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ABSTRACT.  Ambiguity attitudes have so far been measured only for artificial events, 

where subjective beliefs can be derived from plausible assumptions.  For natural 

events such assumptions usually are not available, creating a difficulty in calibrating 

subjective beliefs and, hence, in measuring ambiguity attitudes.  This paper introduces 

a control for subjective beliefs even when they are unknown, allowing for the 

measurement of ambiguity attitudes for all events, including natural ones.  We 

introduce indexes of ambiguity aversion and ambiguity perception (or understanding) 

that generalize and unify many existing indexes.  In an experiment on ambiguity 

under time pressure, we obtain plausible results.   
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1  Introduction 

  Ambiguity (unknown probabilities) is central in many practical decisions 

(Keynes 1921; Knight 1921; LeRoy & Singell 1987).  Ellsberg’s paradox (1961) 

necessitates fundamentally new models to handle ambiguity.  Since then many models 

have been proposed, not only to accommodate Ellsberg’s paradox but also to explain 

anomalies in practice (Easley & O’Hara 2009; Guidolin & Rinaldi 2013).  However, 

measurements of ambiguity have been lagging behind, focusing almost exclusively on 

artificial laboratory events as in Ellsberg’s paradox rather than on the natural events 

that occur in practice. 

 To properly measure ambiguity aversion we need to control for subjective 

likelihood beliefs in the events of interest, which we need for calibrating the 

benchmark of ambiguity neutrality.  But this control is difficult to implement for 

natural events.  For example, consider a person who would rather receive $100 under 

the ambiguous event A of copper price going up by at least 0.01% tomorrow, than 

under the event K (with known probability 0.5) of heads coming up in a coin toss 

tomorrow.  This preference need not designate ambiguity seeking; instead, it may 

have been induced by beliefs.  The person may be ambiguity neutral but assign a 

higher subjective likelihood to A than K’s probability of 0.5.  Therefore, without 

proper control of subjective likelihoods, no conclusive implications can be drawn 

about people’s ambiguity attitudes.  However, how to control for subjective likelihood 

beliefs has been unknown so far for natural events. 

 Controlling for subjective likelihoods is much easier for artificial events 

generated in the lab.  Such events concern Ellsberg urns with compositions kept secret 

to the subjects, or subjects are only informed about experimenter-specified intervals 

of possible probabilities of events.  For these events, likelihoods can be derived from 

symmetry of colors or from symmetry about the midpoints of probability intervals.  

This explains why measurements of ambiguity have as yet focused on artificial cases 

and why natural ambiguities have remained unexplored. 

 Several authors warned against the almost exclusive focus on artificial 

ambiguities, arguing for the importance of natural events (Camerer & Weber 1992 p. 

361; Ellsberg 2011 p. 223; Heath & Tversky 1991 p. 6).  The impossibility to identify 

subjective likelihoods of such events has as yet been taken as an insurmountable 
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obstacle though.1  This paper introduces a simple method to measure ambiguity 

attitudes for natural events.  The solution to the aforementioned problem is 

surprisingly easy: We control for likelihoods not by directly measuring them but by 

making them drop from the equations irrespective of what they are.  The resulting 

method is tractable and easy to implement, as we demonstrate in an experiment.  

Hence, it can for instance be easily used as an add-on in large-scale surveys and field 

studies. 

 We introduce two indexes of ambiguity attitudes, which unify and generalize 

several indexes proposed before as shown in §3.  The first index measures aversion to 

ambiguity.  The second index measures the degree of ambiguity, i.e. the perceived 

level of ambiguity.  Hence Dimmock et al. (2015b) called their special case of this 

index perceived level of ambiguity.  The higher this level is, the less the decision 

maker discriminates between different levels of likelihood, and the more these levels 

are treated alike, as if one blur.  Hence the second index also reflects insensitivity 

toward likelihood changes, which is why the term a(mbiguity generated) insensitivity 

can be used (Maafi 2011; Baillon, Cabantous, & Wakker 2012).  Our indexes 

generalize their predecessors by: (a) Not requiring expected utility for risk; (b) being 

valid for a large number of ambiguity theories; (c) requiring no assessment of 

subjective likelihoods and, hence, (d) being applicable to natural ambiguities that 

were not constructed artificially. 

 We illustrate our method in an experimental investigation of the effect of time 

pressure (TP) on ambiguity, where the ambiguity concerns a natural event (about the 

performance of the AEX—Amsterdam stock exchange—index).  Despite the 

importance of TP and the many studies of it under risk (known probabilities; see §4) 

there have not yet been studies of TP under ambiguity.  This provides an additional 

contribution of our paper.  Our findings will corroborate the interpretation of the 

indexes, supporting the validity of our method.  In particular, they will illustrate the 

usefulness of our second index. 

1 Some studies used introspective likelihood measurements (de Lara Resende & Wu 2010; Fox, Rogers, 

& Tversky 1996; Fox & Tversky 1998) to capture beliefs for natural events.  Those measurements are 

not revealed-preference based and the beliefs may be nonadditive.  Then ambiguity attitudes may be 

captured partly by those nonadditive stated beliefs, and partly by their weighting functions, and cannot 

be clearly isolated. 
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 The outline of this paper is as follows.  Section 2 gives formal definitions of our 

ambiguity indexes and informal arguments for their plausibility.  Section 3 gives 

formal arguments by proving the validity of our indexes under many ambiguity 

theories.  Sections 4-5 demonstrates the validity of our indexes empirically, and §6 

concludes.  Proofs and experimental details are in the appendix, with further details in 

a web appendix. 

 

2  Measuring ambiguity attitudes without measuring 

subjective likelihoods: definitions of our indexes 

 We focus on gain outcomes throughout this paper.  We assume a minimal degree 

of richness of the sources of uncertainty considered: there should at least be three 

mutually exclusive and exhaustive nonnull events 𝐸𝐸1,𝐸𝐸2, and 𝐸𝐸3.  In our experiment 

the events refer to the AEX stock index.  For instance, in Part 1 of the experiment, 

𝐸𝐸1 = (−∞,−0.2),𝐸𝐸2 = [−0.2, 0.2], and 𝐸𝐸3 = (0.2,∞), where intervals describe 

percentage increases of the AEX index.  Thus they concern natural events of practical 

relevance.  𝐸𝐸𝑖𝑖𝑖𝑖 denotes the union 𝐸𝐸𝑖𝑖 ∪ 𝐸𝐸𝑗𝑗 where 𝑖𝑖 ≠ 𝑗𝑗 is implicit.  We call every 𝐸𝐸𝑖𝑖 a 

single event and every 𝐸𝐸𝑖𝑖𝑖𝑖 a composite event. 

 Formally speaking, ambiguity does not concern just a single event 𝐸𝐸, but a 

partition, such as {𝐸𝐸,𝐸𝐸𝑐𝑐}, or, more generally, a source of uncertainty.  The aversion 

index proposed below can also be defined for partitions {𝐸𝐸,𝐸𝐸𝑐𝑐} consisting of only two 

nonnull events, but the subsequent insensitivity index will essentially need the three 

disjoint nonnull events that we assume.  In most situations where we start from a 

partition with two events we can extend it by properly partitioning one of those two 

events.  For example, in the two-color Ellsberg urn we can involve other features of 

the ball to be drawn, such as shades of colors or numbers on the balls. 

 Dimmock, Kouwenberg, & Wakker (2015, Theorem 3.1) showed that matching 

probabilities are convenient for measuring ambiguity attitudes.  Matching 

probabilities entirely capture ambiguity attitudes, free of the complications of risk 

attitudes, as those drop from the equations and need not be measured.  We will 

therefore use matching probabilities.  For any fixed prize, €20 in our experiment, we 

define the matching probability 𝑚𝑚 of event E through the following indifference: 
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   Receiving €20 under event E is equivalent to receiving €20 with probability 𝑚𝑚. (2.1) 

In each case it is understood that the complementary payoff is nil.  We write 𝑚𝑚𝑖𝑖 =

𝑚𝑚(𝐸𝐸𝑖𝑖), 𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑚𝑚�𝐸𝐸𝑖𝑖𝑖𝑖�, 𝑚𝑚𝑠𝑠���� = (𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3)/3 for the average single-event 

matching probability, and 𝑚𝑚𝑐𝑐���� = (𝑚𝑚23 + 𝑚𝑚13 + 𝑚𝑚12)/3 for the average composite-

event matching probability.  The more ambiguity averse a person is the lower the 

matching probabilities will be.  The following definition is therefore plausible: 

 

DEFINITION 2.1.  The ambiguity aversion index is 

 𝑏𝑏 = 1 −𝑚𝑚𝑐𝑐 �����− 𝑚𝑚𝑠𝑠�����. (2.2) 

Under ambiguity neutrality, 𝑚𝑚𝑖𝑖 = 𝑃𝑃(𝐸𝐸𝑖𝑖) and 𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑃𝑃(𝐸𝐸𝑖𝑖) + 𝑃𝑃(𝐸𝐸𝑗𝑗) for additive 

subjective probabilities 𝑃𝑃.  Then 𝑚𝑚𝑠𝑠���� = 1/3 and 𝑚𝑚𝑐𝑐���� = 2/3, implying 𝑏𝑏 = 0.  We have 

thus calibrated ambiguity neutrality, providing control for subjective likelihoods 

without knowing them.  This happens because the subjective likelihoods drop from 

the equations irrespective of what they are.  This observation is key to our method.  

