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Abstract

Regulators often impose rules that constrain the behavior of market participants.
We study optimal regulation design in an insurance market. A regulator restricts
the set of contracts a firm is allowed to offer. The firm offers a permitted menu to
each agent, and the agent chooses a contract from the menu. The regulator seeks to
maximize agent welfare. We show that under a risk-ordering condition, the regulator
can implement her first-best allocation—all agents obtain full insurance at a constant
price—using a collection of two-option menus. When the regulator has more limited
enforcement power, we show that insurance mandates may harm welfare.

1 Introduction

Many insurance markets are subject to stringent regulation in an attempt to promote
better risk sharing and ultimately higher welfare among consumers. Health insurance is
perhaps the most salient example. In the United States, seemingly every political campaign
at some point centers on proposals to adjust the rules to which insurers and insurance
customers are subject. Such rules include making insurers offer policies to all consumers
regardless of pre-existing conditions, limits on price differentials across demographic groups,
and of course the individual mandate to buy an insurance policy. Health insurance is far
from the only example—car and homeowners insurance markets are also subject to various
rules about what kind of coverage must be offered and purchased. Regulation is needed
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in these markets to overcome incentive issues that arise from information asymmetry and
ensure that risk actually is shared within a large pool.!

At the same time, insurance companies have a growing amount of data about consumers.
In a 2018 report, The Geneva Association? states:

Advances in big data analytics...are transforming the insurance industry and the
role that data plays in insurance. New sources of digital data reveal information
about behaviours and lifestyle habits that allow insurers to assess individual risks
much better than before. The emergence of big data, however, raises several
concerns regarding...personalization of insurance”

The increasing analytical sophistication of firms raises new questions about both the efficacy
of existing regulations and the scope for designing better ones.

How effective are insurance regulations, and how should a regulator design them? We
propose a framework to assess what contracts a regulator should permit and the effects
of insurance mandates. A single firm can offer menus of insurance contracts to a large
population of agents, and a regulator can restrict the set of permissible menus. The agents
have private information about their own risk, represented as one of finitely many types. The
firm has some information, observing the “category” of each agent. The regulator knows
only an aggregate distribution. The regulator chooses a set of contract menus that the firm
is allowed to offer. The firm then chooses whether to incur a cost to enter the market, and
if it enters, what menu to offer each agent. Each agent then chooses a contract from the
menu they are offered. We assume agents maximize their own utilities, the firm maximizes
its profits, and the regulator seeks to maximize the average utility of the agents.

Our main result shows that, under an ordering condition on agent types, the regulator
can implement her first-best outcome using menus that contain just two options. We first
demonstrate this result for a simplified setting in which the first-best outcome entails provid-
ing full insurance at a uniform price to all agents—the price exactly compensates the firm’s
entry cost. To implement this, the regulator mandates that all agents buy insurance and
specifies a menu for each category of agent. Each menu contains two contracts. One is the
intended contract, offering full insurance at the desired price, while the other is a “deviation
contract.” The deviation contract is never chosen in equilibrium, but its presence provides
incentives for the firm to offer the right menu to each category.

Our construction depends on a risk-ordering of the observable categories. When consid-
ering a deviation in what menu to offer a particular category of agent, the firm can choose
the menu intended for a lower risk category or the menu intended for a higher risk category.
If the firm chooses the former, then some agents will choose the deviation contract, and the
cost of large payouts to higher risk agents makes this unprofitable for the firm. If the firm
chooses the latter, then the payouts from the intended contract are higher, but the premium

1For instance, see Einav and Finkelstein [2011] for a survey.
2The International Association for the Study of Insurance in Economics



is the same. As a result, the firm prefers to offer each category its intended menu. Agents
within a category choose the intended contract because only higher risk types are willing to
pay the premium of the deviation contract.

In the current era of mass data collection, there is increasing scrutiny of the potential
harm caused by firms possessing detailed information about their customers.®> We point out
that, in the presence of strong regulation, it actually benefits consumers when the firm knows
more about them. Our implementation leverages the firm’s knowledge of agent categories
to select the right contract for each agent. As categories get finer, and we maintain the
risk-ordering condition, the optimal regulatory regime becomes better for the agents.

In the more general setting, we first study what allocations the regulator can implement
using a collection of menus that contain just a single deviation contract—all other contracts
are chosen by some types in equilibrium. We view this feature, the use of simple menus, as
important for the practical significance of our analysis.* An analogous risk-ordering condition
on agent types allows us to implement any allocation that is agent incentive compatible
within categories. This finding greatly expands the applicability of our framework—with
our implementation result in hand, it becomes possible to study regulators with varying
objectives. We use our result to derive a sufficient condition for implementability of the
regulator’s first-best outcome via simple menus.

An important feature of our result is that it requires a regulator with strong enforcement
power. The regulator needs to ensure that all agents buy insurance and that the firm offers
each agent a particular menu of contracts. That is, the regulator must ensure the firm
cannot, offer the agent a single contract, or some larger menu of contracts, drawn from
those appearing in some intended menu. This power is crucial for our implementation.
Absent this ability, not only is the first-best outcome no longer feasible, but an individual
mandate can harm consumer welfare. Einav and Finkelstein [2011] state “Under the textbook
assumptions...mandatory insurance coverage is always a (weakly) welfare-improving policy
intervention”. We identify conditions under which this is not the case.

Moving beyond monopoly regulation, our framework has something to say about regu-
lation in partially competitive markets as well. The first-best allocation entails significant
cross-subsidization of high risk agents by low risk agents, which may unravel if an entrant
can cream-skim more profitable types. We identify a second-best allocation that is robust
to a no cream-skimming constraint. Our work on implementation implies that the regula-
tor can implement this allocation using three-option menus. This demonstrates how simple
regulation can improve consumer welfare, even when cream-skimming might otherwise lead
to market unravelling.

Insurance regulation is a widely studied and debated topic. We offer a fresh perspective.
Our analysis identifies a natural way to implement the first-best along with new reasons why
well-intentioned regulatory regimes might fail to deliver good outcomes. Individual insurance

3See, for instance, the Geneva Association’s report, Rep [2018] for a discussion of these issues.
4There is extensive evidence that consumers suffer from choice overload when choosing from large complex
sets of alternatives. See Chernev et al. [2015] for an analysis.



mandates are a crucial ingredient, but the benefit from this depends on how effectively a
regulator can control other aspects of the insurance market. More broadly, we believe our
approach to modeling regulation can offer a template for other applications (e.g. wage and
employment regulation).

After discussing related work, we present our modeling framework along with several
more specific examples. We then state our main result in a special case of the model chosen
for expositional transparency. After presenting the general version, we study the impact of
insurance mandates and competition from entrants. Section 7 discusses additional exten-
sions, and section 8 concludes.

1.1 Related Work

As Laffont [1994] highlights, a crucial feature of the problem regulators face is that firms
typically have more information about the environment than their regulators. The closest
literature to our work is that on monopoly regulation with privately known costs. The
seminal work of Baron and Myerson [1982] studies optimal price regulation and subsidy
provision for a monopolist facing an exogenous demand curve.® Our setting differs in several
significant ways. First, the firm’s private information concerns the characteristics of potential
customers. Second, the firm’s action set is much richer as it contracts with each agent
individually. An unregulated firm can use its private information to screen and sell different
products to different agents. Most importantly, we model agents’ incentives. The interaction
between the firm and the agents provides a lever for the regulator to exploit—agent incentives
discipline the actions of the firm. In contrast, existing work only considers firm incentives,
so the the regulation problem reduces to a principal-agent problem.

