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Abstract

Using a narrative identification of tax changes in the United States over the post-WWII pe-

riod, we document that a temporary cut in corporate income tax rates leads to a long-lasting

increase in innovation and productivity, whereas changes in personal income tax rates only have

short-term effects. We show that the results on corporate taxes are consistent with theories of

endogenous growth that feature tax amortisation allowances on intellectual property purchases,

as in the tax code of most countries in the world. In contrast, personal taxes work primarily

through the response of labour supply, which is as transient as the tax change itself.
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Hennessy, Chad Jones, Òscar Jordà, Karel Mertens, Emi Nakamura, Elias Papaioannou, Valerie Ramey, Maarten

de Ridder, Lakshmanan Shivakumar, Jon Steinsson and participants to many seminars and conferences for very

insightful comments and suggestions. We thank Aditya Polisetty for excellent research assistance. Paolo Surico

gratefully acknowledges financial support from ESRC (Grant ref. ES/Y002490/1). James Cloyne (University of

California Davis, NBER and CEPR) jcloyne@ucdavis.edu; Joseba Martinez (London Business School and CEPR)

jmartinez@london.edu; Haroon Mumtaz (Queen Mary, University of London) h.mumtaz@qmul.ac.uk; Paolo Surico

(London Business School and CEPR) psurico@london.edu.

1



1 Introduction

The last two decades have witnessed a dismal record of productivity growth in advanced economies.

In response, many governments have pursued an array of policy interventions, from public spending

on education, R&D subsidies, income tax cuts, infrastructure investment to industrial policies.

However, little is known about the effects of these policies on aggregate productivity in the data.

This is more surprising given the large empirical literature on fiscal policy spurred by the crisis of

2007-2009, which mostly focuses on the ability of public spending and taxation to stimulate GDP

in the short run.

Our empirical analysis highlights an overlooked channel through which stabilization policies can

foster productivity over the medium term: innovation. A temporary cut in corporate income tax

rates triggers a sustained but transitory expansion in capital investment and R&D expenditure.

This causes a persistent increase in patenting and productivity, which in turn leads to a significant

expansion of GDP and consumption at long horizons. In contrast, temporary changes in personal

income tax rates mainly work through the response of labour supply, and exert most of their impact

at short horizons.

We develop and estimate an endogenous productivity model which emphasizes two novel ingredi-

ents that generate long-lasting effects of corporate income tax changes on productivity and output:

the market price of intellectual property (IP) and the tax amortisation period on IP purchases. A

cut in corporate income taxes leads to a jump in the price of IP, which, in turn, provides firms with

an incentive to innovate more, by investing in Research and Development (R&D). In the model,

R&D expenses are fully tax deductible, consistent with the U.S. tax code over the post-WWII

period we study.

We provide direct empirical evidence on the mechanism highligthed by our model. On impact,

the share prices of more patent-rich firms raise more than the share prices of firms with fewer

patents. At business cycle frequencies, R&D spending, non-R&D IPP investment and trademark

assignments all increase following a cut in corporate taxes. This leads to a significant and sustained

rise in patenting and productivity at long horizons, which eventually translates into higher output

and consumption.

Our results are based on Local Projections (LP) and post-WWII U.S. data. Federal tax changes

are identified using the narrative approach of Romer and Romer (2010), which excludes all tax

changes motivated by current or prospective economic conditions. We adopt the decomposition of

these data by Mertens and Ravn (2013) and focus on changes in personal and corporate income

tax separately. To interpret the evidence from the LPs, we model explicitly the ways in which

2



personal and corporate taxes may affect R&D spending and innovation differently, in an otherwise

conventional endogenous productivity framework. We show that decoupling the basic research and

the applied research margins of innovation is crucial for the ability of any endogenous productivity

model to account for our evidence on the transmission of corporate income tax changes.

Related literature. Our analysis is related to several strands of work. An influential empirical

literature pioneered by Romer and Romer (2010), Barro and Redlick (2011), Mertens and Ravn

(2013), Cloyne (2013) and Caldara and Kamps (2012), and including many more recent studies

in the macroeconomic and accounting tradition (e.g. Shevlin et al., 2019), estimate the short-term

response of GDP to tax shocks. However, these contributions do not look at productivity and R&D

expenditure, nor at the responses of macro variables at long horizons, both of which are a main

focus of our analysis.

A long standing tradition in macroeconomics emphasizes that corporate tax cuts can boost

productivity by encouraging businesses to incorporate (Goolsbee, 1998, Mackie-Mason and Gordon,

1997). Barro and Wheaton (2020) report that the declining tax wedge between corporate and

personal income tax rates in the U.S. over the period 1978-2013 made a significant contribution

to TFP growth. Barro and Furman (2018) study the impact of the 2017 Tax Reform on long-run

productivity using a cost-of-capital framework. We relate to this literature by showing not only that

corporate tax cuts foster incorporation but also that our evidence on patenting, productivity and

output is robust to controlling for the C-corporate share of economic activity. This suggests that

corporate income tax cuts can make a positive contribution to aggregate productivity also through

an innovation channel.

A number of recent studies focus on the link between tax changes and innovation. Jones (2022)

studies optimal taxation for top earners in a model where innovation cannot be perfectly targeted

by a research subsidy. Akcigit et al. (2022) estimate large and positive effects of permanent tax

cuts on patenting activity across U.S. states and inventors. Dechezleprêtre et al. (2023) find large

effects on R&D and patenting from changes in the tax incentives to R&D. Cram and Olbert (2022)

measure the impact of the 2021 global corporate tax reform on the stock prices of companies with

different shares of intangible assets. Bloom et al. (2013) estimate the effects of R&D spillovers on

firms’ growth by exploiting variation in R&D tax incentives across U.S. states. We complement

these studies by documenting the persistent effects of temporary corporate tax cuts on innovation,

productivity and GDP.

Growing research efforts, surveyed by Cerra et al. (2022) and including Comin and Gertler

(2006), Benigno and Fornaro (2018), Anzoategui et al. (2019), de Ridder (2019), Beaudry et al.
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(2020), Jordà et al. (2020), Queraltó (2022), Furlanetto et al. (2021), Antolin-Diaz and Surico

(2022), Fieldhouse and Mertens (2023), examine the long-term effects of non-technology shocks

working via hysteresis, financial frictions, monetary policy and government spending. A distinctive

feature of our analysis is the focus on the medium-term effects of corporate income tax changes.1

Structure of the paper. In Section 2, we present the identification strategy and the empirical

framework based on LPs. Section 3 summarises the evidence obtained using a narrative identifi-

cation of income tax changes on post-WWII U.S. data. We also report results on incorporation

and from an extensive sensitivity analysis in which we vary the sample, estimation method, spec-

ification and controls (including the C-corporation share of economic activity). In Section 4, we

develop an endogenous productivity model of the business cycle with two margins of innovation:

basic and applied research. In Section 5, we estimate the structural model by minimising the dis-

tance between the model impulse responses and the LP estimates of Section 3. In Section 6, we

provide further evidence on the specific mechanism highlighted by the structural model and find

that the interaction of the market price of intellectual property and the tax amortisation period on

intellectual property purchases is a main channel through which endogenous productivity shapes

the long-lasting response of GDP to corporate taxes. Section 7 highlights the role played by the

elasticity of innovators’ labour supply in making the effects of corporate taxes more persistent than

the effects of personal taxes. In Section 8, we show that applied research is a main driver of the

long-term elasticities of patents to a permanent tax change. Conclusions are drawn in Section 9.

The Appendix contains further results and robustness analyses.

2 Empirical Framework

In this section, we describe the narrative approach to identify exogenous variation in personal and

corporate income taxes. We then present the empirical models to estimate their dynamic effects

and the data we use. Finally, we provide details of the estimation procedure.

1In independent research, Ferraro et al. (2023) estimate the effects of narratively identified personal income tax
changes on U.S. productivity over forecast horizons of up to 4 years, and use an endogenous growth model (with basic
research only) to rationalize their finding of significant but temporary effects. We departure from their analysis along
several important dimensions. First, our focus is on the medium-term, as exemplified by forecast horizons between
5 and 10 years. Second, our main contribution centers around corporate income tax changes, by documenting and
rationalizing their long-lasting effects at horizons beyond 4 years. Third, we look not just at the response of TFP
but also at those of GDP, investment, patents and stock prices: this evidence is instrumental to evaluate the various
mechanisms at play. Finally, our structural model not only features both basic and applied research but also embodies
a realistic tax amortization allowance on intellectual property purchases that reflects the U.S tax codes. We show that
both these features are crucial for the ability of our estimated structural model to generate significant and long-lasting
effects of corporate income tax changes on productivity and innovation, over the medium-term.
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2.1 Identification

Our goal is to examine the effects of different tax policy reforms on productivity and innovation.

We face at least three empirical challenges. First, we need information on when and how different

types of tax were changed. Second, tax policy is often endogenous because policy levers tend to

be adjusted in response to changes in current or prospective economic conditions. Third, given the

focus on productivity and innovation, we need econometric methods that are well-suited to elicit

potentially longer-term effects.

We address the first two challenges using the identified corporate and personal taxes changes

from Mertens and Ravn (2013). These data are based on the original data set of Romer and Romer

(2010), which identified tax changes for the United States from 1950 to 2006. To isolate changes

in tax policy that are plausibly “exogenous”, Romer and Romer (2010) examine the motivations

given by policymakers for all major pieces of Federal tax legislation over this period. Tax changes

that were not implemented for reasons related to changes in current or prospective future economic

conditions are considered “exogenous”.

A quantitative measure of each exogenous reform is constructed using historical revenue pro-

jections for the impact of the policy change, as announced at the time of the intervention. These

are scaled by nominal GDP, and thus approximate changes in the average tax rate (all else equal).

Mertens and Ravn (2013) refine this series by excluding potentially anticipated reforms, defined as

tax changes implemented more than 90 days after the announcement. Key for our purpose, Mertens

and Ravn (2013) subdivide the Romer and Romer (2010) shocks into corporate and personal tax

reforms. This so-called “narrative” approach of looking for quasinatural experiments from histori-

cal episodes has a long tradition in macroeconomic research, as exemplified by Barro and Redlick

(2011), Cloyne (2013), Mertens and Ravn (2012, 2014), Guajardo et al. (2014), Hayo and Uhl

(2014), Cloyne and Surico (2017), Gunter et al. (2018), Nguyen et al. (2021a), Hussain and Liu

(2018), Cloyne et al. (2021).2

The literature on the effects of tax changes using narrative methods finds large effects on GDP,

but typically these papers focus only on the shorter-term effects over 2 to 5 years and do not look

at all at the response of productivity and innovation. A sizable part of the macroeconomic policy

debate, however, has focused on the potential longer-term effects of tax reforms. Despite this, there

is little direct evidence on whether fiscal policy can boost productivity, and policy recommendations

2The narrative approach arguably dates back to, at least, Friedman and Schwartz (1963) who examine episodes of
unusual monetary policy in the United States. In a modern setting, the approach has been popularised by Romer and
Romer (1989) and Romer and Romer (2004). On the government spending side, a number of papers have employed
a narrative approach to examine the impact of defence (Ramey and Shapiro, 1998, Ramey, 2011, Crafts and Mills,
2013, Ramey and Zubairy, 2018, Barro and Redlick, 2011) and nondefence spending (Fieldhouse and Mertens, 2023).
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often have to rely on inferring longer-term results from the short-run estimates in some of the papers

referenced above.

The identification issue centres around the fact that the reduced form residuals are an unknown

combination of all underlying structural shocks, εt, including the exogenous variation in tax policy.

The goal is to identify the contemporaneous impact of a structural shock to taxes on the vector

of reduced-form residuals ut. The mapping from the reduced-form residuals in period t to the

structural shocks can be written as:

ut = A0εt (1)

We follow Mertens and Ravn (2013) and use the narratively identified tax changes as proxies for

the true structural variation in taxes. This is akin to using narrative shocks as instruments for

observed tax policy changes. The identification restriction is that narrative shocks are uncorrelated

with other structural shocks that may influence the economy, at least conditional on the lags of Z.3

As discussed in Mertens and Ravn (2013), the two instruments are contemporaneously correlated

(as corporate and personal taxes are sometimes changed together in the same piece of legislation).

This implies that the information from the instruments is only sufficient to identify a convolution

of the latent tax shocks and further restrictions are required to disentangle their effects. As in

Mertens and Ravn (2013), we use a Cholesky factorisation of the covariance matrix of the identified

structural shocks and order last the tax rate being perturbed in this decomposition. This restricts

the direct contemporaneous effect of this shock on the remaining tax rate to be zero while still

allowing for indirect effects. In the robustness section, we show that our results are not sensitive to

the ordering assumptions.

2.2 Econometric method

As for the empirical model, we need an econometric approach that allows us to draw inferences

about longer-term effects. Recent work by Jordà et al. (2020) for monetary policy has shown

that the longer-term effects of policy interventions tend to be incorrectly captured when impulse

response functions (IRFs) are estimated using a traditional Vector Autoregression (VAR) approach

with short lag lengths (as is common in the empirical macro literature on tax policies, which

focuses on relatively short time series samples after WWII). This is because impulse responses are

constructed as a projection from a fixed model using all the lags in the VAR. In finite samples, the

3Stock and Watson (2018) call this lag-lead exogeneity. This is a form of weak exogeneity in which narrative shocks
are identified as orthogonal to current and future economic shocks but can, in principle, reflect past events.
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lag structure has to be truncated and the VAR impulse response function at longer horizons will be

sensitive to the number of lags included (as shown by Li et al., 2021). Jordà et al. (2020) recommend

estimation of impulse response functions using local projections (LPs), following Jordà (2005). This

is a direct estimate of the impulse response function and does not use coefficient estimates on all the

lagged controls to construct the IRF. As a result, this approach is less sensitive to the choice of lag

structure and to lag truncation issues that afflict VAR methods in finite samples. For estimation,

we use Bayesian methods, which provide an efficient way to compute and characterise joint and

marginal posterior distributions.