Maximal ambiguity aversion occurs for 𝑏𝑏 = 1, when matching probabilities for all 

events are 0.  Ambiguity aversion is minimal for 𝑏𝑏 = −1, when matching 

probabilities for all events are 1. 

 For the ambiguity aversion index, it is not necessary to consider a three-event 

partition.  To reduce the measurement effort, we could also focus on only one event 𝐸𝐸𝑖𝑖 

and its complement 𝐸𝐸𝑖𝑖𝑐𝑐, and substitute 𝑚𝑚(𝐸𝐸𝑖𝑖) for 𝑚𝑚𝑠𝑠���� and 𝑚𝑚(𝐸𝐸𝑖𝑖𝑐𝑐) for 𝑚𝑚𝑐𝑐���� in Eq. 2.2, 

maintaining the control for likelihood.  This reduction is at the cost of reliability, but it 

makes it possible to elicit the first index even when the source has only two nonnull 

events. 

 Using only the first index to capture people’s ambiguity attitude can however be 

misleading, especially for low likelihood events.  Empirical findings suggest a 

dependency of ambiguity aversion on likelihood: pronounced aversion near certainty, 

which decreases with likelihood.  For moderate likelihoods, there is much ambiguity 

neutrality, and for low likelihoods ambiguity seeking is prevailing (predicted in 

Becker & Brownson 1964, footnote 4; reviewed by Trautmann & van de Kuilen 

2015).  Therefore, a prediction of universal ambiguity aversion based solely on the 

first index alone can even be in the wrong direction for low likelihoods.  That 

modeling such phenomena through classical utility curvature, as in Friedman & 
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Savage (1948), does not work well has been confirmed empirically (Snowberg & 

Wolfers 2010). 

 Our second index of ambiguity allows accommodating the aforementioned 

dependence of ambiguity aversion on likelihood, which is therefore especially useful 

for descriptive work.  It can be interpreted as perceived level of ambiguity (Baillon et 

al. 2015; Dimmock et al. 2015b) or as insensitivity to likelihood (Abdellaoui et al. 

2011; Dimmock, Kouwenberg, & Wakker 2015). 

 The second index captures the move of matching probabilities (and event weights 

as defined in §3) toward fifty-fifty: low likelihoods being overvalued and high 

likelihoods being undervalued.  This leads to reduced differences 𝑚𝑚𝑐𝑐���� − 𝑚𝑚𝑠𝑠����.  In the 

most extreme case of complete ambiguity and, correspondingly, complete 

insensitivity (Cohen & Jaffray 1980), no distinction at all is made between different 

levels of likelihood (e.g. all events are taken as fifty-fifty), resulting in 𝑚𝑚𝑐𝑐����−𝑚𝑚𝑠𝑠���� = 0.  

These observations suggest that the second index can be interpreted cognitively 

(Budescu et al. 2014 p. 3; Dimmock et al. 2015a, b; Einhorn & Hogarth 1985; Gayer 

2010), an interpretation well supported by our results. 

 Dimmock et al. (2015b) referred to their version of the second index as perceived 

level of ambiguity.  Dimmock et al.’s term, and the multiple priors model underlying 

it, assume expected utility for risk and may serve best for normative purposes.  We 

allow for deviations from expected utility under risk, which is desirable for 

descriptive purposes, the main aim of this paper.  For risk, insensitivity (i.e., inverse-S 

probability weighting) has been commonly found (Gonzalez & Wu 1999).  Our 

second index naturally extends this insensitivity found under risk to ambiguity, where 

empirical studies have found that it is usually reinforced (Trautmann & van de Kuilen 

2015).  Hence, we follow Maafi (2011) and Baillon, Cabantous, & Wakker (2012) and 

use the term ambiguity-generated insensitivity (a-insensitivity) to refer to it.  For this 

index, the following rescaling of 𝑚𝑚𝑐𝑐����−𝑚𝑚𝑠𝑠���� is most convenient. 

 

DEFINITION 2.2.  The ambiguity-generated insensitivity (a-insensitivity) index2 is 

 𝑎𝑎 = 3 × (1/3 − (𝑚𝑚𝑐𝑐����−𝑚𝑚𝑠𝑠����)) . (2.3) 

2 Under multiple prior theories, this index can be called “perceived level of ambiguity.” 
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Under ambiguity neutrality, with perfect discrimination between single and composite 

events, or under absence of ambiguity, 𝑚𝑚𝑐𝑐���� = 2/3 and 𝑚𝑚𝑠𝑠���� = 1/3, and their difference 

is 1/3.  Index 𝑎𝑎 measures how much this difference falls short of 1/3.  We multiplied 

by 3 to obtain a convenient normalization between 1 (maximal insensitivity, with 𝑚𝑚𝑐𝑐���� 

= 𝑚𝑚𝑠𝑠����) and −1 (the opposite, oversensitivity). 

 Ambiguity neutrality gives 𝑎𝑎 = 0.  We have again calibrated ambiguity neutrality 

here, controlling for subjective likelihoods by letting them drop from the equations.  

Empirically, we usually find prevailing insensitivity, 𝑎𝑎 > 0, but there are subjects 

with 𝑎𝑎 < 0.  Hence it is desirable for descriptive purposes to allow 𝑎𝑎 < 0, which we 

do.  The 𝛼𝛼-maxmin model, however, does not allow 𝑎𝑎 < 0 (§3), which is no problem 

for normative applications that take 𝑎𝑎 < 0 to be irrational. 

 There have as yet only been a few studies measuring ambiguity attitudes for 

natural events.  Many did not control for risk attitudes and therefore could not fully 

identify ambiguity attitudes (Baillon et al. 2015; Fox, Rogers, & Tversky 1996; Fox 

and Tversky 1998; Kilka & Weber 2001).  Abdellaoui et al. (2011) measured similar 

indexes as ours but had to use complex measurements and data fittings, requiring 

measurements of subjective probabilities, utilities, and event weights.  As regards the 

treatment of unknown beliefs, Gallant, Jahan-Parvar, & Liu (2015) and Brenner & 

Izhakian (2015) are close to us.  They do not assume beliefs given beforehand, but, 

like Abdellaoui et al. (2011), derive them from preferences.  We do not need such a 

derivation.  Gallant, Jahan-Parvar, & Liu (2015) and Brenner & Izhakian (2015) 

deviate from our approach in assuming second-order probabilities to capture 

ambiguity.  They make parametric assumptions about the first- and second-order 

probabilities (assuming normal distributions), including expected utility for risk with 

constant relative risk aversion, and then fit the remaining parameters to the data for a 

representative agent.   

 Baillon & Bleichrodt (2015) used a method similarly tractable as ours.  They, 

however, used different indexes3, and they did not establish a control for likelihood.  

Several papers used similar indexes as those presented above but provided no controls 

for likelihoods, so that they had to use probability intervals or Ellsberg urns (Baillon, 

3 They used five event-dependent indexes similar to Kilka & Weber (2001), and based on preference 

conditions of Tversky & Wakkers (1995), and adapted them to matching probabilities. 
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Cabantous, & Wakker 2012; Dimmock, Kouwenberg, & Wakker (2015), Dimmock et 

al. 2015a,b).  Li (2015), a follow-up of this paper, used our method. 

 

3  Relating our indexes to existing indexes 

 This section can be skipped by empirically oriented readers who are willing to 

take our indexes at face value.  It is essential though for the claims that our indexes 

generalize and unify existing indexes, and that they are not ad hoc but theoretically 

founded. 