One can also place our work within the literature on optimal delegation. This literature
studies how a principal can optimally restrict choices for an agent with superior information
but misaligned preferences. Our problem is a delegation problem: the regulator delegates
to the firm the choice of what menu to offer each agent. The regulator wants the firm to
offer higher coverage to higher risk agents, charging a uniform price, while the firm wants
to offer the lowest coverage at the highest possible price. In the canonical delegation model,
the action space is a subset of the real line, and the agent has a bias for higher actions
le.g. Holmstrom, 1984, Alonso and Matouschek, 2008, Amador and Bagwell, 2013]. Our
delegation set is the space of contract menus—standard techniques are not applicable in our
setting. Moreover, the interaction with agents’ incentives gives rise to additional restrictions
on the firm’s actions that do not appear elsewhere in this literature.

The deviation contracts in our policy deter the firm from offering menus intended for
lower categories to higher categories. This deterrent works because some agents in higher
categories would choose the deviation contract while those in lower categories do not. This
is reminiscent of the optimal contract in Galperti [2015], where a principal sells commitment

5See also Lewis and Sappington [1988], Laffont and Tirole [1986], Laffont and Tirole [1987], Riordan and
Sappington [1986].



devices to agents with privately known discount factors. The principal allows extra flexi-
bility in the contracts for more patient agents to deter impatient agents from buying these
contracts—the patient agents never use the additional options, but impatient agents would.
As in our case, these extra options are not used in equilibrium.

Policy complexity is an important issue in existing work on regulation. Laffont and
Tirole [1986] use an infinite menu of linear contracts to regulate their monopolist. Rogerson
[2003], noting how difficult it is to implement such complex menus in practice, constructs
an alternative with two contracts that achieves a constant fraction of the optimal welfare.
In our setting, a collection of 2-option menus attains the optimal welfare. The simplicity of
our policy suggests greater scope for practical implementations.

Our problem embeds the classic monopolistic screening model for insurance markets
[Stiglitz, 1977, Chade and Schlee, 2012]. Left unregulated, the firm would screen agents to
maximize profits, offering full insurance at a high price to high risk agents and distorting
coverage for low risk agents. Our optimal regulatory policy eliminates this screening, ensuring
that all agents are fully insured at a constant price.

2 Framework

We study a game between a regulator, a firm, and a unit mass of agents. Each agent
belongs to one of finitely many categories—we endow the set of categories X with an order
<. For each agent, there is a finite set € of verifiable events upon which the firm and the
agent can contract. If an agent in category z experiences event w and receives a net transfer
z from the firm, her utility is u(z,w,z). The function u : (z,00) x © x X — R is strictly
increasing and concave in z, and there is a lower bound 2z on the net transfer such that

lim u(z,w,z) = —c0

z—z
for every category x and every event w.® The events w € Q represent different types of
loss an agent can suffer. We assume there is a unique event wy € 2 such that u(z,wp, x) is
constant in x and u(z,wy, x) > u(z,w,x) for all w € Q—we call wy the no-loss event.

Each agent has a privately observed risk type 6 € A(Q) that describes the risk she
faces—for an agent of type 6, event w occurs with probability §(w). Agents of category =
have types contained in a finite set ©, C A(€2)—the two dimensional type (z, ) completely
characterizes an agent. Write 7 for the collection of all pairs (x,0) with z € X and 6 € ©,.
The distribution of agent types is u € A(T)—assume full support—and for each z € X,
the conditional distribution of risk types is p, € A(O,). These distributions are common
knowledge. Each agent observes her own type (z,6), the firm observes the category z of
every agent, and the regulator observes nothing.

6Tf one wants to eliminate the lower bound, we can replace this condition with lim,_, ' (z,w,x) = 00.



The firm chooses whether to enter the market, incurring cost k£ > 0 if it enters. Condi-
tional on entering, the firm offers a menu of contracts M, to agents in category x. A contract
(p,t) comprises

(a) A premium p € Ry that the agent pays to the firm, and

(b) A transfer function t : 2 — R, specifying an amount of compensation to the agent for
each loss event.

If an agent in category = with risk type 6 buys a contract (p,t) from the firm, she earns
expected utility

Ul(x,0,(p,t)) = Z@(w)u(t(w) —p,w, T)

weN

and the firm earns an expected profit

(.0, (p.t) ==p— Y _ Ow)t(w).

we

Our framework embeds several important special cases. We focus mostly on the following
two, though later results are more general.

Known Monetary Loss

Suppose all agents begin with the same wealth level w, and the event w corresponds to a
known monetary loss /,(w) for agents in category x. The agents share a common value for
money v : R — R, so given the contract (p,t), we have

u(z,w,x) = v(w—p+tlw) —l(0)).

Imagine an agent might suffer some verifiable health problem, such as an illness or an acci-
dent, and the cost of treatment can depend on observable attributes (e.g. age, location) or
pre-existing health conditions, which we capture through the category x € X. The insurance
company can use the information in z to decide what contract to offer, and the payout is a
function of the verifiable event.

Unverifiable Monetary Loss

Suppose there is a set of true loss events Q, and a verifiable loss event w C comprises
some subset of these—the verifiable events ) form a finite partition of Q. Event & € Q
corresponds to a monetary loss /,(w) for agents in category x. The distribution over Q
conditional on w depends on an agent’s category and is given by v,(w|w). Assume again



that all agents have the same initial wealth level w, and v : R — R describes preferences
over wealth. Given the contract (p,t), we have

u(z,w, ) = /E v(w—p+tw) =l (0)) dvg(©]w).

Imagine that event w corresponds to the agent suffering from a particular illness, but the
exact cost of treatment is not verifiable. Different patients have different needs, and dif-
ferent doctors have different opinions about the best course of action. The firm has some
distributional knowledge of costs (e.g. v,) and offers coverage based on what it can verify.”

2.1 Contract Regulation

The regulator can restrict the contracts that the firm is permitted to offer.

Definition 1. A regulatory policy R is a finite set of menus, where each menu M € R
is a finite set of contracts.

If the firm enters the market it must offer some menu in R to each agent, and each
agent must choose a contract from the offered menu. This is without loss of generality. To
represent agents who can opt out of insurance, we could restrict the regulator to policies such
that (0,0) € M for every M € R. Similarly, to represent a firm that can exclude customers,
we could require that the menu M = {(0,0)} is contained in R. As a baseline, we allow the
regulator to choose the policy without restrictions.

The structure of a regulatory policy affects whether the firm and the agents get to make
choices. At one extreme, policies of the form

R ={{(p1,t1), (p2.t2), .., (pnv, tN) }}

grant only the agents a choice. The firm must offer the same menu to all agents, and each
agent faces the same set of options. At the other extreme, policies of the form

R ={{(p1,t1)}, {(p2,t2)}, ... {(pn.tN)}}

grant only the firm a choice. Each menu is a singleton, and agents must accept what is
offered.

In general, a regulatory policy allows both the firm and the agents to make decisions.
The firm chooses which menu to offer to each agent, and each agent chooses a contract from
her menu. Consider a policy

R = {{(p1,:t1), (P2, t2) }, {(p3,t3), (Ps, t4) } }

"Firms necessarily limit coverage to control costs. Insurance companies and patients/healthcare providers
often disagree about what treatments are necessary, particularly with regard to newer more expensive treat-
ments. Pollitz et al. [2019] find that “among issuers offering individual market coverage on healthcare.gov...
18 % of in-network claims were denied by issuers in 2017.”
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There are two menus, each containing two contracts. Allowing choice by both players cre-
ates an opportunity to leverage the interplay between the firm’s and the agents’ incentives.
Suppose the regulator wants category z to get contract (p;,t;) and category x’ to get con-
tract (ps,ts). If the firm likes (pp,t1) better for both categories, a menu of singletons is
not incentive compatible for the firm, and if agents all prefer (ps,t3), then a single menu
is not incentive compatible for the agents. If the regulator can find a contract (ps,ts) that
is unprofitable for the firm, and that category 2’ likes better than (p;,¢;), we can get the
desired allocation.

2.2 The Regulator’s Problem

The timing is as follows:

The regulator chooses a regulatory policy R.