One contribution of Mertens and Ravn (2013) is to introduce a methodology for treating the

narratively identified tax changes derived from historical documents as potentially noisy “proxies”

(or instruments) for the genuinely exogenous variation in tax policy (the “shock”). The Mertens

and Ravn (2013) technology, however, is based on a vector autoregression framework. Accordingly,

we begin from a structure close to Mertens and Ravn (2013) where the joint dynamics of a vector

of observables Z can be described by a reduced form that includes all the lags of the variables

in Z. This is the conventional starting point for a vector autoregression approach. To construct

the impulse response function, however, we follow Jordà (2005) and estimate a sequence of local

projections:

Zt+h = c(h) +B
(h)
1 Zt−1 +

P∑
j=1

b
(h)
j Zt−j + ut+h, var(ut+h) = Ωh (2)

where Zt denotes the M variables of interest described below, h is the impulse response horizon and

ut+h denote residuals. As discussed in Section 2.4, we allow for the possibility that the distribution

of ut+h is non-Gaussian.

Given the knowledge of the relevant elements ofA0, Jordà (2005) shows that the impulse response

at horizon h can be calculated as B
(h−1)
1 A0. This has two main advantages for our purposes. First,

the formulation in Jordà (2005) allows us to remain as close as possible to the setup in Mertens and

Ravn (2013) while still conducting estimation via local projections. Indeed, the shorter-term effects

we estimate below are very close to the short-run IRFs estimated by Mertens and Ravn (2013),

which provides a useful benchmark. Second, the approach in Mertens and Ravn (2013) considers

two types of tax changes using two instruments that are correlated. The two instruments identify a

convolution of tax shocks, but we do not know the true causal relationship between the personal and

the corporate income tax changes in the data. Mertens and Ravn (2013) consider different causal

orderings when simulating their results from their proxy VAR. We implement the same approach
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here. This is our baseline model.4

However, several empirical studies do not estimate the contemporaneous impact matrix sepa-

rately from the reduced form dynamics. Instead, the outcome variable is regressed directly on the

instruments and control variables. In our setting, such a LP can be written as:

Zi,t+h = c(h) + β
(h)
ct εct,t + β

(h)
pt εpt,t + b(h)Zt−1 + ut+h, ut+h ∼ N(0, σh) (3)

where εct,t (εpt,t) denotes the narrative measure of corporate (personal) tax shocks of Mertens and

Ravn (2013). We refer to Equation (3) as ‘Direct’ model because it treats the narrative measures as

the structural shocks and the estimates of β
(h)
ct (β

(h)
pt ) provide the response to the corporate (personal)

tax shock under the assumption that the contemporaneous impact on the personal (corporate) tax

shock is zero.

One concern with this ‘Direct’ model is the fact that it does not take into account the possibility

of measurement error in the narrative tax proxies. This can be dealt with by using an instrumental

variable approach (LPIV) as in Jordà and Taylor (2015):

Zi,t+h = c(h) + β
(h)
i τj,t + θ(h)εk,t + b(h)Zt−1 + ut+h, ut+h ∼ N(0, σh) (4)

where τj,t for j = ct, pt denotes the tax rate, which is instrumented by the narrative measure

εj,t. The regression also includes the narrative measure for the other tax rate εk,t, k 6= j as a

contemporaneous control. In Section 3.4, we show that our results are robust to these alternative

estimation strategies.

2.3 Data

In our benchmark specification, we use the same data as in Mertens and Ravn (2013). The control

variables in the sequence of local projections (2) include four lags of the following eight variables: (i)

APITRt, (ii) ACITRt, (iii) ln
(
BPI
t

)
, (iv) ln

(
BCI
t

)
, (v) ln (Gt) , (vi) ln (GDPt) , (vii) ln(DEBTt),

(viii) PCt.
5 The average personal and corporate tax rates are denoted by APITRt and ACITRt,

4An alternative LP-IV setup would be: ∆hZt+h = αh + βh∆Tt + ΓhXt−1 + ut+h where Z are the same outcome
variables of interest above, ∆Tt is the observed and potentially endogenous variation in tax policy (containing two tax
variables) and X is a vector of controls, potentially including lagged values of Z. ∆hZt+h = Zt+h−Zt−1. ∆Tt would
then be instrumented using the narrative “proxies” from Mertens and Ravn (2013). Because corporate and personal
tax changes are correlated, we would need to be careful in comparing the coefficient estimates with those in Mertens
and Ravn (2013) (who explicitly consider the relationship between the two taxes when simulating the IRFs). More
generally, Stock and Watson (2018) and Plagborg-Møller and Wolf (2021) discuss the equivalence of LP-IV and proxy
VAR methods. For transparency and completeness, we also implement a LP-IV approach in the robustness section.

5Montiel Olea and Plagborg-Møller (2021) demonstrate that lag-augmented local projections are particularly well-
suited to draw robust inference about impulse responses at long horizons. Furthermore, they show that lag augmen-
tation obviates the need to correct standard errors for serial correlation in the regression residuals.
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respectively, while ln
(
BPI
t

)
and ln

(
BCI
t

)
are the corresponding tax bases. Finally, ln (Gt) denotes

government spending, ln(DEBTt) stands for federal debt and GDP is represented by ln (GDPt). All

variables, except APITRt and ACITRt, are expressed in real per capita terms. The sample runs

from 1950Q1 to 2006Q4 and the data are obtained from the replication files of Mertens and Ravn

(2013). An initial estimation of the structural tax shocks using the variables (i) to (vii) above for

h = 0 reveals that the estimated personal tax rate shock can be predicted by the lags of a principal

component (denoted PCt) obtained from a large quarterly data set of macro and financial variables

for the US economy.6 Following Forni and Gambetti (2014), we add this principal component as

eighth control variable in our LPs to ameliorate concerns about information insufficiency. Note

that, as in Mertens and Ravn (2013), any additional variables of interest (that we will consider

below) are added one by one to the benchmark model. These are capital utilisation-adjusted Total

Factor Productivity (TFP), hours worked, Research and Development (R&D) expenditure, non-

residential investment, personal consumption expenditures and real wages. In Appendix A, we

provide a detailed description of the variables and data sources.

2.4 Estimation

We estimate the local projections in Equations (2) to (4) via Bayesian methods. The Bayesian

approach offers three main advantages in our setting. First, the error bands incorporate uncertainty

regarding the A0 matrix. Second, the Markov chain Monte-Carlo approach allows us to easily

compute joint posterior distributions that can be used to assess statistical differences across shocks

and horizons. Third, in Section 5, we use the IRFs produced by LPs to estimate the structural

parameters of an endogenous growth model via IRF matching, for which Bayesian methods are

routinely used.

The local projections in Equation (2) can be written compactly as:

Zt+h = βhXt + ut+h, var(ut+h) = Ωh (5)

where Xt = (1, Zt−1, .., Zt−p) collects all the regressors and βh =
(
ch, Bh

1 , b
h
1 , .., b

h
p

)
is the coefficient

matrix. When the horizon is h = 0, the model reduces to a Bayesian VAR. Given a Normal prior for

β0 and an inverse Wishart prior for Ω0, the conditional posterior distributions of these parameters

are known in closed form and the posterior distribution can be approximated via Gibbs sampling.

We use the draws of these parameters to construct the posterior for the contemporaneous impact

6The large data set is obtained from Mumtaz and Theodoridis (2020). To implement the “structuralness” test of
Forni and Gambetti (2014), we use up to 4 lags of the first 5 principal components obtained from this data set.
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matrix A0.

For longer horizons, the estimation of the model is more complex. As discussed in Jordà (2005),

the residuals ut+h are nonspherical when h > 0. We deal with this issue in two ways. In the

benchmark specification, we allow elements of ut+h to have a nonnormal distribution. Following

Chiu et al. (2017), we define ut+h = A−1et+h where A−1 is a lower triangular matrix. The vector

et+h = (e1,t+h, .., eM,t+h) denotes the orthogonalised residuals that follow Student’s t-distributions

with degrees of freedom νj and variances σ2
j for j = 1, ..,M . As discussed in Geweke (1993) and

Koop (2003), this assumption is equivalent to allowing for heteroscedasticity of an unknown form. In

the frequentist case, Montiel Olea and Plagborg-Møller (2021) show that heteroscedasticity robust

confidence intervals for LPs that control for lags of the regression variables deliver satisfactory

coverage rates. In Appendix C, we report a simple Monte-Carlo experiment showing that: (i) the

results in Montiel Olea and Plagborg-Møller (2021) extend to the Bayesian LPs with Student’s

t-disturbances, and (ii) the estimated error bands display reasonably good coverage rates even at

long-horizons.7

Furthermore, we attempt to account for autocorrelation in ut+h by modelling it directly. In a

recent study, Lusompa (2021) show that the ut+h follows an MA(h) process. Therefore, we consider

the following extended model:

Zt+h = βhXt + ut+h (6)

ut+h = εt+h + θ1εt+h−1 + ..+ θqεt+h−q, εt+h ∼ N(0,Ωh) (7)

where we allow q to grow with the horizon. As εt is unobserved, the estimation of this model is

computationally intensive. In Appendix H, we show that the IRFs estimated using (6) and (7)

corroborate our main findings.8

Finally, in the benchmark specification, the prior for βh is centred on a mean that implies that

each variable in Zt+h follows an AR(1) process. The prior variance follows the Minnesota prior,

with tightness set to a large number. As discussed in Appendix D, we use a non-informative prior

for the free elements of A and σ2
j .

9

As for the ‘Direct’ model in (3) that is used in one of the sensitivity analyses of Section 3.4,

7We provide details of the estimation algorithms in Appendix D.
8Our results do not depend on the Bayesian approach. As we show in Section 3.4, frequentist LPs estimated via

OLS or IV with confidence intervals based on HAC standard errors produce very similar results.
9Following Bańbura et al. (2010), we set the prior mean for βh by running AR(1) regressions for each endogenous

variable. The diagonal elements of the prior variance matrix corresponding to own lags p are defined as
µ2
1
p2

and as

si
sj

µ2
1
p2

for coefficients on lags of other variables. The variances si
sj

account for the differences in scale between variables

and are obtained as residual variance from the preliminary AR(1) regressions. We set the tightness parameter µ1 to
10 which implies a loose prior belief.
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we present frequentist estimates based on OLS. For the LPIV in (4), we adopt instead the ridge

estimator of Barnichon and Brownlees (2019) with smoothing parameter set via cross-validation.10

In either case, we construct asymptotic confidence intervals using Newey and West (1987) HAC

standard errors with the number of lags set so as to match the length of the IRF horizon.

3 Empirical results

In this section, we present the main results on productivity and other aggregate outcomes using

local projections and the data described in the previous section. We first focus on GDP, TFP

and hours, and then move onto R&D expenditure, investment and consumption to shed light on

the transmission mechanism. The final parts of the section discuss the forecast error variance

decomposition and a set of robustness exercises that are reported in Appendices F and H.

3.1 Main findings

Using the approach outlined in Section 2, we report here the baseline estimates of the effects of

corporate and personal income tax cuts. We begin with the responses of the average tax rate, GDP,

hours and productivity, with the latter being a key and novel focus of our analysis. We then extend

our empirical evidence to examine R&D expenditure, investment and consumption to shed light

on the most likely mechanism driving the responses of productivity and output. Each additional

variable is added to the benchmark data vector Z one at a time to avoid a sharp increase in the

number of estimated parameters.

In Figure 1, we present our first set of main results. In the left column, we show the IRFs

to a reduction in the average corporate tax rate. In the right column, we report the results for a

reduction in the average personal tax rate. The impact effect is normalised so that both shocks

reduce their respective average tax rate by 1 percentage point in the first period. The solid red

lines are the posterior medians, and the shaded bands refer to 68% and 90% (Bayesian) credible

intervals. Impulse response functions are computed using posterior draws of the coefficients A0 and

B1. Solid blue lines come from the estimated structural model that will be presented, solved, and

estimated in Section 5.

The first row of Figure 1 reveals that, following a shock to corporate and personal income taxes,

the average tax rates temporarily decline. The change in the average corporate tax rate (first

column) loses significance after about 8 quarters and goes back to zero after around 20 quarters.

10Plagborg-Møller and Wolf (2021) show that smooth local projections imply a reduction in the variance while
leading to only a small increase in the bias of LPs. We present the unsmoothed 2SLS estimate in Appendix H. Our
main findings of a significant response of GDP and TFP at longer horizons are unaffected by these modifications.
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Changes in the average personal income tax rate are somewhat less persistent, losing significance

after 6 quarters and reaching zero after around 16 quarters. Despite the different method (ie, local

projections versus VAR), these results largely replicate the findings in Figures 2 and 3 of Mertens

and Ravn (2013), where the results are plotted for the first 20 quarters. In short, the estimated tax

cuts are rather transitory.

The second row of Figure 1 shows the percentage response of real GDP. For the first 20 quarters,

this is very comparable to the main findings in Mertens and Ravn (2013). What is new are our

estimates of the longer-term effects beyond quarter 20. Looking at the first column, it is clear that,

despite the transitory nature of the corporate tax reduction, there are very persistent effects on

real GDP, whose short-run increase of 0.5% persists throughout the ten year period shown in the

figure. In other words, the corporate income tax cut has disappeared after 5 years, but the effects

on the level of economic activity is still sizable and significant after 8 years. In contrast, the second

column reveals that the average personal tax rate cut does not produce such long-lasting dynamics.

The underlying personal income tax cut is only slightly more transitory than the corporate tax cut,

but its effects on GDP are far less persistent and appear to die out already after two to three years

after the shock hits.