 Our analysis applies to any theory using the evaluation 

 𝑥𝑥𝐸𝐸0 → 𝑊𝑊(𝐸𝐸)𝑈𝑈(𝑥𝑥) (3.1) 

for prospects with one nonzero outcome.  The prospect 𝑥𝑥𝐸𝐸0 yields outcome 𝑥𝑥 under 

event 𝐸𝐸 and outcome 0 under the complementary event 𝐸𝐸𝑐𝑐.  𝑈𝑈 is the utility function 

with 𝑈𝑈(0) = 0 and 𝑊𝑊 is a nonadditive (event) weighting function; i.e., 𝑊𝑊 is 0 at the 

empty event, 1 at the universal event, and it is set-monotonic (𝐴𝐴 ⊃ 𝐵𝐵 then 𝑊𝑊(𝐴𝐴) ≥

𝑊𝑊(𝐵𝐵))).  Our analysis includes binary RDU4, also known as biseparable utility, which 

includes many theories such as Choquet expected utility or rank-dependent utility, 

prospect theory (because we only consider gains), multiple priors, and 𝛼𝛼-maxmin 

(Ghirardato & Marinacci 2002; Wakker 2010 §10.6).  Eq. 3.1 additionally includes 

separate-outcome weighting theories (𝑥𝑥𝐸𝐸𝑦𝑦 → 𝑊𝑊(𝐸𝐸)𝑈𝑈(𝑥𝑥) + 𝑊𝑊(𝐸𝐸𝑐𝑐)𝑈𝑈(𝑦𝑦)) and 

Chateauneuf & Faro’s (2009) confidence representation if the worst outcome is 0.  

Based on the heuristic considerations in §2 we conjecture that our indexes also 

capture features of ambiguity well under ambiguity theories not included here, but 

leave this as a topic for future research. 

 Our first index generalizes indexes by Abdellaoui et al. (2011), Chateauneuf et al. 

(2007), Dimmock et al. (2015a, b), Dimmock, Kouwenberg, & Wakker (2015), Dow 

& Werlang (1992), Gajdos et al. (2008), Klibanoff, Marinacci, & Mukerji (2005 

Definition 7), and Schmeidler (1989).  Our second index generalizes indexes by 

Abdellaoui et al. (2011), Chateauneuf et al. (2007), Dimmock et al. (2015b), 

4 RDU abbreviates rank-dependent utility. 
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Dimmock, Kouwenberg, & Wakker (2015), and Gajdos et al. (2008).  The following 

subsections elaborate on details for various theories. 

3.1  Choquet expected utility 

 We start with the first axiomatized ambiguity model: Schmeidler’s (1989) 

Choquet expected utility.  Schmeidler (1989) suggested the following index of 

ambiguity aversion in his example on pp. 571-572 and p. 574, assuming expected 

utility for risk: 

 𝑏𝑏∗ = 1 −𝑊𝑊(𝐸𝐸) −𝑊𝑊(𝐸𝐸𝑐𝑐). (3.2) 

Here W is a general event weighting function.  Dow & Werlang (1992) proposed to 

use Eq. 3.2 in general, and this proposal has been widely followed since, always in 

models assuming expected utility for risk.5 

 

OBSERVATION 3.1.  Under expected utility for risk, our ambiguity aversion index 

agrees with Eq. 3.2.  That is, index 𝑏𝑏 is Eq. 3.2 averaged over the events 𝐸𝐸1,𝐸𝐸2,𝐸𝐸3.  In 

Schmeidler’s (1989) model, ambiguity aversion6 implies 𝑏𝑏 > 0, ambiguity neutrality 

implies 𝑏𝑏 = 0, and ambiguity seeking implies 𝑏𝑏 < 0.   

 

 Two contributions of Observation 3.1 to Choquet expected utility are: (1) 

ambiguity aversion 𝑏𝑏 can be measured very easily, with no need to further measure 𝑈𝑈 

or 𝑊𝑊; (2) our index shows how the assumption of expected utility for risk can be 

dropped.  Because of contribution (2), our method also works for the general Choquet 

expected utility model in Gilboa (1987) which, unlike Schmeidler (1989), does not 

assume expected utility for risk. 

5 References include Chateauneuf et al. (2007), Dimmock et al. (2015a, b), Gajdos et al. (2008), and 

Klibanoff, Marinacci, & Mukerji (2005 Definition 7).  Applications include Dominiak & Schnedler 

(2011), Ivanov (2011), and many others. 
6 Schmeidler used the term uncertainty aversion. 
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3.2  The source method 

 Choquet expected utility and prospect theory (Tversky & Kahneman 1992), 

which are equivalent because we consider only gains, are considered to be too general 

because there are too many nonadditive weighting functions for large state spaces.7  

Abdellaoui et al.’s (2011) source method is a specification that is more tractable.  The 

specification essentially consists of adding Chew & Sagi’s (2008) conditions, 

implying the existence of a-neutral probabilities defined later. 

 Although, based on Ellsberg’s paradoxes, it was long believed that ambiguity 

aversion cannot be modeled using probabilities of any kind, Chew & Sagi (2008) 

showed that this is still possible, by allowing decision attitudes to depend on the 

source of uncertainty.  For example, we can assign probability 0.5 to an ambiguous 

event and still prefer gambling on it less than gambling on an objective probability 

0.5, by weighting the former probability more pessimistically than the latter.  This 

way, ambiguity aversion and Ellsberg’s paradox can be reconciled with the existence 

of subjective probabilities.  Because the term subjective probability has too many 

connotations, we call the probabilities resulting from Chew & Sagi’s model 

a(mbiguity)-neutral probabilities.  An ambiguity neutral decision maker would indeed 

be entirely guided by these probabilities, irrespective of the underlying events. 

 The only implication of Chew & Sagi’s conditions needed for our analysis is that 

Eq. 3.1 can be rewritten as: 

 𝑊𝑊(𝐸𝐸) = 𝑤𝑤𝑆𝑆𝑆𝑆(𝑃𝑃(𝐸𝐸)) .  (3.3) 

Here 𝑃𝑃 is Chew & Sagi’s a-neutral probability and 𝑤𝑤𝑆𝑆𝑆𝑆 is a (probability) weighting 

function (𝑤𝑤𝑆𝑆𝑆𝑆(0) = 0, 𝑤𝑤𝑆𝑆𝑆𝑆(1) = 1, and 𝑤𝑤𝑆𝑆𝑆𝑆 is nondecreasing).  Crucial is that 𝑤𝑤𝑆𝑆𝑆𝑆 

can depend on the source 𝑆𝑆𝑆𝑆 of uncertainty: 𝑤𝑤𝑆𝑆𝑆𝑆(0.5) can be different for the known 

than for the unknown Ellsberg urn.  Tversky introduced the idea of sources of 

uncertainty (Heath & Tversky 1991; Tversky & Fox 1995).  A source of uncertainty is 

a group of events generated by the same uncertainty mechanism.  The unknown 

Ellsberg urn is a different source than the known urn, and the AEX index is a different 

7 The findings of Hey, Lotito, & Maffioletti (2010) suggest to us that three states is already problematic 

for empirical purposes.  Kothiyal, Spinu, & Wakker (2014) showed that the specification of the source 

method then is specific enough. 
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source than the Dow Jones index.  Different sources will have different weighting 

functions 𝑤𝑤𝑆𝑆𝑆𝑆 and, correspondingly, 𝑊𝑊 will have different properties for them.  We 

study these properties for binary RDU models.  For other models, such as the smooth 

model of ambiguity (Klibanoff, Marinacci, & Mukerji 2005), it will similarly be of 

interest to allow for different attitudes and perceptions for different sources of 

ambiguity, but this is beyond the scope of this paper.   

 In their calculations, the two papers Abdellaoui et al. (2011) and Dimmock, 

Kouwenberg, & Wakker (2015), abbreviated AD in this section, used best 

approximations of functions on the open interval (0,1).  This is done here for 

matching probabilities 𝑚𝑚(𝐸𝐸): 

  𝑚𝑚(𝐸𝐸) = 𝜏𝜏 + 𝜎𝜎𝜎𝜎(𝐸𝐸) for 0 < 𝑃𝑃(𝐸𝐸) < 1,  (3.4) 

say by minimizing quadratic distance (as in regular regressions) where 𝜎𝜎 ≥ 0 and 𝜏𝜏 

are chosen to minimize that distance.  𝑃𝑃 is again Chew & Sagi's (2008) a-neutral 

probability.  Although our indexes were devised to avoid specifications of a-neutral 

probabilities 𝑃𝑃(𝐸𝐸), we do consider such probabilities here because otherwise the 

approaches of AD cannot be applied.  AD defined 

 𝑏𝑏´ ∶= 1 − 2𝜏𝜏 − 𝜎𝜎, 𝑎𝑎´ ∶= 1 − 𝜎𝜎  (AD indexes). (3.5) 

Here 𝑏𝑏´ is an index of pessimism that reflects ambiguity aversion in our case (which 

concerns matching probabilities), and 𝑎𝑎´ is an index of insensitivity, reflecting lack of 

discriminatory power.  We write 𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝐸𝐸𝑖𝑖) and 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝐸𝐸𝑖𝑖𝑖𝑖�. 

 As a preparation, we first show that our indexes are identical to the AD indexes if 

Eq. 3.4 holds exactly.  Eq. 3.4 implies  𝑚𝑚𝑠𝑠���� = 𝜏𝜏 + 𝜎𝜎/3 and 𝑚𝑚𝑐𝑐���� = 𝜏𝜏 + 2𝜎𝜎/3, where we 

immediately see that a-neutral probabilities drop.  Observation 3.2 follows from 

simple substitutions. 