The firm chooses whether to enter the market, and if it enters, it offers M, € R to
each agent in category x

Each agent chooses a contract from her menu.

Events in ) obtain, and contracts pay contingent transfers.

The regulator’s goal is to maximize agent welfare. An allocation a = {(p,t),0}z0e7
specifies a contract for each type of agent. Welfare from the allocation is

W(a):= Y ulx,0)U(x,0,(p,t)s0).
(z,0)€T

The firm’s profit is
m(a) = >z, 0)I(x,0, (p,t)r) — k.

(z,0)€T

Without loss of generality, we confine attention to regulatory policies R = {M,},cx that
contain exactly one menu for each category of agent.

Definition 2. A policy R = {M,}.ex tmplements the allocation a = {(p,t)s.0}zoeT if
there exists a Perfect Bayesian Equilibrium of the induced game in which:

(a) The firm enters the market,
(b) The firm offers M, to agents in category x, and

(¢) Agents of type (x,0) choose contract (p,t).o from M,.



An implementable allocation must satisfy participation and incentive compatibility con-
straints for the firm and incentive compatibility constraints for the agents. Given a regulatory
policy R that implements a, the corresponding PBE must specify a contract (p, t)ﬁ:e that
type (z,0) chooses from menu M, —we necessarily have (p,t)5 5 = (p,t).6. Define

m(x,2') = D pe(O)1(x, 0, (p, £)2)

0cO,

as the firm’s expected profit from offering menu M, to category x agents. The allocation a
is implementable if and only if there exists a collection of contracts {(p, t)ﬁje}(a:ﬁ)eT,x’e x and
corresponding menus M, = {(p, 1)} 4} (.0)c7 such that

(a) m(a)=>0 (FPC)
(b) 7(x,z) > 7w(x,2) for all x,2" € X (FIC)
(¢) U(z,8,(p, t)i:e) > U(x,0,(p,t)) for all z,2’ € X,0 € ©,, and (p,t) € M, (AIC)

FPC is the firm’s participation constraint—the firm is willing to enter the market if it earns a
non-negative profit. FIC are the firm’s incentive constraints—offering menu M, to category
x agents is optimal. AIC are the agents’ incentive constraints—an agent with type (x,0) is
willing to select the contract (p, t)i:e from menu M,,. The regulator’s problem is to choose
a regulatory policy to implement an allocation that maximizes welfare.

3 Implementing First Best: An Illustration

To render the key ideas in our analysis more transparent, this section presents our main
result in the case of known monetary losses—agents have initial wealth w, face monetary
losses ¢, (w) depending on their categories and loss events, and the utility from wealth is
given by v : R — R. First, we assess the first-best outcome from the regulator’s perspective.
Next, we explicitly construct an implementation for the case with two categories and two
loss events. Finally, we provide general conditions under which the designer can implement
the first-best outcome.

3.1 The Regulator’s First-Best Outcome

As a benchmark, we consider the first-best outcome from the perspective of the regulator.
Suppose the regulator can observe all agents’ categories and risk types, and if the firm enters
the market, the regulator can force it to offer specific contracts to each agent. Formally,
we solve the regulator’s problem subject only to the firm’s participation constraint.® Since
agents are risk averse, it is optimal to fully insure, guaranteeing constant wealth across states.

8This guarantees that first-best is well-defined as the firm has to break even in expectation.



Moreover, concave utility implies the regulator should charge all agents the same price. The
optimal price equals the expected costs of the firm—the sum of the entry cost and expected
payouts.

Proposition 1. In the first-best allocation, agents in category x buy the contract (p*, {,),

where
p=k+ S n,0) 3 0w (w)

z,0eT weN

Proof. Strict concavity of v implies that the first-best allocation must provide the same
utility across all categories and loss events. The result follows. O

In the first-best outcome, agents with low expected losses subsidize those with high
expected losses. The firm makes losses on some agents and profits on others. Insurance is
mandatory—mno types are allowed to opt out. Note the insurance mandate may be a binding
constraint for some agents. Those with low expected losses may prefer to opt out rather
than subsidize the others. We also need to assume that the entry cost is not too high, so the
allocation provides higher consumer welfare than autarky.

In the absence of any regulation, the firm can offer an agent any menu, and agents in
turn choose an offered contract or choose not to buy insurance. This reduces our model to a
standard monopolistic screening problem. The firm separately screens each category = with
a menu chosen to maximize profits. If there is only one risk type in a category, the firm fully
extracts surplus from those agents. If there are multiple risk types within a category, the
firm offers a menu with the standard distortions: low risk types are under-insured in order
to extract higher premiums from high risk types, and some agents may be excluded from
insurance.

3.2 Two Categories and Two Loss Events

Our main result shows that we can implement the first-best outcome using a simple
policy. The main ideas are apparent with just two categories, each with a single associated
risk type, and two loss events. Suppose the loss events are 2 = {wp, w; }, where £, (wy) = 0
and ¢,(w;) = {,, and the agent categories are X = {L, H}. Assume that ¢y > ¢, that
Oy = 60, = 6, and k = 0. Agents can have either high or low risk. Both have the same
probability of loss, but high risk agents suffer larger losses. A contract here is a pair (p,t),
where p is the premium charged and ¢ is the transfer made in event w;,. The first-best
outcome entails category = agents buying the contract (p*,¢,.), where

p* =0 (u(H)lg + pu(L)lL).

Suppose the regulator allows the firm to offer just one menu to all agents, choosing the
policy
R = {0 tu), (0", ()}

10



This clearly fails to implement the desired outcome because all agents will choose (p*, £ )—
the two contracts charge the same premium, so agents opt for the larger payout. Moreover,
since all agents receive the large payout, the resulting allocation violates the firm’s partici-
pation constraint, so the firm will not enter the market. Suppose instead that the regulator
allows the firm to offer singleton menus, choosing the policy

R = H@" la) (" lL) )}

In this case, the firm prefers to offer {p*, ¢;)} to all agents because of lower payouts. Again,
we fail to implement the desired allocation.

If only one of the contracting parties has a non-trivial choice in our regulatory regime,
we cannot implement the first-best outcome. Successful implementation requires leveraging
both parties’ incentives—we must allow the firm to offer the low payout contract to low risk
agents and incentivize the firm to offer the high payout contract to high risk agents. We can
do this by introducing a third contract that is never chosen in equilibrium.

Consider a contract (p,t) with p— 60t < p* —0¢, meaning it is less profitable for the firm
than the high risk contract. Since u is strictly concave, we can choose p and t satisfying

v(w—p*) > 0v(w—p+t—1LL)+ (1 —0)v(w—p), and

Qv(w—p+t—"Ly)+ (1 —0)v(w—p) > O0v(w—p*+ L, —ly)+ (1 —)v(w—p*).

The first condition says that a low risk agent prefers the intended contract (p*,¢;). The
second says that a high risk agent prefers the contract (p, ¢) to the low type contract (p*, £r.).
The contract offers a higher payout ¢ > {1, at a higher price p > p*. We refer to this as the
“deviation contract.”

If the regulator chooses the policy
R* = {{(p*7 EH)}7 {(p*7 gL): (]_9’ %)}}7

we obtain the first-best outcome in equilibrium. We allow the firm to choose which of
the two intended contracts to offer, but if the firm offers (p*,¢r), it must also offer (p,1).
The firm offers the intended contract to low risk agents because they choose it, and this
is the most profitable contract. The firm offers the intended contract to high risk agents
because otherwise they choose the less profitable deviation contract. Though never chosen
in equilibrium, the deviation contract provides a crucial deterrent.

This example illustrates a more general principle that allows the regulator to implement
the first-best allocation through simple menus. Our main result in the next section shows
that, as long as the categories are suitably ordered in terms of risk, a collection of two-
contract menus suffices for implementation. Each menu contains an intended contract for
the given category and a single deviation contract. The deviation contract is chosen by some
agents in any higher risk category and is less profitable than the intended contracts for higher
risk agents.