A similar picture emerges for productivity, which is an entirely novel focus of our analysis and

is reported in the third row of Figure 1. Both income tax rate cuts boost total factor productivity

on impact, with the size of the initial response to a personal income tax cut being larger than for

a corporate income tax change. On the other hand, the effects of corporate tax cuts grow with the

forecast horizon and remain significant even beyond business-cycle frequencies. In sharp contrast,

the response of productivity to a change in personal income tax rates is not statistically different

from zero already after two years. Finally, in the last row of Figure 1, hours worked do not respond

to changes in corporate income tax at all, but witness a short-lived boost following a cut in personal

income tax rates.

In summary, only corporate income tax changes have large and significant effects on productivity

and output at long horizons. In contrast, tax cuts on personal income have significantly larger effects

on TFP, hours worked, and GDP in the short-run than corporate income tax changes. In the next

section, we extend our empirical analysis to R&D expenditure, investment and consumption in an

effort to shed light on the possible mechanism behind the heterogeneity documented in Figure 1.
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Figure 1: Response of the Tax Rate, GDP, TFP and Hours to Corporate and Personal Tax Changes

Notes: this figure shows the responses of the average tax rates, real GDP, TFP and hours to a 1% cut in the
average rate of corporate income taxes (left column) and the average rate of personal income taxes (right
column). Red shadow bands represent central posterior 68th and 90th credible sets. Blue lines with circles
represent the impulse responses of the model in Section 4 evaluated at the posterior median of estimated
model parameters. These model-produced estimates will be discussed later in the text.
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3.2 On the mechanism

The focus on productivity and on horizons beyond 20 quarters allowed us to uncover a novel em-

pirical finding in the previous section: changes in corporate income tax rates have very persistent

effects on productivity, whereas personal income tax changes do not. In this section, we look at a

number of additional variables that could offer insights into the transmission mechanism, especially

at longer horizons. These are R&D expenditure, corporate investment and household expenditure.

The endogenous growth literature argues that R&D spending has the potential to generate persis-

tent effects on both productivity and output, while studies in the Real Business Cycle tradition

emphasise the role of physical capital accumulation as an important propagation mechanism. Fi-

nally, given such longer-term output responses, we would also expect to see persistent effects on

consumption for corporate tax changes, as opposed to short-lived effects after a personal tax change.

The findings are reported in Figure 2. The first row shows the impulse responses of R&D

expenditure to a corporate tax cut (left column) and to a personal tax cut (right column). The

second and third rows show the dynamic effects on investment and consumption, respectively.

Red lines represent medians and 68% credible sets of the impulse response posterior distributions.

Shaded areas refer to 90% central intervals. As discussed in Section 2, each variable is added one at

the time to our baseline dataset to avoid a sharp increase in our already richly parameterized local

projections.

The evidence in the first row of Figure 2 suggests that the effects of corporate tax cuts (first

column) on R&D are initially negligible but become significant about one year after the shock.

The increase is persistent and reaches a peak of 1.4% at quarter 18 before returning to zero after

nine years. The effect also loses significance after about six years. The response of investment

to corporate tax changes (second row) is equally strong, but its significance seems shorter-lived.

Finally, the consumption profile (third row) is similar to the pattern of the impulse responses of

output and productivity in Figure 1. The significant and sustained rise in R&D seems a plausible

candidate for the persistent increase in productivity reported in Figure 1. In the next sections,

we will explore this conjecture formally by developing and estimating a structural model with

endogenous growth via R&D.

The estimated effects of a personal income tax cut (second column) paint a different picture. The

response of R&D is never statistically different from zero while the change in investment is larger

over the first two years but then dies out much earlier than for corporate tax changes. The effects on

R&D and capital expenditure suggests that the sharp and short-lived increase in productivity after a

personal income tax cut in Figure 1 does not come from innovation. The estimates of the endogenous

14



Figure 2: Responses of Expenditure Components: R&D, Investment and Consumption

Notes: responses of R&D expenditure, non-residential investment and personal consumption expenditures to
a 1% cut in the average rate of corporate income taxes (left column) and the average rate of personal income
taxes (right column). Red shadow bands represent central posterior 68th and 90th credible sets. Blue lines
with circles represent the impulse responses of the model in Section 4 evaluated at the posterior median of
estimated model parameters. These model-produced estimates will be discussed later in the text.
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growth model will reveal that this finding is consistent with a short-run labour utilization story.

Finally, the response of consumption in the bottom row of Figure 2 largely inherits the shape of the

GDP profile, as was the case for corporate taxes. This is consistent with the notion that corporate

taxes raise labour income persistently, whereas personal taxes affect income only temporarily.11

In Appendix B, we report the responses of labour productivity, real wages, and employment.

Our theoretical model does not feature an extensive margin, and thus the IRF for employment will

not be used in the structural estimation of Section 5. The two main takeaways from this additional

analysis are that: (i) the responses of labour productivity and wages in Figure B.1 largely resemble

the response of TFP in Figure 1 to either shock; (ii) the effects of both income tax shocks on

employment are mostly insignificant.

In summary, the evidence in this section is consistent with a transmission mechanism in which

R&D responds to a corporate tax shock (but not to a personal tax shock) and this triggers an

endogenous response of productivity, which in turn drives a persistent effect on GDP. In Appendix

Figure E.1, we provide further support for this interpretation by looking at sectoral real gross output

from the US Bureau of Economic Analysis’ Industrial Accounts. We classify sectors into two groups

based on their R&D intensity and estimate the heterogeneous effects of corporate and personal tax

cuts. The estimates reveal that the output response to corporate tax changes is significantly larger

in sectors with high R&D intensity. In contrast, there is no statistical difference in the output

responses of the two groups of sectors to personal income tax changes.

3.3 On corporate taxes, incorporation and productivity

An important decision for busineses is whether to incorporate or not. C-corporations are distinct

legal entities from their owners and thus are subject to corporate taxes. In contrast, S-corporations

and partnerships can pass earnings through to their individual owners, who are then subject to

personal taxes. An influential literature in macroeconomics, exemplified by Mackie-Mason and

Gordon (1997), Goolsbee (1998), has argued that C-corporations are likely to have a productivity

advantage over pass-through entities if so many firms choose to incorporate despite the fact that

corporate tax rates have been historically higher than personal tax rates in the United States. In a

similar vein, Barro and Wheaton (2020) show that the decline in the wedge between corporate and

personal tax rates over the period 1978-2013 led to a significant increase in both incorporation and

productivity.

In this section, we relate to this important literature on corporate taxes, incorporation and

11In Appendix F, we report a forecast error variance decomposition, which reveals that corporate tax changes can
explain up to 25% of TFP variation over the medium term whereas personal tax changes account for less than 8%.
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productivity in two ways. First, we complement the evidence in earlier works by tracing the dynamic

impact of corporate tax changes on incorporation, using a very different identification (i.e. the

narrative approach) relative to earlier studies. Second, we verify the robustness of the response of

productivity to a corporate tax cut reported in Section 3.2 to adding the C-corporation share of

net income as a further control in our baseline LPs. The latter exercise will allow us to establish

whether the effects of corporate tax changes on productivity via R&D spending and innovation that

we have documented so far work over and above any effect of corporate tax changes on productivity

due to incorporation.

The results of these analyses are reported in Appendix Figure G.1. The top panel summarizes

the dynamic effects of a narratively identified corporate tax cut on the annual series of the C-

corporation share of net income from the BEA, following Barro and Wheaton (2020). The bottom

panel refers to the impulse response of productivity to a corporate tax cut, using a model that

is all alike the LP baseline specification except that it also adds a linearly interpolated quarterly

series of the C-corporation share of net income as further regressor. It is worth emphasizing that

all specifications control for changes in the personal tax rate and therefore any corporate tax cut

can be interpreted as a decline in the tax wedge between corporate and personal tax rates, as in

Barro and Wheaton (2020).

The estimates in Appendix G highlight two significant aspects of the data. First, a cut in cor-

porate taxes leads to an increase in the C-corporation share of net income, possibly reflecting a

surge in incorporation. Second, the dynamic effects of corporate tax changes on productivity that

is the focus of our paper are robust to controlling for any possible effect of tax changes channeled

through incorporation. We conclude that: (i) a temporary decline in the tax wedge between corpo-

rate and personal tax rates triggers a temporary increase in incorporation; (ii) temporary corporate

tax cuts have persistent effect on TFP over and above any possible effect working via incorporation,

consistent with a significant role for innovation in the transmission of tax changes to productivity.

3.4 Sensitivity Analyses

In this section, we briefly describe a wide range of checks that we have performed to confirm the

robustness of our results. Full details are reported in Appendix H. In Figure H.1, we use Bayesian

LPs where the residuals are modelled as an MA process. The estimated responses of GDP, TFP

and R&D to corporate tax cuts are positive and persistent. In contrast, the effects of personal tax

shocks are shorter-lived. In Appendix Figure H.2, we show that the benchmark model is robust to

a number of other changes in the model specification. We consider sensitivity to: (i) varying the lag
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length for the controls in Z, (ii) using the optimal prior strategy described in Giannone et al. (2015),

(iii) including the defence news shock from Ramey (2011) as a further control, and (iv) changing

the causal ordering of the two taxes as in Mertens and Ravn (2013). The solid red line and the

shaded areas in Figure H.2 replicate the median estimate and 90% credible set of Figure 1. The

results of each of the robustness checks mentioned above are overlayed. The main takeaway from

Figure H.2, Appendix H and this section is that our main finding of significant effects of corporate

income tax changes on output and productivity over the medium term is a very robust feature of

post-WWII US data.

In Figure H.3, we present frequentist estimates of the responses of GDP, TFP and R&D to the

two tax shocks using either the Direct model of equation (3) or the LPIV of equation (4). These two

specifications employ the narrative proxies of Mertens and Ravn (2013) as exogenous regressors and

instruments, respectively. While the “direct” regression of the instruments on the outcome variables

produces responses (in solid grey) that are erratic, their pattern broadly matches those obtained via

the smooth LPIV (in dotted red). The effects of corporate tax cuts on GDP are evident after about

four years and continue up to 40 quarters ahead. The response of TFP is persistent, grows with the

forecast horizon, and becomes significant over the longer term. In contrast, the effects of corporate

tax changes on R&D spending occurs during the first 5 years after the shock. Regarding personal

tax changes, we find little evidence of significant medium-term effects on output, productivity or

R&D expenditure.

In recent contributions, Herbst and Johannsen (2020) and Li et al. (2024) show that OLS es-

timates of impulse responses from LPs can be biased in small samples. Figure H.3 also presents

the impulse responses from model (3) using the bias correction proposed by Herbst and Johannsen

(2020). These responses are close to the OLS estimates suggesting that this bias is not a significant

concern in our setting.

It should be noted that because the narrative proxies of Mertens and Ravn (2013) are contem-

poraneously correlated, the identification of the shocks in the LPIV differs from the scheme used

by Mertens and Ravn (2013) and therefore the responses from these regressions are not directly

comparable to our benchmark results. An alternative strategy is to employ the mutually orthog-

onal structural shocks from the Mertens and Ravn (2013) VAR as instruments. We estimate the

following regressions:

Zi,t+h = c(h) + β
(h)
i τj,t + b(h)Zt−1 + ut+h, ut+h ∼ N(0, σh) (8)

where τj,t for j = ct, pt denotes the tax rate that is instrumented by the corresponding shock
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from the Mertens and Ravn (2013) VAR. The impulse responses of output, productivity and R&D

expenditure from these LPIV models are shown in Appendix Figure H.4 and are very similar to

the results from the benchmark Bayesian LP model. Given the similarity of the impulse responses

from this LPIV and the benchmark model, we use this specification to test the instrument strength

at each horizon. In Appendix Figure H.5, we report the robust test statistic proposed by Lewis

and Mertens (2022) and the associated 5% critical value.12 For the corporate income tax shock,

the test statistic lies above the critical value at all horizons considered in the LP. For the personal

income tax shock, the test fails to reject the null for a few quarters around the 7 year mark, but

this instrument appears strong at all remaining (shorter and longer) horizons.

4 A structural model with endogenous productivity

In the previous section, we have documented three main findings. Corporate income tax changes

have significant effects on productivity and output in the medium term; the response of TFP to

a corporate tax shock is much more persistent than the response of R&D; personal income tax

changes have significant effects on productivity and output in the short term only. In this section,

we develop a theoretical framework that accounts for these results. In the next sections, we estimate

this structural model by matching the empirical IRFs of Section 3 and then run counterfactual

analyses on the estimated model to highlight the transmission mechanism of the tax shocks.

4.1 Overview

The model has three main ingredients: (i) endogenous productivity, to have a mechanism that

could amplify the effects of tax shocks on productivity over the medium-term; (ii) two margins of

innovation, so that R&D expenditure and productivity could potentially exhibit different dynamics;

(iii) variable labour utilisation, to have a channel through which taxes may affect productivity in

the short term.

For the first ingredient, we combine elements of endogenous growth theory and business cycle

analysis, following Anzoategui et al. (2019).13 For the second feature, we introduce innovation as

a two-stage process consisting of ‘basic’ and ‘applied’ research. Following Jones (2022), we refer to

‘basic research’ as activities that uncover fundamental truths about the world in the form of new

ideas and technologies. Innovation, however, is not just about new ideas or new technologies; effort

12In our case, with one endogenous regressor, this is equivalent to the statistic of Montiel-Olea and Pflueger (2013).
13Growth in our model is semi-endogenous rather than fully endogenous as in Anzoategui et al. (2019). In our

context, this is a more “conservative” approach because it does not build in permanent level effects from transitory
changes. Furthermore, a semi-endogenous model is consistent with the observation that US GDP growth has been
relatively stable even as the average corporation tax rate has trended consistently lower in the postwar era.
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and expenditure are also required to turn those ideas into new products and processes. We refer to

this second type of innovation activity as ‘applied research’, as in Jones (2022), or ‘adoption’ as in

Comin and Gertler (2006). In Section 6.1, we show that modelling innovation as a two-stage process

not only captures realistic adoption lags but also generates a complementarity between these two

margins that plays an important role in accounting for the magnitude and persistence of the TFP

and GDP responses to a corporate tax shock. Furthermore, as we show in Section 8, the model

with adoption generates long-term elasticities of innovation to tax changes that are consistent with

the estimates in Akcigit et al. (2022) (which the model without adoption fails to do). For the third

ingredient, we adopt the unobserved labour effort margin on the household side proposed by Gaĺı

and van Rens (2020).