 

OBSERVATION 3.2.  Under Eq. 3.4, our indexes (Eqs. 2.2, 2.3) agree with the AD 

indexes (our Eq 3.5).  That is, 𝑎𝑎 =  1 − (3𝑚𝑚𝑐𝑐����− 3𝑚𝑚𝑠𝑠����) = 1 − 𝜎𝜎 = 𝑎𝑎´  and  𝑏𝑏 = 1 −

(𝑚𝑚𝑐𝑐���� + 𝑚𝑚𝑠𝑠����) = 1 − 2𝜏𝜏 − 𝜎𝜎 = 𝑏𝑏´.   

 

 We now turn to the general case where Eq. 3.4 need not hold.  Proofs of the 

following results are in the appendix.  We first show that the aversion indexes 𝑏𝑏, 𝑏𝑏´ 

also agree in the general case. 
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THEOREM 3.3.  Our index 𝑏𝑏 (Eq. 2.2) is always identical to the AD index 𝑏𝑏′ (Eq. 3.5), 

independently of 𝑝𝑝1,𝑝𝑝2,𝜎𝜎.   

 

 Depending on the probabilities 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 assumed by AD, the insensitivity 

indexes 𝑎𝑎,𝑎𝑎´ need not always be fully identical.  These indexes estimate the same 

model (Eq. 3.4) but use different optimization procedures.8  Thus the indexes can be 

slightly different, but they will not differ by much.  We next show that they are fully 

identical in the most important cases.  We first consider the case considered by 

Dimmock et al. (2015a, b), Dimmock, Kouwenberg, & Wakker (2015), and most 

other studies (Camerer & Weber 1992 p. 361), where the ambiguity neutral 𝑝𝑝𝑖𝑖’s 

directly follow from symmetry. 

 

OBSERVATION 3.4.  Index 𝑎𝑎 is identical to AD’s 𝑎𝑎´ if events 𝐸𝐸1, 𝐸𝐸2, and 𝐸𝐸3 are 

symmetric (i.e., 𝑝𝑝1 = 𝑝𝑝2 = 𝑝𝑝3).   

 

 We next turn to general nonsymmetric cases.  We first consider the most plausible 

case, concerning the probabilities 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 that best fit the data.  For matching proba-

bilities, set-monotonicity means that 𝑚𝑚𝑖𝑖𝑖𝑖 ≥ 𝑚𝑚𝑖𝑖 for all 𝑖𝑖, 𝑗𝑗.  A weaker condition, weak 

monotonicity, suffices for our purposes: for all distinct 𝑖𝑖, 𝑗𝑗,𝑘𝑘: 𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑗𝑗𝑗𝑗 ≥ 𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑘𝑘. 

 

THEOREM 3.5.  Assume weak monotonicity, and assume that 𝑎𝑎, 𝑏𝑏,𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 are such 

that Eq. 3.4 best fits by quadratic distance.  Then our index 𝑎𝑎 (Eq. 2.3) is identical to 

AD’s index 𝑎𝑎´ (Eq. 3.5).   

 

 Thus our indexes and the AD indexes are close, and in most cases fully identical.  

This was confirmed in our data.  Of course, the estimates of 𝑏𝑏 and 𝑏𝑏´ always fully 

agreed.  The average absolute difference |𝑎𝑎´ − 𝑎𝑎| was 0.007.  In 91% of the cases 𝑎𝑎´ 

and 𝑎𝑎 were fully identical.  The remaining 9% concerned vast violations of weak 

8 AD take the best fit of Eq. 3.4 for the three partitions {𝐸𝐸𝑖𝑖 ,𝐸𝐸𝑖𝑖𝑐𝑐} in one blow.  Our indexes can be 

interpreted as first giving best (even perfect) fit for each separate partition {𝐸𝐸𝑖𝑖 ,𝐸𝐸𝑖𝑖𝑐𝑐}, and next taking 

averages of the three estimations (for 𝑖𝑖 = 1,2,3). 
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monotonicity, with maximal absolute difference |𝑎𝑎´ − 𝑎𝑎| = 0.27 for a highly erratic 

subject.  We conclude that for all practical purposes we can assume that our indexes 

are the same as those of AD. 

3.3  Multiple priors 

 We next consider multiple prior models.  In maxmin expected utility (Gilboa and 

Schmeidler 1989) or 𝛼𝛼-maxmin (Ghiradato, Maccheroni, & Marinacci 2004), 

ambiguity is captured by a convex set 𝐶𝐶 of priors (probability distributions over the 

state space).  The decision maker then considers the worst expected utility over 𝐶𝐶 

(maxmin expected utility) or a convex combination of the worst and the best (𝛼𝛼-

maxmin).  As with Choquet expected utility, the multiple priors model by itself is too 

general to be tractable because there are too many sets of priors.  We start from a 

tractable subcase used in finance (Epstein and Schneider 2010) and insurance theory 

(Carlier et al. 2003): the 𝜀𝜀-contamination model.  We take the tractable subclass 

considered by Baillon et al. (2015), Chateauneuf et al. (2007), and Dimmock et al. 

(2015b), which received a preference foundation by Chateauneuf et al. (2007).  It is a 

subclass of the 𝜀𝜀-contraction model; the latter was axiomatized by Gajdos et al. 

(2008).  Kopylov (2009) axiomatized a similar model. 

 To define our subclass, we assume a baseline probability 𝑄𝑄, and an 𝜖𝜖 ∈ [0,1].  

The set of priors consists of all convex combinations (1 − 𝜀𝜀)𝑄𝑄 + 𝜀𝜀𝜀𝜀 where 𝑇𝑇 can be 

any probability measure.  The larger 𝜀𝜀, the larger the set of priors.  We call the 

resulting model 𝜀𝜀-𝛼𝛼-maxmin.  This model satisfies Chew & Sagi’s (2008) 

assumptions, with a-neutral probabilities 𝑄𝑄.  The size of the set of priors, represented 

here by 𝜀𝜀, is often taken as the level of perceived ambiguity (Gajdos et al. 2008; 

Chateauneuf et al. 2007 p. 543; Walley 1991 p. 222), and 𝛼𝛼 as the aversion index.  

Baillon et al. (2015) and Dimmock et al. (2015b) pointed out that the source method 

and ε-𝛼𝛼-maxmin are closely related, with the following relations between indexes.  

These authors took the 𝑎𝑎 and 𝑏𝑏 indexes as in AD.  Subsection 3.2 showed that those 

are essentially equivalent to our indexes, so we use the same notation. 
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OBSERVATION 3.6.  Under ε-𝛼𝛼-maxmin, the ambiguity-level index ε agrees with our 

a-insensitivity index 𝑎𝑎 (ε = 𝑎𝑎), and the aversion parameter 𝛼𝛼 is a rescaling of our 

aversion index 𝑏𝑏 (𝑏𝑏 = (2𝛼𝛼−1)ε).   

 

 For the aversion indexes 𝛼𝛼 and 𝑏𝑏 = (2𝛼𝛼−1)ε, the linear rescaling 𝑏𝑏 → 2𝛼𝛼 − 1 is 

immaterial, but the subsequent multiplication by 𝜀𝜀 is of interest.  Our index 𝑏𝑏 reflects 

the total ambiguity aversion exhibited for the event by the decision maker, and is best 

suited to calculate ambiguity premiums9.  The index 𝛼𝛼 rather is the ambiguity 

aversion per perceived unit of ambiguity, and may serve better as a potentially person-

specific and event-independent index.  At any rate, the parameters 𝑎𝑎, 𝑏𝑏 and 𝛼𝛼,𝜀𝜀 can 

readily be transformed into each other and carry the same information.  A restriction 

is that the 𝛼𝛼 maxmin model, unlike our approach, does not allow 𝑎𝑎 = 𝜀𝜀 < 0. 

 We next discuss the alternative interpretations of Chateauneuf et al. (2007) in 

their equivalent neo-additive model.  They assumed Eq. 3.4 for event weights rather 

than for matching probabilities.  In their remark, expected utility is assumed for risk, 

so that event weights equal matching probabilities.  Their Remark 3.2 explains that 

their model is equivalent to ε-𝛼𝛼-maxmin and, hence, Observation 3.6 applies to their 

model.  In our notation, Chateauneuf et al. interpret 𝑎𝑎 as distrust in the subjective 

expected utility model and  𝑏𝑏+𝑎𝑎
2𝑎𝑎

  as an index of pessimism. 

 Two contributions of Observation 3.6 to multiple priors theory, at least for the 

specification considered here, are: (1) the ambiguity aversion and the perceived level 

of ambiguity can be measured very easily, with no need to further measure utility 𝑈𝑈 or 

the set of priors 𝐶𝐶; (2) expected utility for risk is not needed.  Contribution (1) was 

pointed out before by Dimmock et al. (2015b). 