11



3.3 First-Best Implementation

We first need to formalize what “suitably ordered” means. Define

m(z,2) = Y pa(0) D 0(w)ly (w).

96@(5 weN

This is an expected loss for category x agents, but we replace the loss values ¢,(w) with
the corresponding values for category z’—mnote m(z,x) is the expected loss for category x
agents. If a category = agent obtains the contract intended for a category x’ agent, the value
m(z, x') is the firm’s expected payout. Define also

0 — 0
7.(w) = max ) , 0.(w) = argmax () :
0€0. 6(wo) pco, O(wo)
Within a category x, we look at the risk type that maximizes the ratio ;&)) —the maximum

value is 7, (w) and the maximizing type is 0,(w). Type 0,(w) has the highest relative risk of
loss event w among category = agents.

Assumption 1. The ordering < on X is such that

(a) Ezpected payouts are weakly increasing in the intended category of a contract: whenever
x <2, we have m(x,z) < m(z,2’).

(b) There exists w* € Q such that {,(w*) and T(w*) > 0 are weakly increasing in x:
whenever x < o', we have l,(w*) < Ly (w*) and 0 < Fp(w*) < T (w*).

According to Assumption 1, there are two distinct senses in which higher categories
correspond to higher risk. Condition (a) implies that higher categories tend to suffer higher
losses on average, so the contract (p*,/¢,/) is more expensive for the firm than the contract
(p*,¢,) whenever o’ = z. As stated, the condition is somewhat cumbersome to check, but
here are two simple sufficient conditions:

e We have ©, = O and p, = ji for all z, and m(z, x) is weakly increasing in z, or

e We have that (,(w) is weakly increasing in z for all w € Q.

Condition (b) implies that there is a particular loss event w* in which losses are increasing in
x, and the maximum relative likelihood of this event is increasing in x. Note this condition
is relatively weak—higher risk categories need not suffer higher losses in all loss events. We
only need one event for which the categories are well-ordered.

Definition 3. A 2-option regulatory policy is a collection of menus { M, }rex in which
each menu My = {(pz,t.), Dy, tz)} consists of two choices.

12



Our main result shows that under assumption 1, a 2-option regulatory policy is sufficient
to implement the regulator’s first-best allocation.

Theorem 1. Under assumption 1, there exists a 2-option regqulatory policy R = {M,}rex,
with M, = {(p*, L), (D, ts), that implements the regulator’s first-best allocation.

Proof. Each menu M, contains the intended contract (p*,¢,). We construct deviation con-
tracts (p,,t,) with the following properties:

e For every 2/ <z and 6 € O/, an agent (2, 60) prefers (p*, £,) over (p,,t.)

e For every 2/ > x, there exists § € ©, such that an agent (2/,0) prefers (p,,t,) over

(p*, Ls).

For 2/ > z, the condition m(z, x) < m(x,z’) ensures the firm prefers to offer M, to category
x agents rather than M,,. Consequently, we only need to show that our deviation contracts
are such that the firm prefers to offer M, to category = rather than M, whenever 2’ < x.

Define the contract (p,,t,) so that

lp(w) —p* if w ¢ {wo,w"}
ty(w) =D, =< —D, if w=wp

ty — D, it w=w"

We are left with two free parameters: the premium p,, and the transfer f, in event w*.
Consider a category 2’ agent with type 6. This agent prefers (p,,t,) to (p*,£,) if and only if

0(wo)u(=B,) + 0(w")u (ts — o (w") = By) = Owo)u(—p") + O(w )u (lo(w”) — Lo (w”) = p*),

or equivalently

(u (le = lor(w") = PBp) = u(la(w") — Lo (") —p) = w(=p") —u(-D,). (1)

The firm’s profit from this contract is

D, — Y 0wt (w) <P, — 0w )i, (2)

weN

Notice that if (1) holds for 2’ = z and 0 = f.(w*), then it also holds for every 2’ = z and
0 = 0,(w*)—this follows from concavity of u and the second condition in assumption 1. If
' =z and 0 = 0,(w*), then (1) reduces to

oy (00— () =P) (") = u(=p") ~ (D).
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Fix any p, > p* and define #,(p,) as the value of £, that satisfies this with equality —we
know this is possible because the right hand side is positive, while for ¢, = 0 the left hand
side is negative.

Assumption 1 ensures that any agent of category z/ < x weakly prefers the contract
(p*,£,). For o' = x, there is a positive probability of type 6,/ (w*), and these agents prefer
the deviation contract. Since u(—p,) approaches —oc as —p, — 2, we know that £,(p, ) must
approach oo, making the bound in (2) arbitrarily negative for this type. Consequently, for
large enough p,, the corresponding deviation contract is sufficiently unprofitable that the
firm never offers M, to an agent of category x’ > x. O]

The proof largely follows the example in 3.2: the menu for category z contains the
intended contract and a deviation contract. The deviation contract acts as a deterrent,
preventing the firm from offering lower risk menus to higher risk agents. The deviation
contract takes a simple form. It charges a high price, and the payout differs from the
intended contract only in state w*—in this state, it offers a higher payout.

Having a distribution of risk types in each category complicates our analysis. Unlike in
the example of 3.2, not all agents in a higher category choose the deviation contract from a
lower category’s menu. Instead, the deviation contract targets a specific type with relatively
high risk—the type that maximizes the ratio %. Agents in a higher category face a higher
loss in event w*, so they place a higher value on payouts in this event, and there are types
for which this event is relatively more frequent. This allows us to separate some agents in
higher risk categories without attracting any lower risk agents to the deviation contract.
By offering a high payout in event w*, and charging an appropriate price, we can make the
deviation contract arbitrarily unprofitable for the firm, thereby providing incentives to offer

the intended menu.

4 Implementation in the General Case

This section presents our results for the general model of section 2. Recall agent utilities
are u(z,w, ), where u is strictly increasing and strictly concave in the net transfer z, and
there is a lower bound z such that

lim u(z,w,z) = —o0

z—z
for every category x and every event w. Additionally, there exists a no-loss event wy € €2
such that u(z,wo, ) is constant in x and u(z,wp, x) > u(z,w,x) for all w € Q. We first
establish an implementation result for arbitrary allocations. Given a particular allocation
a, we ask: when can the regulator implement a using “simple” menus? We subsequently
use this characterization to derive conditions under which the regulator can implement her
first-best allocation.
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4.1 Implementable Allocations

Recall an allocation a = {(p,t),}s0e7 Specifies a contract for each type of agent. We
restrict attention to allocations such that p < —z in every contract—no agent earns utility
—o00. In any implementation of a, we necessarily have M2 := {(p,t)s.0 }oco, C M, for each
x € X—the set M2 is the minimal set of contracts the firm must make available to category
x so that agents can feasibly choose the intended allocation. One necessary condition for
implementation is that an agent of type (x,6) is willing to choose (p, ), from M?2.

Definition 4. The allocation a = {(p,t). 0}z 0e7 is agent incentive compatible if
U ('Ia 97 (pv t)mﬂ) Z U (1'7 07 (pv t))
for every (x,0) € T and every (p,t) € M2.

Note that if M2 is a singleton for every category z, the allocation is trivially agent incentive
compatible.

We provide sufficient conditions for implementability based on a risk-ordering analogous
to assumption 1. Define
gG(a) = argmaXU (l‘, 9, (p7 t)) :
’ (pH)EM?,

This is the set of contracts an agent of type (x,6) might choose from the menu M2%. Now

define
m®(x,2') = Y pa(0) ((p o p Ze<w>t<w>> :

oo, €O e
This is the minimum profit the firm obtains from offering menu M3 to agents in category x.

Definition 5. The allocation a = {(p,t)s0}s0eT is upward incentive compatible if
> oco, He( (2,0, (p,t),0) > m2(2,2") whenever v < 2.