The taxation of income in the model. Our goal is to capture salient features of the US

tax code over the sample considered in the empirical anaysis of Section 3. For personal income

taxes, we introduce a proportional tax on workers’ labor income14. To model the taxation of

corporate income we consider deductions from taxable profits allowed by the US tax code. At

a high level, the base for the corporate income tax consists of payments to capital and “pure”

profits, net of allowable deductions. Allowable deductions are of two basic types: expenses that

are tax deductible in the period in which they are incurred (e.g., wage bills) and depreciation and

amortization benefits that can be deducted from profits over a predefined period of time. A main

finding of our analysis is that the tax treatment of innovation is a critical determinant of the long-

run effects of tax changes. It is worth highlighting that in the model, consistent with the US tax

code in our sample period, expenditures in R&D and adoption are fully tax-deductible; however, the

value of acquired intellectual property is amortized over time. As we show below, the amortization

period for intellectual property is a major driver of our results.15

4.2 Endogenous productivity: basic and applied research

In the economy, there exists a continuum of measure At of monopolistically competitive intermediate

goods firms. Each of them manufactures a differentiated product using capital and labour with a

14The taxation of personal income in the US tax code is complicated by myriad deductions and adjustments, but
we do not consider these features as part of the model.

15The tax amortisation periods for intangibles are defined in IRC Section 704(c) and IRC Section 197 of Chapter
3 of the Audit Techniques Guide published by the Internal Revenue Service. This establishes a mandatory 15-year
recovery period for assets such as goodwill, trademarks, franchises, licenses granted by governmental agencies, and
customer-based intangibles. Other assets, such as patents and copyrights, are also amortizable under IRC Section 197,
if they are purchased as part of a trade or business. R&D expenditures, on the other hand, are covered by Section
174, and prior to the TCJA in 2017, were fully tax-deductible. Given that our sample period ends in 2006Q4, we
model R&D and adoption expenditures as fully tax deductible.
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standard production function. In Appendix J, we show that aggregate output is given by:

Yt = Aθ−1
t (UtKg,t)

α(Lg,t)
1−α. (9)

In this section, we describe how R&D and adoption drive the dynamics of At. Let Zt be the

total stock of known technologies. At is the stock of adopted technologies, so (Zt − At) is the

unadopted technology stock. Basic research expenditure –or R&D for short– increases Zt while

applied research expenditure –or adoption for short – increases At.

Basic Research. There is a continuum measure 1 of innovators that hire R&D-specific labour

and capital to discover new technologies. Let Xz,j,t = Lγz,j,tK
1−γ
z,j,t be R&D expenditure by innovator

j, where Lz,j,t and Kz,j,t are labour and capital hired by innovator j, and γ is the labour share in

innovation expenditure. The number of new technologies created by a unit of R&D expenditure

(equivalently, total factor productivity in R&D), ϕt, is given by:

ϕt = Z1+ζ
t Xρz−1

z,t , (10)

where Xz,t is aggregate R&D spending and Zt is the stock of technology, both of which an individual

innovator takes as given. Following Romer (1990), the presence of Zt reflects public learning-by-

doing in the R&D process; as in Jones (1995), the degree of returns is parameterized by ζ.16

We estimate ρz < 1 (see below), which implies that higher aggregate R&D spending reduces the

efficiency of R&D at the individual level.

Let Pz,t denote the market price of an unadopted technology. As explained below, the relation-

ship between the market price of an idea and the present value of ownership is determined by the

tax treatment of intellectual property. Denoting rz,t and wz,t the rental rates of R&D capital and

labour, respectively, we can express innovator j’s decision problem as choosing Lj,z,t and Kj,z,t to

maximimise period t after-tax profit:

max
Lz,j,t,Kz,j,t

(1− τc,t)
(
Pz,tϕtL

γ
z,j,tK

1−γ
z,j,t − wz,tLz,j,t − rz,tKz,j,t

)
, (11)

where the first term inside the brackets is innovator j’s period t revenue, given by the product of

the market price of technology (Pz,t) and the number of technologies produced (ϕXz,j,t). Innovator

16The existence of a balanced growth path requires ζ = −ρz
(
θ−1
1−α

)(
gy

gy−gn − γ
)

, where gy and gn are the growth

rates of GDP and the population, and the other parameters are described in the text. In estimating the model, we use
average GDP and population growth rates over our sample period and estimate or calibrate the remaining parameters.
See Tables 1 and 2 for the estimated value of ζ and other parameters.
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j pays corporate income tax τc,t on profits, given by revenues minus the costs of hiring workers and

R&D-specific capital. Note that taxes are paid on revenues net of all costs (i.e., the wage and rental

bills) so that, consistent with the US tax code in the sample period we study, R&D expenses are

fully tax deductible.

The optimality conditions for R&D (aggregated over the unit measure of innovators) equate the

marginal cost and product of each factor: wz,t = γPz,t
Xz,t
Lz,t

and rz,t = (1− γ)Pz,t
Xz,t
Kz,t

. In aggregate,

ϕXz,t new technologies are discovered in period t. Denoting by φ the one-period survival rate for

any given technology, we can express the evolution of the stock of technologies as:

Zt+1 = ϕtXz,t + φZt (12)

Combining equations (12) and (10) yields the following expression for the growth of new technologies:

Zt+1

Zt
= ZζtX

ρz
z,t + φ. (13)

Applied Research. We next describe how unadopted technologies become adopted, and therefore

enter productive use. There is a competitive group of “adopters”, indexed by j, who convert

unadopted technologies into adopted ones. They buy the rights to the technology from the innovator

at the competitive price Pz,t and convert the technology into use by employing adoption-specific

labour and capital as inputs. This process takes time on average, and the conversion rate may vary

endogenously. In particular, the rate of adoption depends positively on the level of resources devoted

to adoption: an adopter succeeds in making a product usable in any period t with probability λt,

which is an increasing and concave function of expenditure, Xa,j,t = Lγa,j,tK
1−γ
a,j,t , according to the

following function:

λt = λ

(
Zt

Nγ
t Ψ1−γ

t

Xa,j,t

)
, (14)

where λ′ > 0, λ′′ < 0, La,j,t and Ka,j,t are labour and capital hired by innovator j, and γ is the

labour share in innovation expenditure.

To ensure the existence of a balanced growth path, we increase Xa,j,t by a spillover effect coming

from the total stock of technologies Zt (implying that the adoption process becomes more efficient

as the technological state of the economy improves) and Nγ
t Ψ1−γ

t , where Ψt is a scaling factor that

grows at the same rate of GDP on the balanced growth path and Nt is the population. Once in

usable form, the adopter sells the rights to the technology at price Pa,t, determined in a competitive

market, to a monopolistically competitive intermediate goods producer that makes the new product

22



using a Cobb-Douglas production function (described in Equation (47)). Letting Πi,t be the profits

that an intermediate goods firm makes from producing a good under monopolistically competitive

pricing, the present value of after-tax monopolistic profits is given by:

Vt = (1− τc,t) Πi,t + βφEt [Λt,t+1Vt+1] , (15)

where τc,t is the tax rate on corporate income. An adopter’s problem is choosing inputs to maximize

the value Jt of an unadopted technology, namely:

Jt = max
La,j,t,Ka,j,t

Et [(1− τc,t) (λtPa,t − wa,tLa,j,t − ra,tKa,j,t) + φβ (1− λt) Λt,t+1Jt+1] , (16)

where λt is as in Equation (14), Pa,t is the market price of an adopted technology, and wa,t and

ra,t are the rental rates of adoption-specific labour and capital, respectively. The first term in

the Bellman equation reflects expected after-tax profits (expected revenues λtPa,t minus the costs

of hiring adoption-specific labour and capital), while the second term stands for the discounted

expected continuation value: (1 − λt) times the discounted continuation value. As with R&D, we

assume that the costs of technological adoption are fully tax-deductible. The first-order conditions

for labour and capital are:

(1− τc,t)wa,t =
∂λt
∂La,j,t

βφEt [(1− τc,t)Pa,t − Λt,t+1Jt+1] (17)

and

(1− τc,t) ra,t =
∂λt

∂Ka,j,t
βφEt [(1− τc,t)Pa,t − Λt,t+1Jt+1] . (18)

The terms on the right are the marginal benefits of adoption expenditures: the increase in the

adoption probability, λt, times the discounted difference between the value of an adopted versus an

unadopted technology. The left side is the marginal cost. Since λt does not depend on adopter-

specific characteristics, we can sum across adopters to obtain the following relation for the aggregate

evolution of adopted technologies:

At+1 = λtφ [Zt −At] + φAt (19)

where (Zt −At) measures the stock of unadopted technologies.
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4.3 Corporate taxes and the market price of intellectual property

The price of (un)adopted technologies (which we collectively refer to as intellectual property, IP)

is determined in competitive markets and, as in the model of Hall and Jorgenson (1967), given

by the sum of the present value of after-tax service flows plus the tax deductions associated with

ownership of IP. Consistent with the US tax code for the period we study, we assume that the

value of purchased IP assets is amortized over time, resulting in future tax deductions. Following

Auerbach (1989), we model amortization as a geometric process: in every period, an owner of an

IP asset can deduct a fraction δ̂IP of the book value (in this case, the purchase price) of the asset

from taxable profits. The remaining portion (1-δ̂IP ) is carried into the next period.

With this assumption, the present value of profits, inclusive of the purchase price Pa,t, for an

entrant monopolist that buys a newly adopted technology at time t and starts production at time

t+ 1 is given by:

ΠM
t = −Pa,t + Et

[
βφΛt,t+1Vt+1 +

∞∑
s=0

βsΛt,t+sδ̂
s+1
IP

(
1− δ̂IP

)s
τc,t+sPa,t

]
(20)

The first term on the right-hand side is negative because the entrant monopolist is purchasing the

technology from an adopter. The second term captures the present value of monopolistic profits

starting in period t+ 1 (per Equation (15)). The third term is the present value of amortisation al-

lowances. Potential monopolists compete to buy adopted technologies and therefore, in equilibrium,

lifetime profits are zero (ΠM
t = 0). Rearranging terms and exploiting the zero-profit condition, we

can express the price of an adopted technology as:

Pa,t (1− dIP,t) = φβEtΛt,t+1Vt+1, (21)

where

dIP,t =
∞∑
s=0

βsΛt,t+sδ̂
s+1
IP

(
1− δ̂IP

)s
τc,t+s (22)

is the present value of amortisation allowances.

As adopters compete to buy unadopted technologies and the purchase price of unadopted tech-

nologies is amortised in the same way, the analogous derivation yields the market price of an

unadopted technology:

Pz,t (1− dIP,t) = φβEtΛt,t+1Jt+1. (23)

According to equations (15), (16), (21) and (23), changes in current and expected future corporate
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tax rates generate variation in the present value of both after-tax service flows and the amortisation

allowances associated with the purchase of IP. This leads to price fluctuations in Pz,t and Pa,t, which

in turn directly affect incentives to discover new technologies and adopt existing ones. As we show

in Section 6, the tax depreciation rate (which corresponds to the time span over which amortisation

is allowed in the tax code) is crucial for the ability of the structural model to generate fluctuations in

the market price of IP in response to corporate tax changes, and thereby account for the responses

of output and productivity to the corporate tax cut estimated in Section 3.

4.4 Labour supply and the rest of the model

Labor supply. We fully describe the household optimization problem in the Appendix. Variable

labour utilisation is modelled as an effort choice, following Gaĺı and van Rens (2020). The household

chooses hours one period in advance and faces a quadratic adjustment cost (increasing in the change

in hours) in doing so. After observing the period wage, the household chooses the effort per hour,

and the effective labour supply is given by hours times the effort. The first order condition for labor

effort of type j labor (j ∈ goods, R&D, adoption) is standard and given by:

− eje
χj
j,t + uc,t ((1− τp,t)wj,t) = 0, (24)

where ej is a constant, χj is the inverse elasticity of effort, uc,t is the marginal utility of consumption,

τp,t is the personal income tax rate and wj,t is the wage rate per unit of effort. We assume that

labor effort is unobserved in the data, such that variation in effort per hour explains the response

of labor productivity (output per observed hour) to a cut in personal income tax (see Figure B.1).

Rest of the model. This is relatively standard and described in Appendix J. Several features are

common to many existing models: quadratic adjustment costs on capital (used in R&D, adoption

and goods production); sticky prices à la Calvo, an interest rate rule; habits in consumption. We

model depreciation allowances for physical capital following Winberry (2021) (with tax deprecia-

tion parameter δ̂K). The definitions of corporate income and taxable corporate income are in the

Appendix. The government budget constraint is balanced in every period, with lump-sum taxes ad-

justing to balance out any difference between exogenous government consumption and the revenues

raised by corporate and personal income taxation. In the following section, we compute model

impulse responses and use them to estimate the structural parameters of the model and perform a

counterfactual analysis to elucidate the drivers of the empirical evidence in Section 3.