 

4  Experiment: Method 

Background 

9 Schmeidler (1989 p. 574) used the term uncertainty premium for his special case of this index. 
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This section presents the experiment.  Appendix B gives further details.  We 

investigate the effect of time pressure (TP) on ambiguity.  The ambiguity concerns the 

performance of the AEX (Amsterdam stock exchange) index.  TP is ubiquitous in 

applications,10 and serves well to investigate ambiguity because it allows for easy 

manipulations.  There have been many studies of its effects under risk,11 but this study 

is the first for ambiguity.  Using our method, we can study TP for natural events. 

 

Subjects 

N = 104 subjects participated (56 male, median age 20).  They were all students from 

Erasmus University Rotterdam, recruited from a pool of volunteers.  They were 

randomly allocated to the control and the time pressure (TP) treatment. 

 The experiment consisted of two parts, Parts 1 and 2 (Table 1), consisting of eight 

questions each.  They were preceded by a training part (Part 0) of eight questions, to 

familiarize subjects with the stimuli.  All subjects faced the same questions, except that 

subjects in the time pressure treatment had to make their choices in Part 1 under time 

pressure.  There were 42 subjects in the control treatment and 62 in the TP treatment.  

The TP sample had more subjects because we expected more variance there. 

 

TABLE 1: Organization of the experiment 

               Within subject 
Between subject 

Part 1 Part 2 

Time pressure 
treatment 

Time pressure  No time pressure 

Control treatment No time pressure No time pressure 
Stimuli: Within- and between-subject treatments 

 

Stimuli: Choice lists 

In each question, subjects were asked to choose between two options: 

 

10 A survey is in Ariely & Zakay (2001).  Recent studies include Reutskaja, Nagel, & Camerer (2011) 

for search dynamics, and Kocher & Stutter (2006), Sutter, Kocher, & Strauss (2003), and Tinghög et al. 

(2013) for game theory. 
11 See the references in Ariely & Zakay (2001), and Chandler & Pronin (2012), Kocher, Pahlke, & 

Trautmann (2013), Maule, Hockey, & Bdzola (2000), Payne, Bettman, & Luce (1996), and Young et 

al. (2012). 
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OPTION 1: You win €20 if the AEX index increases/decreases by more/less than XX% 

between the beginning and the end of the experiment, and nothing otherwise. 

OPTION 2: You win €20 with p% probability and nothing otherwise. 

 

 We used choice lists to infer the probability p in Option 2 giving indifference, 

i.e., the matching probability of the AEX event.  For the TP treatment, a 25-second 

time limit was set for each choice in Part 1. 

 

Stimuli: Uncertain events 

In each part we consider a triple of mutually exclusive and exhaustive single events 

and their compositions; see Table 2. 

 

TABLE 2: Single AEX-change events for different parts12 

 Event E1 Event E2 Event E3 

Part 1 (−∞,−0.2) [−0.2,0.2] (0.2,∞) 

Part 2 (−∞,−0.1) [−0.1,0.3] (0.3,∞) 

 

For each part, we measured matching probabilities of all six single and composite 

events, of which two were repeated to test consistency.  The order of the eight 

questions was randomized for each subject within each part. 

 

Stimuli: Further questions 

At the end of the experiment, subjects were asked to report their age, gender, and 

nationality, and to assess their knowledge of the AEX index from 1 (“I don’t know 

this index at all”) to 5 (“I know this index very well”).  The median self-assessed 

knowledge was 2 and the maximum was 4, suggesting that most subjects were 

unfamiliar with the events, which further enhances the perception of ambiguity. 

 

Incentives 

We used the random incentive system.  All subjects received a show-up fee of €5 and 

one of their choices was randomly selected  to be played for real. 

12 In the training Part 0, the events were (−∞,−0.4), [−0.4,0.1], and  (0.1,∞). 
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Analysis 

We compute ambiguity aversion and a-insensitivity indexes as explained in §2.  Five 

subjects in the TP treatment did not submit one of their matching probabilities on time 

and were therefore excluded from the analysis, leaving us with 99 subjects.  Some 

subjects gave erratic answers violating weak monotonicity; see Appendix C.  We 

nevertheless kept them in the analysis.  Excluding the indexes when weak 

monotonicity is violated does not affect our conclusions (see the full results in the 

Web Appendix) unless we report otherwise. 

 Because we obtain two values of each index per subject (one for each part), we 

run panel regressions with subject-specific random effects13 to study the impact of TP 

on a-insensitivity and ambiguity aversion.  In the baseline model (Model 1 in the 

result tables), we take part 1 in the control treatment as the reference group and 

consider three dummy variables: part 2*control, part 1*TP and part 2*TP, where each 

variable takes value 1 if the observation is from the specific part in the specific 

treatment.  We then add control variables (age, gender, and nationality in Model 2, 

plus self-assessed knowledge in Model 3) to assess the robustness of the results. 

 

5  Experiment: Results 

In what follows, we report only differences that are significant, with the significance 

level indicated in the corresponding tables. 

 

5.1  Ambiguity aversion index 𝒃𝒃 

 Figure 1 presents all 𝑏𝑏 indexes of Part 2 as a function of the 𝑏𝑏 indexes of Part 1.  

Correlations are high (ρ = 0.76 for the control treatment and ρ = 0.89 for the TP 

treatment) and most dots are in the lower left quadrant or in the upper right quadrant.  

It shows that subjects are consistently ambiguity averse or consistently ambiguity 

seeking across parts. 

13 Fixed effects would not allow us to observe the effect of the treatments because the treatment 

variable is constant for each subject. 
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FIGURE 1: ambiguity aversion indexes  

  A. Control treatment (ρ = 0.76)  B. TP treatment (ρ = 0.89) 

Proportions of observations above and below the diagonal have been indicated in the 

figures.  Correlations ρ are in the panel titles. 

 

 Table 3 displays the results of the panel regressions for the 𝑏𝑏 indexes.  In Part 1, 

the control subjects are slightly ambiguity seeking (−0.07, reaching marginal 

significance), with the dots in panel A slightly to the left.  Regarding our main 

research question: TP has no effect.  The index 𝑏𝑏 in TP does not differ significantly 

from that in the control in Part 1, with dots in panel B not more or less to the left than 

in panel A.  The only effect we find is a learning effect for the control treatment, 

where part 2 is a repetition of part 1.14  Here ambiguity aversion is lower in part 2 

than in part 1.  There is also no learning effect for the TP treatment (p = 0.14) because 

TP in part 1 prevented the subjects to familiarize further with the task.   

 All effects described, and their levels of significance, are unaffected if we control 

for age, gender, nationality (Dutch / non-Dutch), and self-assessed knowledge of the 

AEX index (Models 3 and 4).  There is one effect on ambiguity aversion though: 

older subjects are more ambiguity averse.15  To test if ambiguity aversion, while not 

14 The learning effect is not significant anymore if we exclude the subjects violating weak monotonicity 

(see Table WB.1 in Web Appendix). 
15 This effect is no more significant if we exclude violations of weak monotonicity. 
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systematically bigger or smaller under TP, would become more or less extreme, we 

test absolute values of 𝑏𝑏, but find no evidence for such effects (see Web Appendix). 

 

TABLE 3: ambiguity aversion indexes 𝑏𝑏 

 Model 1 Model 2 Model 3 
intercept −0.07+ 0.02 0.05 
 (0.04) (0.06) (0.07) 
part 1 * TP treatment −0.02 −0.03 −0.02 
 (0.05) (0.05) (0.05) 
part 2 * control treatment −0.04* −0.04* −0.04* 
 (0.02) (0.02) (0.02) 
part 2 * TP treatment 0.00 −0.01 0.00 
 (0.05) (0.05) (0.05) 
male  −0.08+ −0.06 
  (0.04) (0.04) 
Dutch  −0.07 −0.05 
  (0.05) (0.05) 
age – 20  0.02* 0.02* 
  (0.01) (0.01) 
knowledge = 2   −0.03 
   (0.06) 
knowledge = 3   −0.10 
   (0.07) 
knowledge = 4   −0.10 
   (0.08) 
Chi2 6.79+ 21.02** 24.60** 
N 198 198 198 
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.  Point estimates are followed by 
standard errors between brackets.  The impact of TP is in bold.  The variable age 
has been recoded as age − 20 so that the intercept corresponds to the 𝑏𝑏 index of a 20 
year-old subject (median age) 
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5.2  A-insensitivity index 𝒂𝒂 

 

FIGURE  2: a-insensitivity indexes 𝑎𝑎 

 
  A. Control treatment (ρ = 0.77)  B. TP treatment (ρ = 0.70) 

Proportions of observations above and below the diagonal have been indicated in the 

figures.  Correlations ρ are in the panel titles. 