Upward incentive compatibility plays the role of condition (a) in assumption 1. If a is upward
incentive compatible, then the firm weakly prefers offering menu M2 to category x instead of
menu M2 whenever © < 2’—higher categories receive more expensive contracts on average.

To define the analog of condition (b) in Assumption 1, we need a sense in which agents
in higher categories suffer higher losses. The natural assumption is that, at least in some
loss event w*, the marginal utility an agent gains from transfers is increasing in x. We also
need w* to be relatively more likely for agents in higher categories. Recall the notation

- 0(w) 0(w)

T.(w) = max . 0, = argmax ——~.
(@) = max o A )

Our analog to condition (b) requires that there exist some w* such that 7,(w*) is weakly
increasing in z, and u(z,w*, x) is supermodular in z and x.
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Assumption 2. There exists an event w* € 1 such that u(z,w*,x) is supermodular in z
and x and T, (w*) > 0 is weakly increasing in x.

Depending on the allocation we want to implement, we need an additional assumption
with no prior analog because M2 can contain multiple contracts. We need to ensure that
for 2’ > x, agents of type (m’ Oy (w*)) prefer a deviation contract to all elements of M2, not
just to (p,t),3, - One sufficient condition is the following.

Assumption 3. The value T,(w*) is strictly increasing in x, and lim, . u(z, w*, ) = oo
for every x.

This assumption ensures that by scaling up the transfer in state w*, we can always make a
type (w’ 0, (w*)) agent prefer the deviation contract. Alternatively, if the allocation is such
that agents of type (x’ 0, (w*)) prefer the contract (p, t)m,gz(w*) over any other in M2—that
is, (p, t)x,gz(w*) € C:f’,@x,(w*) for every 2’ > z—then we need not make further assumptions
about agent preferences.

Our first result establishes conditions under which we can implement a by adding a
single deviation contract to each menu M2. The argument mirrors that in Theorem 1. We
construct a deviation contract that agrees with the intended contract for type 6, (w*) except
in event w*, and we leverage that some agents in higher categories have a higher marginal
value transfers in event w*. Some higher risk types choose the deviation contract over any
other contract in M2, and this is too unprofitable for the firm to offer a lower category’s
menu to agents in a higher category.

Lemma 1. Suppose Assumption 2 holds, and a is both agent incentive compatible and upward
incentive compatible. If either

(a) Assumption 3 holds, or

(b) (p, Zf)l,’gz(w*) € O;:J’,?x/(w*) for every x’ = x,
then there exists a collection of contracts {(D,,t.)}eex such that the requlatory policy

R = {M; U {<]_9xaf$)}}xeX
implements the allocation a.
Proof. See Appendix. n
Though upward incentive compatibility is a relatively weak condition, one can imagine

situations in which it fails. Even with a clear risk ordering of categories, it might be that dif-

ferent categories suffer drastically different losses in the same verifiable event. Nevertheless,
we can still implement an agent incentive compatible allocation if we augment Assumption
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2 and add a second deviation contract to each menu. While the first deviation contract
makes it unprofitable to offer menus intended for low risk categories to higher risk cate-
gories, the second deviation contract makes it unprofitable to offer menus intended for high
risk categories to lower risk categories. To ensure this is possible, we need an analogous
order condition for “minimal” types within each category. Define

— = arg min Q(w)
0. O(wy)’ " ;’;@I 0(wo)’

The following assumption allows us to eliminate the upward incentive compatibility condi-
tion.

Assumption 4. There exists an event w* € 1 such that u(z,w*,x) is supermodular in z
and x and T, (w*),r,(w*) > 0 are both weakly increasing in x.

) Ly

Analogous to Assumption 3, we may need a condition to ensure that for ' > z, agents
of type (x’ , 04 (w*)) prefer a deviation contract to all elements of M2, and for 2’ < x, agents
of type (2,8, (w*)) prefer a deviation contract to all elements of M2.

Assumption 5. The valuesT,(w*) and r, (w*) are strictly increasing in x, and lim, ., u(z, w*, z) =
oo for every x.

Alternatively, if (p,t),7, W, € Cﬂfﬁ% (o
for every ' < x, we need not impose this assumption. These conditions allow us eliminate
upward incentive compatibility at the cost of one additional deviation contract in each menu.

) for every o’ = x, and (p, t)z,Qz(w*) < C:f’,QI/(w*)

Lemma 2. Suppose Assumption 4 holds, and a is agent incentive compatible. If either
(a) Assumption 5 holds, or

(b) (p’ t):z:,az(w*) = Og’ﬁx/(w*) fOT every ' =z and <p7 t)m,Qz(w'*) € C$’7Qz/(w*) fOT every ' < x,
then there exists a collection of contracts {(p,,t.), (p,,1,)}zex such that the regulatory policy
R = {M2U{@ L), (o, 1)} ]
zeX

implements the allocation a.
Proof. See Appendix. n

Each Lemma provides a simple risk-ordering condition that is sufficient to implement
an agent incentive compatible allocation using relatively small menus. The most crucial
assumption is that there exists some loss event that is more likely, relative to the no-loss
event, for higher categories. While condition (b) in the two lemmas can be cumbersome
to check, in the most natural applications we seek to pool agents within each category—
in such cases, the condition is trivially satisfied. In the next subsection, we apply this
implementation result to show that a regulator can implement her first-best outcome in a
much broader range of problems.
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4.2 Implementing First-Best

We first derive a key property of the regulator’s first-best allocation: under our main-
tained assumptions on u, all agents in the same category receive the same contract. Recall
that our definition of the first-best allocation means solving the regulator’s problem subject
only to the firm’s participation constraint m(a) > 0. This feature of Proposition 1 extends
easily to the general case. Because u is strictly concave in the net transfer, we can always
construct an improvement if two types within the same category receive different contracts.
Moreover, first-best requires that we equalize the marginal utility of transfers across loss
events categories.

Proposition 2. In the first-best allocation, agents in category x buy the contract (p*,t%)
where t(w) is set so that the marginal utility of wealth is equal across all w,x.

Proof. See Appendix. O

As in the model of section 3, the first-best allocation gives the same contract to all agents
within the same category, and it charges a uniform price p*. This feature greatly simplifies
the application of our implementation results. First, since M2 contains a single contract
in the first-best allocation a, we trivially satisfy agent incentive compatibility. Moreover,
Assumptions 3 and 5 are automatically satisfied via condition (b). Hence, one need only
check the risk ordering condition in Assumption 2 or 4 in order to apply one of our lemmas.
In the latter case, implementation requires menus with 3 contracts, rather than 2.

Definition 6. A 3-option regulatory policy is a collection of menus { M, }.ex in which
cach menu M, = {(pz,ts), (Pss te), (p,,1,)} consists of three choices.

Theorem 2. Suppose Assumption 2 holds, and the first-best allocation a is upward incentive
compatible. There exists a 2-option requlatory policy that implements a.

Suppose Assumption 4 holds. There exists a 3-option requlatory policy that implements the
first-best allocation a.

Proof. This is immediate from Lemmas 1 and 2. O

Even in the general model, a straightforward risk ordering condition on categories is
sufficient to implement the regulator’s first-best allocation using simple menus. Upward
incentive compatibility is potentially hard to check, but there is a simple sufficient condition:
If u(z,w, x) is supermodular in z, z for all x and w, then equalizing marginal utilities across
categories entails higher transfers for higher x in every event w. Note this condition is
stronger than what Assumptions 2 and 4 require—we need supermodularity for every event
w, not just in event w*.
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5 Constrained Regulation

Two important policy questions are whether we should allow firms to exclude customers
and whether we should mandate buying insurance. Our implementation crucially depends
both on preventing exclusion and on an individual mandate—the firm offers insurance to all
agents, and all agents buy insurance. Optimal policy requires both features, but regulators
may not always have the ability to enforce them. This section explores policies when the
regulator faces more constraints.