25



5 Structural estimation

In this section, we show that the theory outlined above can rationalise all our empirical findings. To

do so, we estimate the model of Section 4 using a limited-information Bayesian approach and show

that it accounts jointly for the responses of TFP, R&D and GDP to corporate and personal tax

changes reported in Section 3. Finally, we use the estimates of our structural model to revisit a long-

standing question in the endogenous growth literature: what are the social returns to innovation. In

the next section, we will shed light on the mechanism behind our results by decomposing the output

and productivity responses into the contributions of the various channels at play in our model.

5.1 Econometric framework

We estimate the structural model in Section 4 using the limited-information Bayesian approach

described in Christiano et al. (2010). We refer to the vector of structural parameters in the theo-

retical model as Υ and to the associated impulse responses as Φ (Υ). The structural parameters are

estimated by minimizing the distance between the theoretical model impulse responses, Φ (Υ), and

the median of the empirical LP impulse response posterior distributions from Section 3, denoted by

Φ̂, to both tax shocks.

The limited-information approach fulfils our desire to focus on the responses of the economy to

corporate and personal tax cuts jointly, and to isolate the theoretical mechanism(s) that are most

likely to drive the empirical findings of Section 3. It is therefore important that the estimated pa-

rameters maximize the likelihood that the structural model generates the data not only conditional

to both income tax shocks, but also across short and long horizons. We will then be able to conduct,

in the next section, a series of counterfactual experiments where we artificially change the value

of one set of structural parameters at a time to evaluate the importance of different channels for

explaining the empirical evidence from LPs in Section 3. To implement this approach, we first set

up the quasi-likelihood function as follows:

F (Φ̂|Υ) =

(
1

2π

)N
2

|V |−
1
2 exp

(
−1

2

(
Φ̂− Φ (Υ)

)′
V −1

(
Φ̂− Φ (Υ)

))

where N denotes the number of elements in Φ̂, and V is a weighting matrix. In our application, V

is a diagonal matrix with the posterior variance of Φ̂ on the main diagonal. Denoting by p (Υ) the

prior distributions, the quasi-posterior distribution is defined as:

F
(

Υ|Φ̂
)
∝ F (Φ̂|Υ)p (Υ)
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We use a random walk Metropolis-Hastings algorithm to approximate the posterior distribution.

The number of iterations is set to 1,100,000 and we save every 50th draw after a burn-in of 100,000.17

The vectors Φ̂ —which is based on the LPs of Section 3— and the vector Φ(Υ) —which is based on

the theoretical model of Section 4— contain the IRFs (to both shocks) of the following variables:

R&D, investment, consumption, GDP, hours worked and TFP. It is worth emphasizing that, by

simultaneously targeting the effects of both corporate and personal taxes, we are attempting to hit

a number of key moments jointly, across shocks and across forecast horizons.

5.2 Calibrated parameters and prior distributions

We partition the structural parameters into a calibrated set (Table 1) and an estimated set (Table

2). The discount factor, capital depreciation and the capital share are set at 0.99, 0.02 and 0.35

respectively. The markup is calibrated to target the steady-state share of profits in GDP. The

coefficients of the Taylor interest rate rule for monetary policy are borrowed from Anzoategui et al.

(2019). Following Wen (2004), the employment adjustment cost for the three types of labour is set

to ψ = 0.35 (whereas the elasticities of labour effort are estimated). The government spending share

and the steady state tax rates are set to their sample averages. To calibrate the tax depreciation

rate for capital (δ̂K), we average the estimated present value of depreciation deductions employed by

Hall and Jorgenson (1967) and House and Shapiro (2008), since those two sets of estimates bookend

the time period covered by our data. We calibrate the tax depreciation for intellectual property

assets (δ̂IP ) to match the 15-year amortisation period allowed by the US tax code.18 Turning to the

technological parameters, we calibrate the steady technology adoption rate λ̄ to 0.05 (quarterly),

implying an average diffusion lag of five years, in line with the evidence in Comin and Hobijn (2010);

the rate of technological obsolescence, (1−φ), is 0.08 based on the estimates in Li and Hall (2020);

and the labour share of production in R&D and adoption, γ, is set to 0.9, consistent with R&D

expenditure data from the National Science Foundation.

In Table 2, we collect the parameters that will be estimated and their prior distributions. The

table also reports moments from the posterior distribution, which will be discussed in the next

section. Prior distributions are chosen to be diffuse but centred on values typically found in the

literature. The prior means for the more standard parameters, such as habit formation, the Calvo

17The starting values of the parameters are obtained by maximising the log posterior using the covariance matrix
adaption algorithm (CMA-ES). Then, an initial run of the Metropolis algorithm is used to approximate var (Υ). A
scaled version of var (Υ) is used to calibrate the variance of proposal distribution for the main run of the Metropolis
algorithm. We choose the scaling so that the acceptance rate is about 20%.

18For robustness, we have also tried a version of the model in which an R&D subsidy is calibrated to the rate
estimated by the OECD. We find that the inclusion of a static subsidy of empirically plausible magnitude has a very
small effect on the conditional model dynamics, and thus we do not include it in the baseline model for parsimony.
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Table 1: Calibrated Parameters

Parameter Description Value Source

Preference & Households
β Discount factor 0.99
ψ Employment adjustment 0.35 Wen (2004)

Technology
gy 100*SS GDP growth rate 0.91 Sample average
gn 100*SS population growth rate 0.35 Sample average
GY Government spending/GDP 0.16 Sample average
α Capital share 0.35
δ Capital depreciation 0.02
ς Markup 1.087 Profits/GDP=8%
λ̄ SS technology adoption rate 0.05 Anzoategui et al. (2019)
1− φ Technology obsolescence 0.08 Li and Hall (2020)
γ Labor share in R&D expenditure 0.9 NSF data

Taxes
τ̄c SS Corp. Tax 0.19 Sample average
τ̄p SS Lab. Tax 0.3 Sample average

δ̂K Tax depreciation (capital) 0.0165 Hall and Jorgenson (1967)
House and Shapiro (2008)

δ̂IP Tax depreciation (IP) 0.0285 US tax code (15y amortization period)

Monetary Policy
ρr Smoothing 0.83 Anzoategui et al. (2019)
φy Output 0.385 Anzoategui et al. (2019)
φπ Inflation 1.638 Anzoategui et al. (2019)
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Table 2: Estimated Parameters

Parameter Description Prior Posterior
Distr Mean Std. Dev. Median 90% int.

Preference & HHs
h Consumption habit beta 0.5 0.2 0.36 [0.12, 0.65]
χg Inverse effort elasticity (goods) gamma 1 0.5 0.25 [0.08, 0.92]
χa Inverse effort elasticity (adoption) gamma 1 0.5 0.76 [0.27, 1.68]
χz Inverse effort elasticity (R&D) gamma 1 0.5 1.76 [1.03, 2.86]

Frictions & Production
f ′′a Adoption adjustment normal 4 1.5 3.14 [0.6, 5.86]
f ′′z R&D adjustment normal 4 1.5 3.49 [0.7, 6.12]
f ′′I Investment adjustment normal 4 1.5 0.81 [0.11, 4.79]
ν ′′ Capital utilization adjustment beta 0.6 0.15 0.46 [0.35, 0.59]
ξp Calvo prices beta 0.5 0.2 0.26 [0.09, 0.5]

Endogenous Technology
θ-1 Dixit-Stiglitz parameter gamma 0.15 0.1 0.68 [0.46, 0.96]
ρλ Adoption elasticity beta 0.5 0.2 0.72 [0.57, 0.84]
ρZ R&D elasticity beta 0.5 0.2 0.27 [0.17, 0.4]
ζ R&D returns to scale - - - -0.2 [-0.3, -0.13]

Shocks
ρτ,c Corporate taxes AR beta 0.85 0.07 0.94 [0.93, 0.95]
ρτ,p Labour taxes AR beta 0.85 0.07 0.76 [0.71, 0.8]
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probability that governs price stickiness, and investment adjustment costs are consistent with com-

mon estimates and priors used in earlier empirical studies, such as Smets and Wouters (2007). The

priors for the tax processes assume that the tax rates are adjusted smoothly over time and follow

Leeper et al. (2010).

There are a number of parameters that are specific to our R&D, adoption and utilisation mecha-

nisms. Estimates of the elasticity of patenting to R&D expenditures, analogous to ρZ in the model,

vary widely in the literature (Danguy et al., 2013) but are generally below 1. Accordingly, we use

a beta prior centred on 0.5. We use the same prior for the adoption elasticity ρλ. The prior mean

for the Dixit-Stiglitz parameter θ implies an elasticity of substitution across goods of 7.6, consistent

with the estimates in Broda and Weinstein (2006).19 To avoid tilting the balance in favour of any

particular adjustment cost mechanism, we use the same prior capital investment adjustment costs

in each of the sectors. We are not aware of existing estimates of the (inverse) elasticity of effort, χ.

Consequently, we choose a relatively uninformative prior centred at 1.

Finally, in Appendix I, we report the impulse response functions of output, productivity and

R&D implied by our prior distributions. The goal is to check whether any of the prior choices made

in this section may build in a tendency for our posterior estimates to spuriously detect significant

effects at long horizons. As shown in Appendix Figure I.1, our prior distributions for the structural

parameters are centred around values that imply: (i) income tax changes have no long-term effects

on the economy; (ii) productivity does not move much after either tax shock.

5.3 Posterior distributions

In this section, we discuss the posterior distributions of the structural parameters of the model in

Section 4 estimated by minimising the difference between the IRFs of the theoretical model, Φ(Υ),

and the IRFs of the baseline LPs of Section 3, Φ̂, to both tax rates. The posterior median and

central 90% credible set of the key parameters of interest are reported in the last two columns of

Table 2. The model impulse responses (evaluated at the posterior medians of Table 2) are shown

in Figures 1 and 2 as blue lines with circles.

Starting with fiscal policy in the last two rows of Table 2, the processes for the tax rates evolve

smoothly over time, with the changes in the corporate income tax rate being less short-lived than

those for the personal tax rate. Still, as shown in Figure 1, both tax rates return to zero over

the forecast horizon, with their estimated tax profiles closely aligned with their LP counterparts in

Section 3. The estimates of the parameters on R&D and technological adoption are reported in the

19Anzoategui et al. (2019) calibrate this parameter to 1.35; our prior is relatively conservative given that a higher
θ implies a larger role for the endogenous productivity mechanism.
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third block of Table 2 and are largely consistent with the available evidence. All of these parameters

are included in the calculation of the social returns to R&D, shown below, which provides a useful

way to relate the implications of our estimates to the existing literature. The inverse effort elasticity

is close to the value of 0.3 that Gaĺı and van Rens (2020) calibrate to match second moments of US

labour market fluctuations.

The estimation places a modest weight on investment adjustment costs, habit persistence and

price stickiness (top of Table 2). Interestingly, by incorporating an endogenous growth mechanism,

our estimates seem to downplay significantly these more ‘traditional’ ways of generating persistence

and amplification. In particular, adjustment costs on investment in physical capital are estimated

to be much lower than the values reported by Christiano et al. (2005), Smets and Wouters (2007),

Justiniano et al. (2010). Unlike conventional medium-scale business cycle models, however, our

framework features a range of additional sources of endogenous persistence via research spending

and innovation. More specifically, the estimation appears to favor much larger adjustment costs on

R&D and technological adoption than on physical capital investment, consistent with the evidence

from aggregate data in Bianchi et al. (2019) and from firm-level data in Bernstein and Nadiri (1989),

Bond et al. (2005) and Chiavari and Goraya (2023). Finally, we also estimate a restricted version of

our structural model in which we switch off all the endogenous growth mechanisms. The estimates

of physical capital investment adjustment costs in this restricted specification become much larger

and in line with those reported by the earlier literature cited above. We interpret this finding as

suggestive evidence that the omission of R&D spending and technological adoption in the business

cycle models routinely used for policy analyses might distort inference on the importance of physical

capital investment and its adjustment costs for business cycle fluctuations.

Social returns to R&D An instructive way to summarise the estimates of our structural model

is to revisit a fundamental question in growth theory: what are the social returns to investment

in innovation? To this end, we follow the variational approach of Jones and Williams (1998),

modified to account for the two margins of innovation featured in our model: R&D and adoption

(see Appendix K for details). We estimate that the social returns to investment in innovation,

r̃RD, range from 20.8% to 74.5% (95% confidence level), with a posterior median of 35.9%. This

estimates, which are based on US tax changes over time, is remarkably similar to those obtained

by Bloom et al. (2013) exploiting variation in R&D tax credits across time and US states.
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6 Inspecting the transmission of corporate income tax changes

A main novel empirical finding from the previous sections is that temporary corporate tax changes

have persistent effects on aggregate productivity and output at horizons beyond business-cycle fre-

quencies. In this section, we use the structural model to perform a set of counterfactual simulations

that highlight the role of endogenous productivity, and the two main forces behind it: (i) innovation,

and (ii) the tax amortisation benefits on intellectual property. We present independent evidence

that the responses of both patents and the share prices of the most patent-rich US firms, estimated

with local projections, are close to the untargeted IRFs implied by our structural model. Finally,

we show that the impact response of the market price of IP (and therefore the medium-term effects

of corporate taxes on TFP and GDP) would be far smaller and less persistent in a counterfactual

world with a shorter tax amortisation period on intangible capital investment.

6.1 Endogenous productivity

The goal of this section is to elicit the role that endogenous productivity plays in accounting for the

medium-term response of output to corporate tax changes. To this end, we proceed in two steps.

First, we decompose the (log) GDP response into the contributions of TFP, capital and capital

utilization, labour and labour utilization, using the final goods production function (Equation 9):

∆ log Y = (θ − 1) ∆ logA+ α (∆ logU + ∆ logK) + (1− α) (∆ log eg + ∆ logH) . (25)

Second, we switch off the adoption margin, and then we turn off endogenous productivity altogether,

so as to isolate the contribution of each of the two margins of innovation to the output response.

