��1

(S�i (h00))
� .

For all other histories, we proceed as above, in order to obtain an array of probability
measures �i = (�i (:jS�i (h)))h2H such that the chain rule holds; hence �i is a well-
de�ned CPS on (S�i;S�i).
We now show that �i

�
�h�i

�
Ŝn�i

�
jS�i (h)

�
= 1 for all h 2 H. To this end, let

h0 2 H. There exists a unique k0 2 f1; :::; Kg such that h0 2 Hk0. By construction of
�i, there exists h 2 H such that h0 2 H(h) (hence h 2 Hk where k � k0) and such
that

�i (�jS�i (h)) = �hi
��
'h�i
��1

(�)
�
,
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and �hi
��
'h�i
��1

(S�i (h
0))
�
> 0. We get that

�i

�
�h

0

�i

�
Ŝn�i

�
jS�i (h0)

�
=

�hi

��
'h�i
��1 �

�h
0
�i

�
Ŝn�i

�
\ S�i (h0)

��
�hi

��
'h�i
��1

(S�i (h0))
�

�
�hi

��
'h�i
��1 �

�h�i

�
Ŝn�i

�
\ S�i (h0) \ S�i (h0)

��
�hi

��
'h�i
��1

(S�i (h0))
�

=
�hi

��
'h�i
��1 �

�h�i

�
Ŝn�i

�
\ S�i (h0)

��
�hi

��
'h�i
��1

(S�i (h0))
�

=
�hi

��
'h�i
��1 �

�h�i

�
Ŝn�i

��
\
�
'h�i
��1

(S�i (h
0))
�

�hi

��
'h�i
��1

(S�i (h0))
�

=
�hi

��
'h�i
��1

(S�i (h
0))
�

�hi

��
'h�i
��1

(S�i (h0))
�

= 1,

where the �rst equality is by de�nition, the inequality follows from part (ii) of Lemma
9, the second and third equalities are obvious, while the fourth equality follows from
the following fact: since �hi 2 �

�
P k;1�i (h)

�
, it follows from (7.5) that

�hi

��
'h�i
��1 �

�h�i

�
Ŝn�i

���
= 1;

using the fact that �hi
��
'h�i
��1

(S�i (h
0))
�
> 0, the fourth equality follows.40

Finally, the conclusion si 2 �i (�i) is immediate by construction of �i. Hence
si 2 Ŝn+1i , as required. �

40Speci�cally, the conclusion follows from the following, simple exercise in probability theory. Fix
a �nite probability space

�

; 2
; �

�
. If E and F are nonempty events of 
 such that � (E) = 1 and

� (F ) > 0, then E \ F 6= ; and � (E \ F ) = � (F ).
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