We can capture many natural restrictions through constraints on the space of permissible
policies. Here are a few examples:

e All agents must have the same options. In this case, the regulator is constrained to
policies R that contain a single menu M. Such a constraint might arise as the result
of anti-discrimination laws, or strong fairness norms. The regulator’s problem is then
to optimize within this restricted class of policies

e The regulator can enforce contracts but not menus. If a regulator is unable verify
whether the firm includes particular contracts in the menus it privately offers to agents,
then the firm may be able to construct its own menus from some grand set of permissible
contracts. In this case, the regulator is constrained to policies of the form R = 2M\ {(}
for some menu M.

e Firms can refuse service. In the absence of strong laws mandating that the firm must
offer insurance to all agents, the regulator faces the constraint that {(0,0)} € R in any
policy: the firm retains the right to offer the null menu.

e Agents can opt out. In the absence of an individual insurance mandate, the regulator
faces the constraint that (0,0) € M for all M € R.

This last constraint is particularly relevant to recent debates in the United States. The
next subsection highlights how insurance mandates might harm agent welfare if the regulator
is unable to ensure that the firm offers specific menus.

5.1 Insurance Mandates: A Double-Edged Sword

To implement our optimal regulatory policy, the regulator must be able to ensure that
whenever the firm offers a particular contract, it also offers the corresponding deviation
contract. Absent this enforcement power, the firm could construct its own menus by picking
and choosing contracts that appear in some permitted menu. It should be clear that this
would undermine the regulator’s goals. In the model of section 3, the firm would offer the
lowest coverage contract to all categories, leading to positive profits and lower welfare. This
section explores how a lack of enforcement power interacts with an individual mandate to
buy insurance.
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Definition 7. A regulatory policy with unenforceable menus comprises a finite set
of contracts Y. If there is an insurance mandate, the corresponding requlatory policy is
R =2Y \ {0}. If there is no insurance mandate, the corresponding regulatory policy is
R={MU{(0,0)} : M e2¥\ {0}}.

With unenforceable menus, once a contract is permitted in some menu, the regulator
cannot prevent the firm from including it, or excluding it, in any offer it makes to an agent.
In general, the firm’s problem becomes complicated because the set of possible menus is large,
and the firm may want to screen within each category. To simplify the analysis, for the rest
of this section we assume that there is a single risk type within each category (i.e. |©,] =1
for every x € X). Within this simplified setting, we show that an insurance mandate can
harm agent welfare. Intuitively, the ability of agents to opt out imposes some discipline on
what the firm offers, and this can more than offset the benefit of universal coverage.

Consider the setting of section 3 in which agents may suffer known monetary losses.
Suppose there are two categories © € {L, H} and two loss events w € {wp,w;}. In event
w1, category = agents suffer a loss ¢,, where ¢y > ¢, with probability 6,, where 8y > 6.
A fraction p of agents are category L. We first consider the case in which insurance is
mandatory. Since there is no need for screening, without loss the firm offers a single contract
to each agent, and the universe of permissible contracts is

Y = {(pu,tu), (pr.tr)}-

Notice that agents have no choice here—they must accept whatever contract the firm offers.
The only incentive constraints are those of the firm. The regulator chooses Y to solve

max pU(L,0p,pr,tr) + (1 — p)U(H, 0u, pu, Ou)

st. pwlpr —Outr) + (1 — p)(py — Outn) > k (FPC)
pr — Oty > py — Oty (FIC - L)
pa — Oty = pr — Outy (FIC — H)

The regulator must satisfy the firm’s participation constraint (FPC) and incentive constraints
to offer the correct contract to each type (FIC-L and FIC-H).

Under these assumptions, Whenever insurance is mandatory, the firm offers the same
contract to both categories. The firm IC constraints imply

0Lty —tr) > pu —pr > Ou(ty —t1).

The regulator wants the firm to offer higher coverage to category H, but this only happens
if both categories get the same contract.

Proposition 3. In the above known monetary loss model with two types and two loss events,
any optimal requlatory policy in which insurance is mandatory involves the firm offering the
same contract to every agent: py =pr, =p and ty =t =t.
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Proof. See Appendix. m

If every agent receives the same contract, then at least one category is under-insured or
over-insured. The regulator chooses a single contract (p,t) to maximize expected welfare.
Since the firm’s participation constraint binds, this amounts to choosing ¢ € [¢1,(y] and
setting

p=1t(uby + (1 — p)fy) + k.

This result highlights a problem with insurance mandates under a weak regulator. If the
regulator cannot force the firm to include deviation contracts in the menus, then the firm
can hold agents hostage, offering only the most expensive contract or the lowest coverage
level. The firm will not offer higher coverage to category H, even at a higher price, because
if doing so is profitable, then it is even more profitable to offer the expensive contract to
category L.

Allowing agents to opt out of insurance can help because it allows us to target different
contracts to different categories—if the contract intended for category H is too expensive
for category L, then the firm is willing to offer a lower cost or lower coverage option to those
agents. However, this entails a trade-off as there is less cross-subsidization across agents.
Which effect is more important depends on the particular parameters. A numerical example
shows that allowing agents to opt out can improve welfare.

Example: Optimality of Optional Insurance

Suppose
w(z,w,z) = (100 — p + t(w) — £y (w))*.

Assume that the two categories L and H are equally prevalent, that 8, = 0.5 and 65 = 0.6,
and that ¢, = 30 and ¢y = 90. If insurance is mandatory, the optimal policy prescribes a
single contract (p*,t*) ~ (38.5,70) for all agents. Category L is over-insured, category H is
under-insured, and the average agent utility is approximately 7.98.

If insurance is optional, the regulator can do better by allowing the contracts (15, 30) and
(54,90). Category H prefers either one to the null contract, but the former is unprofitable
since 0y > %, so the firm offers (54,90). Category L on the other hand would rather go
uninsured than pay the high premium, and the firm is still willing to offer (15,30). All

agents are fully insured, and the average agent utility is approximately 8.61.

6 Market Structure and the Role of Competition

In real insurance markets, firms typically face some degree of competition. From an
efficiency perspective, a regulator should prefer a single firm due to fixed costs. One can
extend our analysis to a market with many firms under the assumption that all entrants
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split the market equally. In this case, the optimal regulatory policy is unchanged from the
one-firm case, and only one firm enters the market in equilibrium—if more firms enter, some
firm must make a negative expected profit. While this is reassuring, the assumption of
equal splitting may not be reasonable in practice. In a decentralized market, an entrant can
selectively target agents through advertising. This may facilitate cream-skimming, even if
the entrant is legally required to offer insurance to all agents. Cream-skimming is a serious
concern because this possibility can undermine incentives for the first firm to enter, or force
incumbents out of the market.’

Assume our monopolist (the incumbent firm) must serve all consumers, but there is
a potential entrant who may target advertisements to particular categories. Though the
entrant must also serve all consumers, we suppose that an agent defaults to the incumbent
unless she sees an advertisement for the entrant. The entrant offers the same menus as the
incumbent firm, and agents select the same option from a given menu regardless of what firm
they choose. Suppose there is a fixed cost to enter the market x, and an additional constant
marginal cost ¢ per agent served—this cost is separate from contract payouts, capturing
things like administrative expenses and capital requirements. Hence, we can decompose the
fixed cost of a single firm serving the entire market as k = x + c. If the entrant captures a
market share a € [0, 1] it incurs costs k + ac, while the incumbent incurs costs k + (1 — a)c.

Cream-skimming can render our first-best outcome infeasible. Consider again the known
monetary loss model with two categories x € {H, L} and two loss events w € {wp,w; }—an
agent of category x suffers loss /, in event w;, which occurs with probability 6,. In the first-
best allocation, both types get full insurance at a common price p*, and the incumbent’s
participation constraint binds. Selling to all consumers never covers the entrant’s fixed costs,
but targeting only category L, where ¢, < {y and 01, < 0y, can be profitable. If the entrant
claims a share a € [0, 1] of category L agents, then entry is strictly profitable if

au(L,0r)(p* — 0.l — ¢) > k.