The left panel of Figure 3 plots the decomposition (25) implied by our estimated model. The

black line is the total response of GDP (also shown in Figure 1), and the shaded areas represent the

contribution of each variable. TFP accounts for the largest share of the medium-term effects, with

the rest explained by capital accumulation. A cut in corporate taxes boosts after-tax profits, which

increases the market price of IP and therefore the incentive to discover new technologies and adopt

existing ones. Moreover, the rise in adoption efforts pushes up the adoption probability and reduces

the expected ”time to market” of innovation, further raising the incentives to innovate. In general

equilibrium, more innovation also fosters capital accumulation by boosting the marginal product of

capital.

To elicit the role of the adoption margin, in the middle panel of Figure 3 we show a similar

decomposition, but for a reestimated version of the model in which the rate at which technology is
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Figure 3: GDP Decomposition and Counterfactual Analyses
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Notes: this figure plots the model impulse responses of aggregate output and its components (see Equation 9) to
a corporate income tax shock. From left to right, these are the responses of the baseline model, a model in which
the diffusion rate of new technologies is constant (“No Applied Research”) and a model with no innovation. To
construct the counterfactual plots, we re-estimate the restricted models following the procedure described in Section
5. Parameter estimates for the restricted models are in Appendix M.

adopted remains constant at the steady-state level. The medium-horizon response of GDP in the

restricted model without adoption is half that of the baseline model, suggesting that the additional

amplification provided by applied research is an important mechanism to explain the dynamic effects

of corporate tax changes.

Finally, we can get a clearer sense of the total contribution of innovation and endogenous TFP

in accounting for the response of the economy to a corporate tax cut by looking at the right

panel of Figure 3. This plots a similar decomposition to the other two panels, except that it is

based on a model without the endogenous productivity channel (akin to a RBC model with factor

utilisation). To give this most restricted model the best chance to match the data, we re-estimate

the parameters of this specification following the procedure described in Section 5. Without an

endogenous productivity channel, the model is unable to reproduce the medium-term persistence of

the GDP response reported in our empirical estimates. We conclude that endogenous productivity

accounts for the vast majority of the medium-term response of GDP.

6.2 Innovation: price and quantities

At the heart of our model is a theory of investment in innovation. R&D and applied research firms

allocate labour and capital as a function of the prices of inputs – wages and the rental rate of

capital – and of the prices of outputs, the market prices of adopted and unadopted technologies.

The first-order effect of a corporate income tax cut is a jump in the market price of IP, which in

33



turn stimulates investment in innovation (in the form of both higher R&D and applied research

expenditure). Increased investments lead to larger stocks of unadopted and adopted technologies

and, thereby, cause persistently higher productivity and GDP. We provide further empirical evidence

for this transmission mechanism in Figure 4. In Panel A (left column), we plot both the empirical

and the model-implied responses for measures of quantities and prices of innovation, as well as the

overall response of asset prices. Empirical IRFs based on LPs are shown as red lines and shaded

areas whereas the model IRFs are displayed as blue lines with circles. It is important to emphasise

that we do not target these impulse responses in estimation; instead, we use them as a validation

for the empirical merits of the model mechanism. In Panel B, we provide further evidence on

the response of investment in intangible assets for which, however, there is not a direct model

counterpart. Descriptions of the variables are detailed in the Data Appendix A.

Patents. In Panel A top row of Figure 4, we record the empirical response of the aggregate stock

of patents (red shaded areas) and the model response of the stock of technologies Zt (blue line with

circles). In the data and in the model, the stock of knowledge remains above its steady-state level

ten years after the shock; furthermore, the model does a good job in reproducing the magnitude of

the response of the patent stock, despite the fact that this IRF has not been targeted by our IRF-

matching structural estimation method. A long-standing literature (exemplified by Griliches (1990))

has argued that patents are a useful measure of technological progress. The model ability to match

the magnitude and evolution of the response of both patents and real variables (TFP, GDP, etc.)

represents further evidence that not only patents contain relevant information about technological

progress, but also that our estimated model can replicate the joint dynamics of innovation effort,

innovation output, and the long-term productivity gains of innovation. We reiterate this point in

Section 8, where we find that the model response of the stock of knowledge to permanent tax cuts

is close to existing empirical estimates from Akcigit et al. (2022).

Trademark assignments. In the top row of Panel B of Figure 4, we report a measure of trans-

actions in the market for IP: the count of transactions in the secondary market for trademarks

(assignments). These transactions are registered with the USPTO when this particular type of

intellectual property - a trademark - changes owner for any reason. Consistent with the mechanism

in the model, where a corporate tax cut leads to a prolonged period of increased innovation activity,

trademark assignments show a positive LP response, which is significant up to 30 quarters after the

shock.
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Figure 4: Evidence on the Mechanism

Notes: Panel A (left column) shows the responses of (from top to bottom) the stock of patents, the patent stock
price premium and the stock market to a 1% cut in the average rate of corporate income taxes. Red shadow bands
represent central posterior 68th and 90th credible sets. Blue lines with circles represent the impulse responses of the
model in Section 4 evaluated at the posterior median of estimated model parameters. The blue lines with circles in
the second and third rows of Panel A are plotted on the right-hand axis. Panel B (right column) shows the responses
of trademark transactions, intellectual property products investment (excluding R&D) and the stock of intangible
assets. These variables are described in Section 6.2, and data sources are described in the Data Appendix A.
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The market price of IP. The middle row of Figure 4 Panel A displays the difference in the

stock price responses of value-weighted stock portfolios that are computed by ranking companies

according to the value of their patents. To form these portfolios, we estimate firm-level patent stock

values by applying the perpetual inventory method to the patent-level data put together by Kogan

et al. (2017). We compare this “market price of IP” to the model response of the difference between:

(i) the price of a portfolio consisting of adopted and unadopted technologies; and (ii) the price of

capital. The market price of IP jumps on impact and smoothly returns to zero over the forecast

horizon, consistent with the key mechanism in the model. In the bottom row of Panel A, we plot

the response of the stock market (Dow Jones index) in red and the response of a value-weighted

portfolio of all assets in the model economy (i.e. IP and capital) in blue. In sharp contrast to the

effects on the market price of IP, both in the data and in the model, the stock market responds

gradually to a change in corporate taxes, as IP and capital accumulate over time.20

Intangible assets. The last two rows of Panel B refer to additional measures of intangibles: (i)

investment in Intellectual Property Products (IPP) other than R&D (as measured in the national

accounts), and (ii) the measure of the stock of organizational capital proposed by Peters and Taylor

(2017), which is calculated by capitalising SG&A expenditures. In line with the effects of corporate

tax changes on other measures of investment in innovation, the response of IPP investment displays

persistent dynamics that extend beyond the horizon of the shock itself. The stock of intangibles,

like patents, is significantly higher during the 10 years after the corporate income tax cut.

6.3 Tax allowances on the amortisation of intellectual property

In Section 5, we set the tax amortisation period for IP to 15 years, equivalent to δ̂IP = 0.0285,

consistent with Section 197 of the IRS Code which allows for straight-line amortisation of intellectual

property assets over a 15-year period. In Appendix L, we further show that: (i) tax amortisation

benefits on intangible assets are a salient feature of the tax codes of many countries around the

world; (ii) the legal tax amortisation periods for patents, technology and trademarks vary widely

across countries; (iii) advanced economies tend to set a much longer tax amortisation period than

emerging markets.

In this section, we explore the role played by the tax treatment of IP. To do so, we calculate tax

20It should be noted that while the estimated structural model is able to replicate well the dynamics of the stock
market responses to corporate tax cuts over the forecast horizon, it does not match the level of the stock price
responses, possibly because –by design– we have not included features that could potentially account for the stock
price volatility observed in the data. Accordingly, in Figure 4, the LP and the model IRFs for the stock prices are
plotted on different scales, respectively on the left and right vertical axes of each stock price chart.
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Figure 5: GDP and price of IP response as function of the tax amortisation period on IP

Panel A: Response of GDP After Ten Years
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Notes: this figure shows the responses of output at the 10 year horizon (Panel A) and of the market price of
IP on impact (Panel B) to a 1% cut in the average rate of corporate income taxes as a function of the tax
allowance amortisation period on intangible capital investment, implied by the estimates of the structural
model presented in Section 4. Vertical lines represent the value of the tax amortisation period on intangibles
used in Hall and Jorgenson (1967) and House and Shapiro (2008) for tangible assets.
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depreciation rates that equate the present value of tax deductions to straight-line amortisation over

varying amortisation periods. We use our estimated model to compute the responses of: (a) GDP

at long horizons and (b) the market price of IP on impact, to a corporate tax cut as a function of

the amortisation period, ranging from 0 (i.e. fully amortised within the year) to 40 years (which we

take as a proxy for codes in which purchases of intellectual property cannot be amortised at all).

The results from this exercise are summarized in Figure 5. A main finding from Panel A is that

the medium-term response of output to a temporary corporate tax cut increases monotonically with

the tax amortisation period. For short amortisation periods, corporate tax cuts would only have

a modest, even negative, impact on GDP at long horizons. In contrast, if intangible assets were

not deductible at all, at the far right of the chart, the medium-term effects on output would be

maximized. In between these two extremes, the steeper increases occur between one and ten years.

After that, the tax amortisation benefits curve flattens and values of 12, 15, 20 or the number of

years in the vertical lines implied by the calculations in Hall and Jorgenson (1967) and House and

Shapiro (2008) for tangible capital would all produce similar medium-term effects on GDP. Panel

B paints a similar picture: the impact response of the market price of IP grows monotonically with

the tax amortisation horizon.

The findings of this section highlight the central role that the tax treatment of IP plays in

determining the output response to corporate income tax changes. In Equations (21) and (23), the

present value of tax deductions, dIP , appears as a wedge that decreases in the amortisation length.

This equals exactly τc for instant amortisation and equals zero in the case of no amortisation at all

(which is equivalent to setting δ̂IP to 1 or 0 in equation 22, respectively). Because the right-hand

sides of Equations (21) and (23) are the value functions of after tax profits, when dIP = τc the tax

rates cancel on both sides in steady state, and the market price of IP is equal to the present value

of pretax profits. Extending this logic to a dynamic setting, the closer is the value of the wedge to

the tax rate itself (and hence the shorter the amortisation window), the smaller is the response of

the market price of IP to changes in corporate taxes. This reduces additional incentives to engage

in R&D and adoption, and, therefore, dampens the response of GDP after forty quarters. In other

words, shortening the tax amortisation period reduces the distortionary effects of the corporate

income taxes on the market price of IP, increasing steady-state innovation and GDP but reducing

their sensitivity to the changes in the corporate tax rate.
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7 Why are the effects of corporate taxes more persistent?

A main finding from the empirical results of Section 3 is that the effects of corporate income tax cuts

on GDP are more persistent than those of personal income tax cuts. In this section, we investigate

the reasons behind this result. An obvious candidate is that, as shown in the top two panels of

Figure 1, corporate income tax shocks tend to be somewhat more persistent than personal income

tax shocks, with the latter (former) becoming insignificant after 12 (7) quarters. To control for

any quantitative difference in the persistence of the shocks, in Appendix Figure H.6, we report the

present value of the ratio between the cumulated response of GDP over the cumulated response

of tax changes, for both corporate (red) and personal (grey), which we refer to as the Present

Value Cumulated Response (PVCR). By cumulating the tax rate changes at the denominator of the

PVCR ratio, we normalize the effects of GDP by the full extent of the tax changes over the forecast

horizon: the PVCR for each tax rate can then be interpreted as the effects on GDP of tax changes

of exactly the same total dollar amount. The estimates in Appendix Figure H.6 reveals that the

negative effects of a corporate tax increase are systematically larger than the negative effects of

a personal tax hike of the same magnitude and persistence, with most of the distribution of the

latter being on the left of the distribution of the former. More formally, in about δ = 0.91% of

posterior draws, we find that the PVCR of corporate tax changes is larger in absolute value than the

PVCR of personal tax changes, suggesting that shock persistence is unlikely to explain the different

persistence of GDP effects.

Two further possible determinants of the larger medium term output effects of corporate taxes

documented in Appendix Figure H.6 are the elasticity of innovators’ labor supply (for both types

of taxes) and the tax treatment of intellectual property purchases (for corporate income taxes).

Intuitively, the first order effect of a personal income tax cut is (according to Equation 24) an

outward shift in the labor supply, also in the innovation sector. The resulting fall in innovation

wages causes a fall in the innovation marginal cost, which in turn leads to an increase in innovation.

In contrast, the first order effect of a corporate income tax cut (as per Equations 21 and 23) is a

fall in the tax wedge between the value of an innovation and its market price, triggering an increase

in the equilibrium price of IP. According to the first-order conditions for R&D and adoption, this

leads to a surge in the demand for innovation inputs at any price, and thus higher innovation. The

magnitude of the effects of a corporate income tax cut on the market price of IP depends on the tax

amortization period, as illustrated in Panel B of Figure 5. Intuitively, this is because the tax wedge

is smaller the shorter the amortization period, which dampens the effects of corporate income tax

cuts.
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The relative magnitudes of these effects and their amplification in general equilibrium depends

on the estimated parameters of the model. To show relative magnitudes and persistence of the

responses, in Figure 6, we plot counterfactual responses of GDP to PIT and CIT cuts. In this

exercise, we make two adjustments that fulfil our desire to put the two tax cuts on an equal footing.

First, we set the persistence of the PIT shock equal to the estimated persistence of the CIT shock.

Second, because the tax base for the personal income tax is larger than the tax base for corporate

income tax (both in the model and in the data), we scale both responses by the respective tax base

divided by GDP in the estimated structural model. This implies that the IRFs represent the output

effects of tax cuts that are each worth the same amount of dollars on impact, namely 1% of GDP.