 

 Figure 2 depicts all individual 𝑎𝑎 indexes of Part 2 as a function of the 𝑎𝑎 indexes 

of Part 1.  Correlations are again high (ρ = 0.77 for the control treatment and ρ = 0.70 

for TP).  Table 4 displays the results of the panel regressions for the 𝑎𝑎 index.  The 

insensitivity index is between 0.15 and 0.17 for Parts 1 and 2 of the control treatment 

(no learning effect and points equally split above and below the diagonal in panel A), 

and also for Part 2 of the TP treatment.  However, there is much more a-insensitivity 

for the TP questions (Part 1 of TP treatment), with 𝑎𝑎 = 0.34 and with two-thirds of 

the dots in panel B to the right of the diagonal.  These findings are robust to the 

addition of control variables (Models 3 and 4).  Thus, we find a clear TP effect but no 

learning effect. 
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TABLE 4: a-insensitivity indexes 𝑎𝑎 

 Model 1 Model 2 Model 3 
intercept 0.15* 0.20+ 0.20 
 (0.07) (0.11) (0.13) 
part 1 * TP treatment 0.19* 0.18* 0.19* 
 (0.09) (0.09) (0.09) 
part 2 * control treatment 0.02 0.02 0.02 
 (0.05) (0.05) (0.05) 
part 2 * TP treatment 0.02 0.01 0.02 
 (0.09) (0.09) (0.09) 
male  −0.05 −0.04 
  (0.08) (0.09) 
Dutch  −0.06 −0.05 
  (0.10) (0.10) 
age – 20  0.02 0.02 
  (0.02) (0.02) 
knowledge = 2   0.01 
   (0.12) 
knowledge = 3   −0.02 
   (0.13) 
knowledge = 4   −0.01 
   (0.16) 
Chi2 17.68*** 20.64** 20.65* 
N 198 198 198 
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.  Point estimates are followed by 
standard errors between brackets.  The impact of TP is in bold.  The variable age 
has been recoded as age − 20 so that the intercept corresponds to the 𝑎𝑎 index of a 20 
year-old subject (median age) 

 

 

5.3  Summary and discussion of the experiment 

 We briefly summarize the results on response time, consistency, weak 

monotonicity, and set-monotonicity reported in Appendix C: subjects use less time in 

the TP questions.  Consistency is violated only in the TP questions, and violations of 

set-monotonicity occur most frequently in the TP questions.  All these results confirm 

Ariely & Zakay’s (2001) observation that TP aggravates biases and irrationalities. 

 We next summarize the experimental results reported before.  TP has no effect on 

the ambiguity aversion index 𝑏𝑏, but increases the insensitivity index 𝑎𝑎.  It is plausible 

that TP harms the cognitive understanding of ambiguity, affecting the discrimination 

of likelihoods and the perception of ambiguity.  Correspondingly, TP induces more 

violations of consistency and set-monotonicity.  It does not lead to a bigger like or 

dislike of ambiguity.  For our results, bear in mind that ambiguity is the difference 
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between uncertainty and risk.  TP may increase the aversion to uncertainty, but (and 

this is our finding), not more or less than the aversion to risk.  Our result on the 

insensitivity index shows that TP increases the lack of understanding of uncertainty 

more than of risk. 

 Similar to our results, Young et al. (2012) also found that TP increases 

insensitivity in their context of risk (for losses, with no significance for gains).  The 

effects of TP on risk aversion are not clear and can go in either direction (Young et al. 

2012; Kocher, Pahlke, & Trautmann 2013), consistent with absence of an effect on 

ambiguity aversion in our study.  Kocher, Pahlke, & Trautmann (2013) also found 

increased insensitivity toward outcomes under TP for risk.  Our second index will 

therefore be central for future studies, nudging techniques, and policy 

recommendations regarding TP. 

 The absence of ambiguity aversion that we find is not surprising in view of recent 

studies with similar findings, especially because we used natural events rather than 

Ellsberg urns (Binmore, Stewart, & Voorhoeve 2012; Charness, Karni, & Levin 2013; 

Trautmann & van de Kuilen 2015).  An additional experimental advantage of using 

natural events, that suspicion about experimenter-manipulated information is avoided, 

may have contributed to the absence of ambiguity aversion in our study.  Finally, the 

increase in preference (index 𝑏𝑏) in Part 2 of the control treatment is in agreement with 

the familiarity bias (Chew, Ebstein, & Zhong 2012; Fox & Levav 2000; Kilka & 

Weber 2001). 

 

6  Conclusion 

 Measuring ambiguity attitudes up to now was only possible for artificially created 

ambiguity through Ellsberg urns or probability intervals, with information fully or 

partially concealed by an experimenter.  We introduced indexes of ambiguity that do 

not have these limitations.  Our indexes unify and generalize several existing indexes.  

They: (a) are valid for many ambiguity theories; (b) correct for likelihood dependence 

of ambiguity aversion; (c) retain validity if expected utility for risk is violated; (d) 

correct for subjective likelihoods also if unknown; (e) can be used for all, artificial 

and natural, events.  Using natural events will increase external validity.  We applied 



 23 

our method in a study on time pressure under ambiguity where our findings are 

psychologically plausible, confirming the validity of our indexes: time pressure 

affects cognitive components (understanding, or perceived level of ambiguity) but not 

motivational components (ambiguity aversion).  Correlations between successive 

measurements of our indexes were high, supporting the reliability of our method. 

 We can now measure ambiguity attitudes without knowing beliefs and, hence, for 

all events.  We proved this mathematically and demonstrated it empirically. 
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Appendix A  Proofs for §3 

PROOF OF OBSERVATION 3.1.  Under expected utility for risk, matching probabilities 

are equal to event weights; i.e., 𝑚𝑚𝑖𝑖  = 𝑊𝑊(𝐸𝐸𝑖𝑖) and 𝑚𝑚𝑖𝑖𝑖𝑖  =  𝑊𝑊(𝐸𝐸𝑖𝑖 ∪ 𝐸𝐸𝑗𝑗).  Thus our 𝑏𝑏 is 

the average of the three values 1−𝑊𝑊(𝐸𝐸𝑖𝑖) − 𝑊𝑊(𝐸𝐸𝑖𝑖𝑐𝑐).  Schmeidler defined ambiguity 

aversion [neutrality; seeking] as quasiconvexity [linearity; quasiconcavity] of 

preference with respect to outcome (2nd stage probabilities) mixing, which implies 

positivity [nullness; negativity] of Eq. 3.2 for all 𝑖𝑖 and, hence, of our 𝑏𝑏.   

 

PROOF OF THEOREM 3.3.  The distance to be minimized is 

(𝑚𝑚1 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝1)2 + (𝑚𝑚2 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝2)2 + (𝑚𝑚3 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝3)2  

+(𝑚𝑚23 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝23)2 + (𝑚𝑚13 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝13)2 + (𝑚𝑚12 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝12)2 . (A.1) 

The first order condition of Eq. A.1 with respect to 𝜏𝜏, divided by −2, gives 

𝑚𝑚1 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝1 + 𝑚𝑚2 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝2 + 𝑚𝑚3 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝3 + 𝑚𝑚23 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝23 + 𝑚𝑚13 − 𝜏𝜏 −

𝜎𝜎𝑝𝑝13 + 𝑚𝑚12 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝12 = 0 ⇒  

 𝑚𝑚𝑐𝑐 + 𝑚𝑚𝑠𝑠 = 2𝜏𝜏 + 𝜎𝜎 . (A.2) 

In words, the level of the best-fitting line, determined by 𝜏𝜏, should be such that the 

line passes through the center of gravity of the data points, being (1
2

,𝑚𝑚𝑐𝑐+𝑚𝑚𝑠𝑠
2

).  The AD 

index 𝑏𝑏´ is 1 − 2𝜏𝜏 − 𝜎𝜎 = 1 −𝑚𝑚𝑐𝑐 −  𝑚𝑚𝑠𝑠 = 𝑏𝑏 .   

 

PROOF OF OBSERVATION 3.4.  We already use Eq. A.3 that will be stated in the proof 

of Theorem 3.5 for convenience.  We substitute 𝑝𝑝1 = 𝑝𝑝2 = 𝑝𝑝3 = 1
3
 in Eq. A.3: 

 2𝑚𝑚𝑐𝑐 + 𝑚𝑚𝑠𝑠 = 3𝜏𝜏 + 5
3
𝜎𝜎 . 

From Eq. A.2 we have 𝜏𝜏 = (𝑚𝑚𝑐𝑐 + 𝑚𝑚𝑠𝑠 − 𝜎𝜎 )/2.  We substitute it in the equation 

above: 

 2𝑚𝑚𝑐𝑐 + 𝑚𝑚𝑠𝑠 −
3
2
𝑚𝑚𝑐𝑐 −

3
2
𝑚𝑚𝑠𝑠 = −3

2
𝜎𝜎 +  5

3
𝜎𝜎 = 1

6
𝜎𝜎  

   ⇒  𝜎𝜎 = 3 (𝑚𝑚𝑐𝑐 −𝑚𝑚𝑠𝑠). 