If fixed costs are sufficiently small, or the difference between types is sufficiently large, entry
is profitable, and the first-best allocation cannot be an equilibrium.

How well can the regulator do when entrants might cream-skim? Let X, C X denote
the set of categories the entrant chooses to serve, and suppose the entrant can claim a share
a, € [0,1] of category x. The entrant can then earn a profit of

7Te<a) = Hclg})(( Qy Z ,U(xa 9)(1_[(377 97 (p: t)xﬁ) - C) — k.
reXc 0cO

Entry is not a problem as long as the allocation satisfies a no cream-skimming constraint:

me(a) <0 (FCS).

9This issue has been noted since at least the seminal work of Rothschild and Stiglitz [1976].
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The natural analog to our first-best allocation, given the no cream-skimming constraint, is
the solution to

max W(a) (3)
st. m(a)>0
me(a) <0

We solve the regulator’s problem subject only to the incumbent firm’s participation con-
straint 7(a) > 0 and the entrant firm’s no cream-skimming constraint 7.(a) < 0.

In this version of a second-best allocation, the regulator targets a single contract to
each category, offering full insurance, but the price can differ across categories. Offering
lower prices to lower risk agents is necessary to prevent cream-skimming, but this also limits
cross-subsidzation.

Proposition 4. The solution to (3) provides a contract (p,, ;) to all types in category x. If
Assumption 4 holds, there exists a 3-option requlatory policy that implements this allocation.

Proof. The argument that the second-best allocation provides the same contract to all agents
in the same category is analogous to Proposition 2, and we omit it. Implementability follows
from Lemma 2.1° O

Our second-best allocation (3) implicitly assumes the regulator wants to prevent entry.
If there are many potential entrants, and each has the same cream-skimming ability, this is
without loss—regardless of how many firms enter, the allocation must still satisfy the cream-
skimming constraint, and every firm after the first only tightens the participation constraint.
With only one potential entrant, the regulator might allow entry in some situations. However,
if fixed costs are high, or the entrant has a high ability to cream-skim, doing so is never
optimal.

7 Discussion

Many natural extensions to our framework are straightforward. Little changes if we as-
sume compact—rather than finite—sets of categories and types, or if the regulator puts some
positive weight on the firm’s profits. Moreover, one can further extend the implementation
result to allow even weaker order conditions on agent categories if one is willing to include
additional deviation contracts in each menu.

Our model assumes that agents have more information about their own risks than the
firm does. Given firms’ increasing sophistication with regard to consumer data, questioning

0Applying Lemma 1 is delicate in this setting because charging different prices to different categories
makes it difficult to check upward incentive compatibility.
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this assumption seems reasonable. In principle, an individual who pays attention to her
own health and conducts research into risk factors should be more informed than a firm.
However, few invest significant effort in acquiring such information. Nevertheless, as long as
some individuals exert this effort, our implementation result is robust. Imagine that some
agents are uninformed, knowing neither their categories nor their risk types, but some agents,
comprising a positive fraction of the population, are. We can still implement first-best using
two-option menus—we simply need to make the deviation contract even more costly for the
firm. In the corresponding equilibrium, uninformed agents choose the intended contract from
any menu, while informed agents choose the contract that is optimal for them.

Another possible objection is that our construction relies on extremely high payouts in
a single, and potentially rare, loss event—this feature might create problems for implemen-
tation in practice. There are at least two reasons why such an objection is misplaced. First,
the construction in our proof is by no means unique. Depending on the exact losses and
distributions, there may be many ways for a deviation contract to satisfy incentives. If higher
risk categories have higher losses in many events, then a deviation contract could offer larger
but not extreme payouts in each of these events. Second, the better the firm can distinguish
risk levels, the less meaningful this objection becomes. As firms gather more informative
data about their customers, it should get easier to design appropriate deviation contracts
without extreme payouts.

This last point calls attention to a potentially surprising implication: regulation is easier
and more effective when the firm has more information about agents. The regulator can
leverage the firm’s knowledge by including more carefully tailored contracts—if categories
allow better discrimination between loss amounts the agents can suffer, then the first-best
allocation entails better risk-sharing. Notice also that the firm has incentives to obtain less
information. If the firm could commit not to use some information about the agents, it would
pool the categories in a way that violates our order assumptions. Without this commitment
power, accurate information about risk becomes a liability for the firm. This suggests that
in a strong regulatory regime, the regulator should take account of firm incentives to gather
information about consumers, balancing the value of information against the surplus the
firm is allowed to extract.

8 Final Remarks

Regulation in insurance markets has large welfare implications, and the increasing preva-
lence of big data provokes new questions for regulatory policy. We introduce a novel frame-
work to study regulation, and our analysis highlights important features of successful regula-
tory regimes. Under mild conditions, a simple policy that combines an individual insurance
mandate, a ban on exclusion from insurance, and two-contract menus can implement a so-
cially optimal allocation. All three features are crucial. In particular, if the regulator cannot
ensure that the firm offers the desired menus, the other pieces can become bad for welfare.
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Firms’ use of consumer data raises concerns about exploitation. In an unregulated mar-
ket, information allows a firm to better extract surplus from consumers and can lead to
distortions of coverage. Our results show that, properly regulated, a firm with access to
more data can improve overall consumer welfare—consumers obtain coverage that is tai-
lored to their needs, and low risk consumers subsidize those who face higher risks. Without
data that identifies higher risk agents, this first-best outcome is not achievable. Optimal
regulation leverages the firm’s information for the benefit of consumers while simultaneously
leveraging consumers’ incentives to discipline the firm’s actions.

Our results suggest several promising avenues for further work. Section 7 alludes to
potential issues related to firm incentives for gathering information. An analysis of the trade-
off between providing such incentives and the social value of information thereby obtained
could prove enlightening. We have emphasized at several points the practical importance
of simple menus and simple policies. However, firms may have detailed data distinguishing
many different categories, which according to our optimal policy necessitates a large set of
menus carefully tailored to each. Natural questions include how closely the regulator can
approximate the optimal policy using a limited number of menus, and how well regulation
can perform when the regulator is unsure how much information the firm has.

Beyond these immediate questions, our framework highlights a new approach to studying
the regulation of mechanisms, a relatively unexplored subject. Outside the literature on price
regulation and subsidization of monopolists, there is little work on how regulators might
constrain the space of permitted mechanisms. In many other domains, authorities restrict
the contracts into which parties can enter. For instance, employers are subject to wage
and anti-discrimination regulations. Taxi services and hotels are subject to certification and
insurance requirements. Exploring the interplay between contracting parties’ incentives, and
how contract restrictions can take advantage of this, may lead to new and better regulatory
approaches.
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A Appendix
Proof of Lemmas 1 and 2

Throughout this proof we suppress the dependence of 0, (w*) and 7, (w*) on the event w*,
writing simply @, and 7,. We start with Lemma 1. Following the proof of Theorem 1, we
construct a deviation contract (p,, t,) so that type (x, 5m) is indifferent between the intended
contract (p,t), 5. and the deviation contract. This means that

Z U(txﬁx (w) — Pzg, W x)gm (w) = Z u(

weN we

tx(w) - px? W, x)gx(w)

We choose (p,, t,) so that

Hence, the indifference condition reduces to

~

Ty (u (tgC — Dy W, SB) —u (txvgz(w*) — p%gz,w*,x)) =u (—px@,wo,x) — u (=D, Wo, T) -

As long as p, is not so large that higher transfers in event w* cannot compensate, this
equation defines a unique t,(p,). Moreover, it should be clear that t,(p,) — oo as p, — z.