We perform three counterfactual exercise. First, as already mentioned, we impose that PIT shocks

have exactly the same persistence of CIT shocks. Second, we set the elasticity of innovators’ labor

supply to a much lower value relative to the estimates in Table 2. Third, we fix the tax amortization

of intellectual property purchases to a value that make them close to fully deductable.

Figure 6: GDP response counterfactuals
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Notes: in both panels, we plot the estimated model-implied response of GDP to: I) a transitory CIT cut (solid red
line); II) a transitory PIT cut with counterfactual shock persistence equal to the estimated persistence of a CIT cut
(dashed-dotted blue line). In addition, Panel A (left column) plots the response of GDP to: III) a transitory CIT cut
with counterfactual low innovation labor supply elasticities (χa = χz = ψz = ψa = 50; solid red line with circles); IV)
a PIT cut with the CIT persistence and low innovation elasticity (dashed dotted blue line with crosses). Panel B (right
column) plots the model response of GDP to: III) a transitory CIT cut with counterfactually high IP amortization
(δ̂IP = 0.15; solid red line with circles); IV) a PIT cut with CIT persistence and high IP amortization (dashed-dotted
blue line with crosses). All responses are scaled by steady-state tax base/GDP for the corresponding tax.

The main takeways from Figure 6 can be summarized as follows. First, comparing the solid red

line with the dashed-dotted blue line in the left panel of Figure 6 reveals that when both shocks are

equally persistent, the effects of a corporate tax rate cut of 1% of GDP is larger and more persistent
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than a personal tax cut of equivalent size. This is consistent with the evidence in Appendix Figure

H.6 based on LPs. Second, we find that, for both types of taxes, the persistence of the effects on

GDP is sensitive to the elasticity of the innovators’ labor supply, as any effect on innovation and

productivity is channeled through the response of innovators’ labor supply. If the latter is inelastic,

the effects of both tax shocks are significantly dampened. This can be seen by comparing the red

solid line with and without circles for the CIT, and the blue dashed-dotted line with and without

crosses for PIT. Third, shortening the tax amortization period for intellectual property purchases,

in the right panel, dramatically reduces the persistence of the output effects of a CIT cut (noticeable

by moving from the red solid line to the red line with circles), whereas it has virtually no effects on

the response of GDP to a PIT cut (as can be seen by moving from blue dashed-dotted line to blue

line with crosses).

In summary, the analysis in this section highlights a key role for: (i) the elasticity of innovators’

labour supply and (ii) the treatment of tax amortization of intellectual property purchases in ac-

counting for the empirical finding that corporate income tax changes have more persistent effects

on GDP than personal income tax changes. On the other hand, the empirical result that corporate

tax changes tend to last somewhat longer that personal tax changes does not appear to be a main

driver of the difference in persistence of the output effects between the two tax rate changes.

8 Long-run elasticities

In the previous sections, we studied responses to temporary tax changes. In this section, we examine

the model’s ability to generate plausible magnitudes in response to permanent tax changes. For

this purpose, we use the estimates of our model in Table 2 to compute the elasticities of the stock

of knowledge (Z) and GDP to a 1% permanent change in the marginal rates on corporate and

personal taxes, and compare them to the predictions of: (i) an estimated restricted model without

adoption, and (ii) the estimates available in the empirical literature. The goal is to assess the

ability of estimated endogenous growth models with and without applied research to quantitatively

account for other salient features of the data.

The findings of our analysis are reported in Table 3. We start by looking in Panel A at the

elasticity of patents to changes in the marginal rates on corporate and personal taxes, as these

statistics can be readily compared to the estimates available from empirical studies. Then, we look

at the predictions on the output elasticity, in Panel B, for which, to the best of our knowledge, there

is no evidence. The first row simulates a 1% permanent change in the marginal corporate tax rate

whereas the second (third) row refers to a 1% permanent change in the marginal personal tax rate at
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Table 3: Elasticities of Patenting and Output to Permanent Tax Rate Changes

Baseline
No Applied Empirical

Research Literature

Panel A – Long-run elasticity of innovation to:

Corporate Income Tax 1.5 10.12 1.98***
[1.50,2.46]

Top Personal Income Tax 1.14 11.62 1.45***
[1.22,1.68]

Bottom Personal Income Tax -0.14 -1.28 1.67
[-0.69,4.03]

Panel B – Long-run elasticity of real GDP to:

Corporate Income Tax 1.84 1.19

Top Personal Income Tax 1.25 0.85

Bottom Personal Income Tax 0.61 0.7

Note: Panel A compares the effects of permanent tax shocks on the stock of unadopted technology (Z) in two versions
of our structural model to the effects on patents reported in Akcigit et al. (2022), Table 3, panel A (corporate – corp.
MTR – and top personal income tax – MTR90) and Table C8 (bottom personal income tax – MTR50). The top
personal income tax in the model is paid by innovation workers, and the bottom personal income tax is paid by goods
production sector workers. Panel B displays the effects of permanent tax cuts on output in the model economy. The
elasticities in the first (second) column are based on the estimates of the unrestricted model in Table 2 (the estimates
of the restricted version of the model with no adoption). The third column reports the estimates in Akcigit et al.
(2022). Consistent with this latter study, all elasticities are computed with respect to the ‘keep’ rate of (1-tax rate).

the top (bottom) of the income distribution. The first two columns refer to the elasticities implied

by the estimates of the unrestricted model and the restricted model (i.e. with no applied research),

respectively, where scientists (workers) exemplify top (non-top) earners. The third column reports

the elasticities of patents in Akcigit et al. (2022), who exploits historical variation across U.S. states

to estimate the effects of permanent changes in the marginal tax rate at the 90th and 50th percentiles

of the income distribution.

Several interesting results emerge from Table 3. First, for the marginal tax rates on corporate

income and top personal incomes (the first two rows), our baseline structural model generates

elasticites of the stock of knowledge that are very close to the patent elasticities estimated by

Akcigit et al. (2022). This is consistent with the finding in Figure 4 that the model generates

responses of the knowledge stock of magnitudes similar to the empirical responses observed from

patents. Second, the unrestricted model (with adoption) of Section 5 also predicts that patents

should not move much following a tax rate change at the bottom of the income distribution, which

is consistent with the insignificant coefficient estimated by Akcigit et al. (2022). Third, in sharp

contrast, the second column of Table 3 shows that the estimated endogenous productivity model

with no applied research counterfactually predicts that the effects of a permanent change in the

marginal tax rate on either corporate income or top personal income would be much larger than
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the estimates in Akcigit et al. (2022).21

Finally, in Panel B of Table 3, we report the output elasticities implied by the estimates of the

baseline model and the restricted model without applied research, respectively. Although, to our

knowledge, we do not have any existing empirical estimates of output elasticities to compare with,

it is interesting to note that the baseline model produces a much larger response of output to a

permanent change in either the corporate income or the top earnings tax rate. This suggests that,

in the restricted model with no adoption, the output elasticity to patents is much smaller than in

the estimated baseline model with adoption, despite the finding in Panel A that the restricted model

has a much higher elasticity of patents to a tax change. In other words, the omission of an applied

research margin of innovation implies that in the restricted model patents are very responsive to a

permanent tax change, but their contribution to the GDP response is much diminished relative to

an estimated endogenous growth model that features also an applied research margin.22

9 Conclusions

This paper uncovers a novel channel through which fiscal policy can boost aggregate productivity

and innovation at horizons beyond the business cycle. A cut in corporate income taxes stimulates

investment in R&D. This encourages both the creation of new technologies —which we refer to as

‘basic research’— and the adoption of existing technologies —which we refer to as ‘applied research’.

We show that ‘applied research’ is crucial for the ability of an estimated endogenous growth model

to account for the magnitude and persistence of the effects of temporary corporate tax changes on

productivity and output that we document on post-WWII data for the United States. In contrast,

changes in the average tax rate on personal income have a limited impact on R&D expenditure and

innovation over our sample, and therefore their effects on productivity and output are stronger at

shorter horizons.

To interpret our evidence, we develop and estimate a structural model of the business cycle with

endogenous productivity. The estimated structural model reveals that tax amortisation allowances

on intellectual property purchases are key for corporate income tax change to affect the market

price of IP and, through that, increase the incentives to invest in innovation and foster productivity

at longer horizons. As a result, the expansion in GDP and consumption is persistent, even though

21The intuition is that in the model with no adoption, the elasticties of R&D spending need to be much larger
to match the LP impulse responses of Section 3. In other words, an endogenous TFP model with no adoption can
account for our IRFs evidence only at the cost of empirically implausible elasticities of patents to either tax shock.

22As in the canonical model of Hall and Jorgenson (1967), if all margins of corporate expenditure (on both physical
capital and intellectual property) were fully tax deductible (i.e., δ̂IP = δ̂K = 1), permanent cuts in corporate income
taxes would only affect the government budget constraint but have no real effect on output at either short or long
horizons. See Abel (2007) for an intuitive explanation of this neutrality result in a general equilibrium setting

43



the corporate income tax cuts are transitory. Corporate tax cuts have medium-term effects even

though R&D expenditures are fully tax deductible in our model, consistent with the U.S. tax code

over our sample period. We provide independent evidence on the mechanism highlighted by our

structural model by showing that the empirical responses of both the stock of patents and the share

prices of the most patent-rich U.S. firms to corporate tax cuts line up with the model predictions.
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Bańbura, M., D. Giannone, and L. Reichlin (2010): “Large Bayesian vector auto regressions,”

Journal of Applied Econometrics, 25, 71–92.

Beaudry, P., D. Galizia, and F. Portier (2020): “Putting the Cycle Back into Business Cycle

Analysis,” American Economic Review, 110, 1–47.

Benigno, G. and L. Fornaro (2018): “Stagnation Traps,” The Review of Economic Studies, 85,

1425–1470.

Bernstein, J. I. and M. I. Nadiri (1989): Rates of Return on Physical and R&D Capital

and Structure of the Production Process: Cross Section and Time Series Evidence, Dordrecht:

Springer Netherlands, 169–187.

Bianchi, F., H. Kung, and G. Morales (2019): “Growth, slowdowns, and recoveries,” Journal

of Monetary Economics, 101, 47–63.

Bloom, N., M. Schankerman, and J. van Reenen (2013): Econometrica, 81, 1347–1393.

Bond, S., D. Harhoff, and J. V. Reenen (2005): “Investment, R&D and Financial Constraints

in Britain and Germany,” Annales d’Économie et de Statistique, 433–460.
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A Data Appendix

A.1 Macroeconomic data

Table A.1: Macroeconomic variables definitions

Variable Description Source

Consumption Real personal consumption expenditure
per-capita

FRED divided by popu-
lation

Investment Real Non-residential investment per-
capita

MR

Productivity Output per hour (Non-Farm business
sector)

FRED

R&D spending Investment in Research and Develop-
ment

FRED divided by IPP
deflator and population

Employment Total economy employment per-capita MR

Population Total Population over age 16 MR

The main macroeconomic variables are taken directly from Mertens and Ravn (2013): (1)

APITRt, (2) ACITRt, (3) ln
(
BPI
t

)
, (4) ln

(
BCI
t

)
, (5) ln (Gt) , (6) ln (GDPt) , (7) ln(DEBTt). The

personal and corporate tax rates are denoted by APITRt and ACITRt, respectively while ln
(
BPI
t

)
and ln

(
BCI
t

)
are the corresponding tax bases in real per-capita terms. ln (Gt) denotes real per-

capita government spending, while ln(DEBTt) is real per-capita federal debt. Real per-capita GDP

is denoted by ln (GDPt). For a detailed description of these series and data sources, see the appendix

of Mertens and Ravn (2013). The table above provides a list of the additional macroeconomic data

used in our analysis. MR denotes the replication files of Mertens and Ravn (2013) available at

https://www.aeaweb.org/articles?id=10.1257/aer.103.4.1212.

A.2 Sectoral Data

Gross output by industry is obtained from the Bureau of Economic Analysis (BEA) and is provided

at annual frequency from 1947 to 1997 (available at the following link). We deflate Gross output

by its deflator. This historical data is combined with the more recent quarterly real Gross output

data to produce an annual time series for 87 sectors from 1950-2006. Real gross output is divided

by population.

Data on R&D intensity is obtained from the Business Enterprise Research and Development

Survey of the National Science Foundation for the period 1999 to 2007. R&D intensity is defined

as funds for industrial R&D as a percent of net sales of companies. The R&D intensity data from

this survey can be matched to 28 industries in the Gross output data set. These 28 industries are

used in the sectoral analysis presented below.

A.3 Data and definitions for Figure 4

Stock of Patents. This is calculated using the perpetual inventory method by adding the count

of (eventually granted) USPTO patent filings and using 8% depreciation (Li and Hall (2020)). The

model plot is the IRF of Zt. Sources: Google Patents Public Data, Li and Hall (2020).
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Market Price of IP We compute firm-level patent stock values using patent values from the

extended Kogan et al. (2017) database and the perpetual inventory method with 8% depreciation

(Li and Hall (2020)). We then: (i) sort firms by their patent stock value, (ii) form two portfolios

consisting of the top and bottom deciles of the patent stock value distribution, and (iii) calculate

the capitalization-weighted average price of these portfolios. The empirical IRF is that of the log

difference of the prices of the top minus bottom decile portfolios. The model response is the log

difference between the value-weighted prices of a portfolio that holds all adopted and unadopted

technologies minus a portfolio that holds all capital. Sources: Center for Research in Security Prices

(CRSP), Kogan et al. (2017), Li and Hall (2020).

Stock Market. Dow Jones Industrial Average data from WRDS. The model response is the

aggregate value of assets (IP and the capital stock). Source: WRDS.