AD defined 𝑎𝑎’ = 1 − 𝜎𝜎  which equals to our index 𝑎𝑎.   
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PROOF OF THEOREM 3.5.  We allow 𝑝𝑝1,𝑝𝑝2 to be any real value, so that we can apply 

first order conditions to them.  We always take 𝑝𝑝3 = 1 − 𝑝𝑝1 − 𝑝𝑝2.  Weak 

monotonicity will imply that 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 are still probabilities; i.e., they are 

nonnegative. 

 The first order condition of Eq. A.1 with respect to 𝜎𝜎, divided by −2, is: 

𝑝𝑝1(𝑚𝑚1 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝1) +  𝑝𝑝2(𝑚𝑚2 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝2) +  𝑝𝑝3(𝑚𝑚3 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝3) + 

𝑝𝑝23(𝑚𝑚23 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝23) + 𝑝𝑝13(𝑚𝑚13 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝13) + 

𝑝𝑝12(𝑚𝑚12 − 𝜏𝜏 − 𝜎𝜎𝑝𝑝12) = 0. (A.3) 

 We first consider the case of 𝜎𝜎 = 0.  Then 𝑎𝑎´ = 1 − 𝜎𝜎 = 1.  Further, the optimal 

fit must then hold for all probabilities 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, because they do not affect the 

distance of the neo-additive function to the data points.  Substituting 𝑝𝑝𝑖𝑖 = 1, 𝑝𝑝𝑗𝑗 =

𝑝𝑝𝑘𝑘 = 0 (with 𝑖𝑖, 𝑗𝑗,𝑘𝑘 distinct) in Eq, A.3 implies 𝑚𝑚𝑖𝑖 +  𝑚𝑚𝑖𝑖𝑖𝑖 +  𝑚𝑚𝑖𝑖𝑖𝑖 = 3𝜏𝜏 for all 𝑖𝑖 .  

Summing over 𝑖𝑖 gives 𝑚𝑚𝑠𝑠 + 2𝑚𝑚𝑐𝑐 = 3𝜏𝜏.  Subtracting Eq. A.2 gives 𝑚𝑚𝑐𝑐 = 𝜏𝜏.  Then 

also 𝑚𝑚𝑠𝑠 = 𝜏𝜏, and 𝑎𝑎 = 1.  Hence, if 𝜎𝜎 = 0 then 𝛼𝛼 = 𝛼𝛼´ and we are done.  From now on 

we assume 

  𝜎𝜎 ≠ 0.  (A.4) 

To substitute the probabilities in Eq. A.3, we consider the first order condition for 𝑝𝑝1, 

divided by −2𝜎𝜎: 

𝑚𝑚1 − 𝜎𝜎𝑝𝑝1 −𝑚𝑚3 + 𝜎𝜎(1 − 𝑝𝑝1 − 𝑝𝑝2) −𝑚𝑚23 + 𝜎𝜎(1 − 𝑝𝑝1)  

+ 𝑚𝑚12 − 𝜎𝜎(𝑝𝑝1 + 𝑝𝑝2) = 0 . (A.5) 

Then 

4𝑝𝑝1 =
𝑚𝑚1 −𝑚𝑚3 −𝑚𝑚23 + 𝑚𝑚12

𝜎𝜎
+ 2 − 2𝑝𝑝2 . 

Substituting 

2𝑝𝑝2 =
𝑚𝑚2 −𝑚𝑚3 −𝑚𝑚13 + 𝑚𝑚12

2𝜎𝜎
+ 1 − 𝑝𝑝1 . 

gives 

𝑝𝑝1 = 3(𝑚𝑚𝑐𝑐−𝑚𝑚𝑠𝑠)+3𝑚𝑚1−3𝑚𝑚23+2𝜎𝜎
6𝜎𝜎

 . (A.6) 

Similarly, 
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𝑝𝑝2 = 3(𝑚𝑚𝑐𝑐−𝑚𝑚𝑠𝑠)+3𝑚𝑚2−3𝑚𝑚13+2𝜎𝜎
6𝜎𝜎

  .  (A.7) 

  1 − 𝑝𝑝1 − 𝑝𝑝2 = 𝑝𝑝3 = 3(𝑚𝑚𝑐𝑐−𝑚𝑚𝑠𝑠)+3𝑚𝑚3−3𝑚𝑚12+2𝜎𝜎
6𝜎𝜎

  .  (A.8) 

 Substituting Eqs. A.6-A.8 in Eq. A.3, using Eq. A.2, and some tedious but 

straightforward algebraic moves (see Web Appendix) gives 

  𝜎𝜎(3𝑚𝑚𝑐𝑐 − 3𝑚𝑚𝑠𝑠 − 𝜎𝜎) = 0. 

Eq. A.4 precludes 𝜎𝜎 = 0, and therefore 

 𝜎𝜎 = 3𝑚𝑚𝑐𝑐 − 3𝑚𝑚𝑠𝑠. (A.9) 

It implies 𝑎𝑎′ = 1 − 𝜎𝜎 = 1 − (3𝑚𝑚𝑐𝑐 − 3𝑚𝑚𝑠𝑠) = 𝑎𝑎, which is what we want.  We are done 

if we show that the 𝑝𝑝𝑗𝑗’s are nonnegative, so that they are probabilities. 

 First note that weak monotonicity (𝑚𝑚𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑗𝑗𝑗𝑗 ≥ 𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑘𝑘), when summed over 

the three 𝑖𝑖 values, implies 𝑚𝑚𝑐𝑐 ≥ 𝑚𝑚𝑠𝑠, so 𝜎𝜎 ≥ 0.  By Eq. A.4, 𝜎𝜎 > 0. 

 We finally show that 𝑝𝑝𝑖𝑖 ≥ 0  for all 𝑖𝑖.  Substituting Eq. A.9 in Eq. A.6 yields 

𝑝𝑝1 = 𝑚𝑚12+𝑚𝑚13−𝑚𝑚2−𝑚𝑚3
2(𝑚𝑚𝑐𝑐−𝑚𝑚𝑠𝑠)

  . 

The denominator is positive and, by weak monotonicity, the numerator is 

nonnegative.  Hence, 𝑝𝑝1 ≥ 0.  Similarly, 𝑝𝑝2 ≥ 0 and 𝑝𝑝3 ≥ 0.  Because 𝑝𝑝3 ≥ 0, 𝑝𝑝1 +

𝑝𝑝2 ≤ 1.  The 𝑝𝑝𝑗𝑗’s are probabilities.   

 

PROOF OF OBSERVATION 3.6.  We prove the result for 𝛼𝛼-maxmin with α the weight 

assigned to the worst expected utility, satisfying 0 ≤ α ≤ 1.  Maxmin expected utility is 

the special case α = 1.  To determine the matching probability of an event E, we 

express outcomes in utility units and calculate the value according to the theory for 

prospect 1E0.  Because expected utility is assumed for risk, this value is m(E). 

1E0 →  α inf{P(E ): P ∈ C} + (1 – α) sup{P(E ): P ∈ C}   = 

   α ((1 – ε) Q + ε×0) + (1 – α) ((1 – ε) Q + ε×1)   = 

   (1 – ε) Q  + (1 – α) ε 

Hence, 𝑚𝑚𝑠𝑠���� = (1 – ε) / 3 + (1 – α)ε and mcE A = 2(1 – ε) / 3 + (1 – α)ε. 

Therefore, 𝑏𝑏 = 1 −𝑚𝑚𝑐𝑐����−𝑚𝑚𝑠𝑠����= (2α−1)ε and 𝑎𝑎 = 1 + 3(𝑚𝑚𝑠𝑠����− 𝑚𝑚𝑐𝑐����) = ε.   
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Appendix B  Details of the Experiment 

Procedure 

In the experiment, computers of different subjects were separated by wooden panels 

to minimize interaction between subjects.  Brief instructions were read aloud, and 

tickets with ID numbers were handed out.  Subjects typed in their ID numbers to start 

the experiment.  The subjects were randomly allocated to treatment groups through 

their ID numbers.  Talking was not allowed during the experiment.  Instructions were 

given with detailed information about the payment process, user interface, and the 

type of questions subject would face.  The subjects could ask questions to the 

experimenters at any time.  In each session, all subjects started the experiment at the 

same time. 

 In the TP treatment, we took two measures to make sure that TP would not have 

any effects in Part 0 and 2.  First, we imposed a two-minute break after Parts 0 and 1, 

to avoid spill-over of stress from Part 1 to Part 2.  Second, we did not tell the subjects 

that they will be put under TP prior to Part 1, so as to avoid stress generated by such 

an announcement in Part 0 (Ordonez & Benson 1997). 