To complete the proof, we show that for sufficiently high p,, and all 2’ > x, we have

(a) Agents of type (2,0,/) choose (B,,%,) over any contract in M2,
(b) All category x agents prefer their intended contract to the deviation contract, and

(c) Contract (p,,t.) is sufficiently unprofitable that the firm prefers the intended allocation
over allowing type (z’,6,/) to choose the deviation contract.

These three properties are sufficient for implementation as upward incentive compatibil-
ity ensures the firm does not want to offer M2 to categories 2’ < x, and agent incentive
compatibility ensure agents in category x want to select their intended contracts from M?2.

For property (a), the definition of £,(p,) together with Assumption 2 ensures that type
(2',0,) prefers the deviation contract to the contract (p, t),5,- If Assumption 3 part (b)
holds, then we are done with the first property. If Assumption 3 part (a) holds, then we
can increase P, to ensure that type (z',0,) prefers the deviation contract to any other
(p,t) € M2. Since u(z,w*,z’) is unbounded, and 7,» > 7,, the payoff difference between
the deviation contract and (p, t)xygz becomes unboundedly large. Since the payoff difference



between (p,t), 5. and any other contract in M is finite, we can clearly choose p, high enough
that type (2',0,/) will choose the deviation contract.

Property (b) comes for free because the definition of 7, ensures that all category x agents
weakly prefer (p, t)xygz to the deviation contract, and we assume that a is agent incentive

compatible. Finally, for property (c), we bound the profit from offering menu M? U (p,, t.)
to agents in category z’. This profit is at most some constant plus

Moz’ (az’) (]_)x - gx’ (w*)fa: (ﬁm)) )

Since ,(p,) approaches oo as p, approaches z, this becomes arbitrarily negative for suffi-
ciently large p,.

The proof of Lemma 2 is substantively identical. The construction of the deviation
contract (p,, t,) is exactly the same. As we no longer assume upward incentive compatibility,
we need a second deviation contract in each menu (p_,{,) that appeals to type (2,6,,) for
2’ < x. The additional conditions in Assumptions 4 and 5 allow us to carry out the analogous
construction. [J

Proof of Proposition 2

Let u,(z,w,x) := 6“(2% be the marginal utility of wealth in state w for type x. Suppose

that for some w,w’ and (z,0,), (2, 0,/), allowing either w’ = ' or (z,0,) = (2/,0,), we have

uZ(ti,G(w) o pi,ea w, *T) > Uy (ti’,e’ (wl) o pi/,eu w/’ :L‘/).
We show that it is possible to increase the average utility of the agents while holding the
principal’s profit constant.
Define the set of triples

A = argmax u, (] o(w) — py g, W, T),
(2,02 ,w)

and let

(z,0w)eA

denote the total probability of all such triples (z,6,w). Define an alternative allocation with
the same prices, but different transfers

N {txgx(w) GQ if (z,0,,w) ¢ A

rolw) = t% (W) + 5 5 if(z,0;,w) € A

By construction, this new allocation gives the same profit to the principal.



We now verify that for sufficiently small €, the new allocation yields a strict improvement
for the regulator. The new allocation gives welfare

= > u ( o(w) =i+ éwx) (i, 0)0(w)

b Y a0 - pts - g ) (e 06

(z,0,w)¢A

At € = 0, this is equal to the welfare from the original allocation. Taking the derivative with
respect to € at € = 0 gives

dw

de Z Uz (t;,e(w> — Do W, ﬁ) p(z,0)0(w)

z,0,w)EA

1
e=0 Q(

1
T 1-Q Z us ( 20(W) _piﬁawax) p(x, 0)0(w),
z,0,w)¢A

which is strictly positive because every marginal utility in the first sum is strictly larger than
every marginal utility in the second. Hence, the original allocation was not optimal, and we
conclude that the marginal utilities must be equal in an optimal allocation. Since utility in
the no-loss state wy is the same for all types, this implies that all types must pay the same
price p*.

Proof of Proposition 3

Let (pu,tu),(pr,tr) be an optimal policy. The firm’s participation constraint clearly
binds. The firm’s IC constraints require that

0Lty —tr) > pu —pr > Ou(ty —t1).

If ty > tr, this can only be true if the two contracts are identical since 0y > 0;,. We show
that ty > ¢ in any optimal allocation.

Suppose t;, > ty. At most one of the two IC constraints can bind. Suppose

pu —prL =0ty —tr) > Oty —tr),

meaning that FIC-H is slack. The Lagrangian for the regulator’s problem is

L=p[(1—-0)u(w—pr)+0ru(w —pu +1t, — (1))
+ (1 =) [(1 = Og)u(w — pu) + Ogu(w — pu +ty — ()
+ Mup(pr — Octr) + (1 — p)(pr — Outu)] +v(pr — Ot — pa + Ortm),

1l



where A\ > 0 is the multiplier for the participation constraint, and v > 0 is the multiplier for
the lone IC constraint. The necessary first-order conditions with respect to ¢, and ty are
v 0L

W (w—pp+tn— L) = A+ L, (w—py b — ) = 1.0
K — pOu

Since pg — pr > Oy (tyg —tr) >ty — tr, we have
w—pH+tH—€H<w—pL—|—tL—€H<w—pL+tL—€L.

This implies that marginal utility marginal utility in the loss event is higher for type H than
for type L. From the first order conditions, this implies

Yo b
M 1 —pby’
which is impossible. We conclude that FIC-L is slack: py — pr, < 0r(tg —t1).

We next show that ty = . If tg > (g, then H has higher wealth in the loss event than
in the no-loss event. Construct an alternative policy (pr,tr), (P, ty) with ply = py — €
and t, =ty — i. By construction, this leaves the firm’s profit unchanged, and FIC-H still
holds. FIC-L also holds because

0r,
pL—QLtL>PH—9LtH>pH—9LpH—€+9
H

Concavity of u implies this allocation yields a strict welfare improvement. If ty < g, then
H has higher wealth in the no-loss event than in the loss event. Construct an alternative
policy (pr,tr), (Py,ty) with pyy = pu + € and ¢}y =ty + 5. By construction, this leaves
the firm’s profit unchanged, and FIC-H still holds. Because the constraint was slack, FIC-L
also holds for sufficiently small e. Concavity of u again implies this allocation yields a strict
welfare improvement. We conclude that ¢ty = . Moreover, this implies that t;, > (g > {(,
so L has higher wealth in the loss event than in the no-loss event.

To complete the proof, we consider two cases. First, suppose FIC-H is slack. Construct
an alternative policy (p7,},), (pu,tn) with pj, = pp — € and 1}, =t — 7~. By construction,
this leaves the firm’s profit unchanged, and both FIC-L and FIC-H hold for small enough
€ since both constraints were slack. Concavity of u implies this allocation yields a strict
improvement, so the original allocation was not optimal.

Now suppose that FIC-H binds. The corresponding Lagrangian is

L=p[(1—=0)u(w—pr)+0ru(w—py+tr — )]
+ (1 =) [(1 = On)u(w — pu) + Onu(w — pu + ty — l)]
+ Mu(pr — Octr) + (1 — p)(pr — Outu)] + v(pr — Outy — pr + Outr),
where A\ > 0 is the multiplier for the participation constraint, and v > 0 is the multiplier for
the lone IC constraint. The necessary first-order conditions with respect to pr, t7, and tgy

are

(1 —0p)u (w—pr)+ 0L (w—pr+t, —0L) =\ — "

v



and UI<UJ—]0H+?5H—€H):)\+—V

0
u’(w—pL—i-tL—fL):)\—zH .
1—p

poy’
Substituting the second into the first gives

/ - 71_0H
u(w—pr) = 10,

Note that
wW—pL,<wW—pyg=w—pg+ty—flyg <w—pL+t,—{r,

which implies v/(w — pp) > v/(w — py + ty — £y). This means

yl=0u v
pl—0r  1—u

which is impossible. Therefore the necessary conditions for optimality cannot be satisfied.
We conclude that tg > ¢ as desired. OJ