 

Stimuli: Choice lists 

 Subjects were asked to state which one of the two choice options in §2 they 

preferred for different values of p, ascending from 0 to 100 (Figures B.1 and B.2).  

The midpoint between the two values of p where they switched preference was taken 

as their indifference point and, hence, as the matching probability. 

 To help subjects answer the questions quickly, which was crucial under TP, the 

experimental webpage allowed them to state their preferences with a single click.  For 

example, if they clicked on Option 2 when the probability of winning was 50%, then 

for all p > 50%, the option boxes for Option 2 were automatically filled out and for all 

p < 50% the option boxes for Option 1 were automatically filled out.  This procedure 

also precluded violations of stochastic dominance by preventing multiple preference 

switches.  After clicking on their choices, subjects clicked on a “Submit” button to 

move to the next question.  The response times were also tracked. 

 In Part 1 of the TP treatment, a timer was displayed showing the time left to 

answer.  If subjects failed to submit their choices before the time limit expired, their 
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choices would be registered but not be paid.  This happened only 5 out of the 496 

times (62 subjects × 8 choices).  In a pilot, the average response time without TP was 

36 seconds, and another session of the pilot showed that, under a 30-second time 

limit, subjects did not experience much TP.  Therefore, we chose the 25 seconds limit. 

 

Figure B.1: Screenshot of the experiment software for single event E3 in Part 0 
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Figure B.2: Screenshot of the experiment software for composite event E23 in 

Part 0 

 
 

Stimuli: Avoiding middle bias 

The middle bias can distort choice lists: subjects tend to choose the options, in our 

case the preference switch, that are located in the middle of the provided range (Erev 

& Ert 2013; Poulton 1989).  TP can be expected to reinforce this bias.  Had we used a 

common equally-spaced choice list with, say, 5% incremental steps, then the middle 

bias would have moved matching probabilities in the direction of 50% (both for the 

single and composite events).  This bias would have enhanced the main phenomenon 

found in this paper, a-insensitivity, and render our findings less convincing.  To avoid 

this problem, we designed choice lists that are not equally spaced.  In our design, the 

middle bias enhances matching probabilities 1/3 for single events and probabilities 2/3 

for composite events.  Thus, this bias enhances additivity of the matching 

probabilities, decreases a-insensitivity, and moves our a-insensitivity index toward 0.  

It makes findings of nonadditivity and a-insensitivity more convincing. 
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TABLE B.1: List of events on which the AEX prospects were based 

Part Event Event description 

0 
(Training) 

E1 the AEX decreases by strictly more than 0.4% 
E1 the AEX decreases by strictly more than 0.4% 
E2 the AEX either decreases by less than 0.4% or increases by less 

than 0.1% 
E3 the AEX increases by strictly more than 0.1% 
E12 the AEX either increases by less than 0.1% or decreases 
E23 the AEX either decreases by less than 0.4% or increases 
E23 the AEX either decreases by less than 0.4% or increases 
E13 the AEX either decreases by strictly more than 0.4% or 

increases by strictly more than 0.1% 

1 

E1 the AEX decreases by strictly more than 0.2% 
E2 the AEX either decreases by less than 0.2% or increases by less 

than 0.2% 
E2 the AEX either decreases by less than 0.2% or increases by less 

than 0.2% 
E3 the AEX increases by strictly more than 0.2% 
E12 the AEX either increases by less than 0.2% or decreases 
E12 the AEX either increases by less than 0.2% or decreases 
E23 the AEX either decreases by less than 0.2% or increases 
E13 the AEX either decreases by strictly more than 0.2% or 

increases by strictly more than 0.2% 

2 

E1 the AEX decreases by strictly more than 0.1% 
E2 the AEX either decreases by less than 0.1% or increases by less 

than 0.3% 
E3 the AEX increases by strictly more than 0.3% 
E3 the AEX increases by strictly more than 0.3% 
E12 the AEX either increases by less than 0.3% or decreases 
E23 the AEX either decreases by less than 0.1% or increases 
E13 the AEX either decreases by strictly more than 0.1% or 

increases by strictly more than 0.3% 
E13 the AEX either decreases by strictly more than 0.1% or 

increases by strictly more than 0.3% 
 

 

Incentives 

For each subject, one preference (i.e., one row of one choice list) was randomly 

selected to be played for real at the end of the experiment.  If subjects preferred the 

bet on the stock market index, then the outcome was paid according to the change in 

the stock market index during the duration of the experiment.  Bets on the given 

probabilities were settled using dice.  In the instructions of the experiment, subjects 

were presented with two examples to familiarize them with the payment scheme.  If 
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the time deadline for a TP question had not been met, the worst outcome (no payoff) 

resulted.  Therefore, it was in the subjects’ interest to submit their choices on time. 

 

Appendix C  Response time, consistency, and monotonicity 

Analysis 

We analyze response time to verify that subjects answered faster in the TP treatment.  

To do so, we will run panel regressions for the response time as described below.  For 

some events we elicited the matching probabilities twice to test for consistency, since 

TP can be expected to decrease consistency.  For each treatment and each part, we 

compare the first and second elicitation of these matching probabilities using t-tests 

with the Bonferroni correction for multiple comparisons.  In the rest of the analysis, 

we only use the first matching probability elicited for each event. 

 By set- monotonicity, the matching probability of a composite event should 

exceed the matching probability of either one of its two constituents.  Thus, we can 

test set-monotonicity six times in each part.  Weak monotonicity is defined by  𝑚𝑚𝑖𝑖𝑖𝑖 +

𝑚𝑚𝑗𝑗𝑗𝑗 ≥ 𝑚𝑚𝑖𝑖 + 𝑚𝑚𝑘𝑘 for all distinct 𝑖𝑖, 𝑗𝑗,𝑘𝑘.  Thus, we can test weak monotonicity three 

times in each part.  We will run non-parametric analysis (Wilcoxon tests and Mann-

Whitney U tests) to test whether time pressure had an impact on the number of weak 

and set- monotonicity violations 

 

Results 

The average response time in the training part is more than 25 seconds, but it gets 

much lower in Part 1 and then again in Part 2 for both the control and the TP 

treatment.  Understandably, subjects needed to familiarize with the task.  In Table 

C.1, the benchmark model (Model 1) shows that the average response time of the 

control subjects in part 1 is about 17s per matching probability.  It is about 4s longer 

than for subjects under TP, even though the TP-treatment subjects could spend up to 

25s to answer.  In part 2, the control subjects answered faster than in part 1. 
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TABLE C.1: Response time 

 Model 1 Model 2 Model 3 
intercept 16.63*** 16.66*** 16.64*** 
 (1.00) (1.62) (1.86) 
part 1 * TP treatment −4.13** −4.44*** −4.53*** 
 (1.32) (1.33) (1.34) 
part 2 * control treatment −2.33** −2.33** −2.33** 
 (0.71) (0.71) (0.71) 
part 2 * TP treatment −1.77 −2.08 −2.17 
 (1.32) (1.33) (1.34) 
male  −1.45 −1.49 
  (1.24) (1.25) 
Dutch  0.99 1.13 
  (1.43) (1.50) 
age – 20  0.48 0.51 
  (0.33) (0.34) 
knowledge = 2   −0.35 
   (1.82) 
knowledge = 3   1.22 
   (1.85) 
knowledge = 4   −2.34 
   (2.29) 
Chi2 27.82*** 31.36*** 34.81*** 
N 1584 1584 1584 
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.  Point estimates are followed by 
standard errors between brackets.  The impact of TP is in bold.  The variable age 
has been recoded as age − 20 so that the intercept corresponds to the response time 
of a 20 year-old subject (median age) 

 

 We next analyze the consistency of the matching probabilities by comparing 

repeated elicitations of matching probabilities for some events.  Pairwise comparisons 

for each pair of matching probabilities with the Bonferroni correction indicate one 

difference, in one of the two tests in Part 1 for the TP treatment: the second matching 

probability m13 is higher than the first one (mean difference = 0.04; p = 0.01).  The 

other differences are not significant. 

 A similar pattern is found within the set-monotonicity tests.  Out of 6 

monotonicity tests, the average number of violations is 0.58 in part 1 for the TP 

treatment, while it is only 0.30 in part 2 for the same treatment and 0.36 and 0.24 in 

parts 1 and 2, respectively, for the control treatment.  The difference between parts 1 

and 2 in the TP treatment is significant (within-subject Wilcoxon signed-ranks test; Z 

= −2.61, p = 0.01) and the difference between the TP and the control treatment in part 

1 is marginally significant (between-subject Mann-Whitney U test; Z = −1.71, p = 
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0.0915F

16).  Out of 3 weak monotonicity tests, the average number of violations is 0.16 

and 0.11 in parts 1 and 2 for the TP treatment, and 0.17 and 0.02 in parts 1 and 2 for 

the control treatment.  None of the differences are significant. 
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