Trade in IP. Count of trademark transactions from USPTO Trademark Transactions Database.

Source: USPTO.

IPP Investment (excluding R&D). Intellectual property products investment (excluding R&D)

from the national accounts. Source: BEA.

Intangible Stock. Organizational capital stock from Peters and Taylor (2017). Source: Peters

and Taylor (2017).

2



B The Labour Market Response

Figure B.1: Response of labour Productivity, Wages and Employment to Income Tax Changes

Notes: responses of labour productivity, wages and employment to a 1% cut in the average rate of corporate income
taxes (left column) and of personal income taxes (right column). Red shadow bands represent central posterior 68th

and 90th credible sets. Blue lines with circles represent the impulse responses of the model in Section 4 evaluated
at the posterior median of estimated model parameters. Because the model does not have an extensive employment
margin, no model response is plotted for employment.

C Monte-Carlo evidence on Local Projections estimates of im-

pulse response functions at medium and long-run horizons

In this section, we investigate the ability of LPs and VARs to estimate impulse response functions at

medium and long-run horizons. Our Monte-Carlo analysis complements that of Jordà et al. (2020)

as we consider the performance of multi-variate models.

C.1 Data Generating Process and models

The data generating process is designed to mimic the broad features of the impulse responses of key

variables to corporate tax shocks. The estimated response of variables such as GDP, consumption

and productivity to corporate shocks is characterised by small increases at short horizons with larger
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positive changes arriving after about 20 periods. We replicate this shape by generating data from

a bi-variate VAR(20)

Yt = B1Yt−1 +B2Yt−2 + ...+B20Yt−20 +A0Et, Et ∼ N(0, 1) (26)

We assume that B1 =

(
0.7 0

0 0.75

)
and B20 =

(
0.1 0.1

0.1 0

)
while B2 = B3 = ... = B19 =(

0 0

0 0

)
. The contemporaneous impact matrix is fixed at A0 =

(
1 0

0.05 1

)
We generate T1 =

T + T0 observations from this model where T0 = 50 and T = 230. The first T0 observations are

discarded to account for initial values. We estimate two models using this artificial data: (i) A

VAR(4) and (ii) A LP that includes 4 lags of the two variables as controls. The models are used to

estimate the response to the first shock. Note that we do not attempt to estimate A0 which is kept

fixed at the true value for both models.

C.2 Results

The top panel of Figure C.1 displays the main results. Consider first the true impulse response

of Variable 2. The features of this function are similar to those reported in our empirical analysis

for variables such as GDP, consumption and productivity. That is, a distinctive feature of this

response is that the main effect occurs in the medium run rather than immediately. The VAR(4)

model captures the short-run impact well. However, it completely misses the increase in the variables

at horizon 20. In contrast, the LP that includes the same number of lags captures both the initial

increase in the variables and the subsequent rise at horizon 20. The bottom panel of Figure C.1 shows

the effect of increasing the lag length. Even with 10 lags, the VAR response of the second variable

is far from the truth at long horizons. When the lag length is increased to 20, the performance of

the VAR improves substantially. In the case of the LP, increasing the lag length does not materially

affect the response after horizon 20. However, there is some evidence that longer lags reduce the

discrepancy between the LP response and truth between horizons 10 and 20. In short, this simple

stylised simulation demonstrates that VARs with a small number of lags are likely to be unreliable

in estimating responses where the bulk of the movement occurs at long horizons. The LP appears

to be more robust to lag truncation.

D Estimation of the Bayesian Local Projection

D.1 Benchmark model

The model used to produce the benchmark results is defined as:

Zt+h = βhXt + ut+h, var(ut+h) = Ωh (27)

where Xt = (1, Zt−1, .., Zt−p) collects all the regressors and βh =
(
ch, Bh

1 , b
h
1 , .., b

h
p

)
is the coef-

ficient matrix. For h = 0, the model is a Bayesian VAR and estimation is standard (see for

e.g. Bańbura et al. (2010)). When h > 0, we allow for non-normal disturbances. The covari-

ance matrix Ωh is decomposed as Ωh = A−1HtA
−1′ where A is a lower triangular matrix while

Ht = diag
(
σ2
1

λ1t
,
σ2
2

λ2t
, . . . ,

σ2
M

λMt

)
. Note that 1

λit
for i = 1, . . . ,M denotes the time-varying volatility of

the orthogonal disturbances et+h = Aut+h Geweke (1993) shows that assuming a Gamma prior for
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Figure C.1: Monte-Carlo results
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Notes: Monte-Carlo estimates of impulse responses of the two variables in Y to the first shock. In the bottom panel,
the experiment is repeated for different lag lengths

λit of the form P (λi) =
∏T
t=1 P (λit) =

∏T
t=1 Γ(1, νi) leads to scale mixture of normal distributions

for the orthogonal residuals (Γ(a, b) denotes a Gamma distribution with mean a and degrees of free-

dom b). As shown in Geweke (1993), this is equivalent to assuming that each orthogonal residual

eit follows a Student’s T-distribution with degrees of freedom equal to νi. This setup is used for

VAR models in Chiu et al. (2017).

D.1.1 Priors

We employ the following prior distributions:

• We set a hierarchical prior for λit and νi (see Koop (2003)):

P (λit) = Γ(1, νi) (28)

P (νi) = Γ(ν0, 2) (29)

Note that the prior for ν is an exponential distribution, which is equivalent to a Gamma

distribution with 2 degrees of freedom. We set ν0 = 10 which gives prior weight to the

possibility of fat tails in the distribution of eit

• The prior for σ2
i is inverse Gamma : IG(T0, D0). We assume a flat prior setting the scale and

degrees of freedom to 0.

• The free elements of each row ofA have an independent prior of the form: P (Ak) ∼ N(ak,0, sk,0)
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where Ak is the kth row of this matrix. We set the mean of the prior to zero and the diagonal

elements of sk,0 to 1000

• We set a Minnesota type prior for the coefficients β̃h = vec(βh): P (β̃h) ∼ N(β0, S0). The

mean β0 implies that each variable in Zt+h follows an AR(1) process. The diagonal elements of

the variance matrix S0 corresponding to own lags are defined as
µ21
p2

and as si
sj

µ21
p2

for coefficients

on lags of other variables. Here p denotes the lag length while the ratio of variances si
sj

accounts

for differences in scale across variables. We set the tightness parameter µ1 to 10 which implies

a loose prior belief.

D.1.2 Gibbs Sampler

We use a Gibbs sampling algorithm to approximate the posterior distribution. The algorithm is

based on the samplers presented in Geweke (1993), Koop (2003) and Chiu et al. (2017). In each

iteration, the algorithm samples from the following conditional posterior distributions (Ξ denotes

all other parameters):

• G(λit|Ξ). Given a draw for A, the orthogonal residuals are constructed as et = Aut. The

conditional posterior distribution for λi,t derived in Geweke (1993) applies to each column

of et. As shown in Koop (2003) this posterior density is a gamma distribution with mean

(νi + 1) / 1
σi
e2
i,t + νi and degrees of freedom νi + 1. Note that ei,t is the ith column of the

matrix et.

• G(νi|Ξ). The conditional posterior distribution of νi is non-standard (see Koop (2003)) and

given by:

G (νi|Ξ) ∝
(νi

2

)Tνi
2

Γ
(νi

2

)−T
exp

(
−

(
1

ν0
+ 0.5

T∑
t=1

[
ln
(
λ−1
i,t

)
+ λi,t

])
νi

)
(30)

As in Geweke (1993) we use the Random Walk Metropolis-Hastings Algorithm to draw from

this conditional distribution. More specifically, for each of the M equations of the VAR, we

draw νnewi = νoldi + c1/2ε with ε ∼ N(0, 1). The draw is accepted with probability
G(νnewi |Ξ)

G(νoldi |Ξ)

with c chosen to keep the acceptance rate around 40%.

• G(A|Ξ): Given a draw for the coefficients βh the model can be written as: Aut+h = et+h

where ei,t+h ∼ N(0,
σ2
i

λit
) for i = 1, ..,M . This is a system of K linear regressions with known

error variances. The first equation is an identity u1,t+h = e1,t+h. The second equation is:

u2,t+h = −A2u1,t+h + e2,t+h, the kth equation is uk,t+h = −xuAk + ek,t+h and so on, where

xu = (u1,t+h, . . . , uk−1,t+h). By dividing both sides of the equations by the respective error

standard deviation, i.e. (
σ2
k

λkt
)(0.5), the residual variance is normalised to 1. Given the normal

prior for Ak, the conditional posterior is also normal with variance v =
(
s−1

0,k + x̃u
′x̃u

)−1
and

mean v
(
s−1

0,ka0,k + x̃u
′ũk,t+h

)
where x̃u and ũk,t+h denote the regressors and the dependent

variable after the GLS transformation described above.

• G(σ2
i |Ξ): The orthogonal residuals et+h can be transformed as follows: ˜et+h = et+hλ

0.5
i,t . The

conditional posterior for σ2
i is inverse Gamma with scale parameter ˜et+h

′ ˜et+h+D0 and degrees

of freedom T + T0
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• G(βh|Ξ) We use the algorithm of Carriero et al. (2022) to draw from this conditional posterior

distribution. Carriero et al. (2022) show that the system can be re-written as:

AZt+h = AβhXt + et+h, eit,t+h ∼ N
(

0,
σ2
i

λi,t

)
(31)

Given the lower triangular structure of A, the coefficients of the jth equation can be sampled

using blocks of the last M − j + 1 equations, conditional on the remaining blocks. Carriero

et al. (2022) show that these conditional posterior distributions are normal and they provide

expressions for the mean and variance. This algorithm is substantially faster that drawing the

coefficients of all equations in the model, jointly.

We employ 51000 iterations and drop the first 1000 as burn-in. We keep every 5th draws of the

remainder for inference.

D.1.3 Lag augmentation and coverage

Following Montiel Olea and Plagborg-Møller (2021), we carry out a Monte-Carlo experiment to

check the coverage properties of the error bands produced the Bayesian LP described above. We

generate data from a 4-variable VAR(4) model. The coefficients and variance-covariance of the error

terms is set equal to the OLS estimates of a VAR(4) model using data on 4 variables employed in our

benchmark LP: (1) ACITR, (2) BCI , (3) ln(G) and (4) ln(GDP ). We generate 228 observations

after discarding an initial sample of 100 observations to account for starting values. Using this

artificial data, we estimate two Bayesian LPs: (1) a model with 4 lags of all 4 variables included as

controls and (2) a model that is not lag-augmented and only the first lag that is required to generate

the IRF is included. We employ 51000 Gibbs iterations and drop the first 1000 as burn-in. We

keep every 5th draw of the remainder for inference. The experiment is repeated 1000 times and we

compute coverage probabilities using the estimated 90 percent highest posterior density intervals.

Figure D.1 Panel A shows that the benchmark model produces reasonably good coverage rates with

distortions that remain below 10% even at long horizons. In contrast, when the lag augmentation

is removed, the performance deteriorates substantially and coverage rates fall below 50% for all

variables.

D.1.4 Convergence

To assess convergence of the Gibbs algorithm, we examine the inefficiency factors calculated using

the impulse responses from the benchmark model. These estimates are below 20 for all variables

and horizons (see Figure D.1 Panel B) providing support for convergence of the algorithm.

D.2 Bayesian LP with MA residuals

Our alternative specification directly models the autocorrelation in the residuals. In a recent paper

Lusompa (2021) has shown that the ut+h follows an MA(h) process. We therefore consider the

following extended model:

Zt+h = βhXt + ut+h (32)

The residuals of each equation follow the MA process:

ut+h = εt+h + θ1εt+h−1 + ..+ θqεt+h−q, εt+h ∼ N(0,Ωh) (33)
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As noted in Chan (2020), this type of model can be re-written as:

Zt+h = βhXt + H̃εt+h, εt+h ∼ N(0,Ωh) (34)

where H̃ is T ×T banded matrix with ones on the main diagonal and the MA coefficients appearing

below the main diagonal. For example, the process ut+h = εt+h + θ1εt+h−1 can be written as

ut+h = H̃εt+h where H̃ =


1 0 . . . 0

θ1 1 . . . 0
...

. . .
. . .

...

0 . . . θ1 1


The model is estimated using a Gibbs sampling algorithm that is based on the methods described

in Chan (2020).

D.2.1 Priors

We employ the following prior distributions:

• The prior for Ω is inverse Wishart: IW (Ω0, T0). We employ a flat prior and set both the scale

matrix and degrees of freedom to 0.

• We set a Minnesota type prior for the coefficients β̃h = vec(βh): P (β̃h) ∼ N(β0, S0). The

mean β0 implies that each variable in Zt+h follows an AR(1) process. The diagonal elements

of the variance matrix S0 corresponding to own lags are defined as
µ21
p2

and as σi
σj

µ21
p2

for the

coefficients on the lags of other variables. Here p denotes the lag length while the ratio of

variances σi
σj

accounts for differences in scale across variables. We set the tightness parameter

µ1 to 10 which implies a loose prior belief.

• The prior for MA coefficients Θ̃ = (θ1, . . . , θq) is normal: N(Θ0, V0). The mean of the prior

is set to 0. The variance is set using the Minnesota procedure (described above) with the

coefficients on higher MA terms shrunk to 0 more quickly. We set the tightness parameter of

the prior to 0.1

D.2.2 Gibbs Sampler

The Gibbs sampling algorithm for this model samples from the following conditional posterior

distributions (Ξ denotes all other parameters):

• G(β̃h|Ξ): Given a draw for Θ̃, the model can be written as

Z̃t+h = βhX̃t + εt+h, εt+h ∼ N(0,Ωh) (35)

Z̃t+h = H̃−1Zt+h (36)

X̃t = H̃−1Xt (37)

This is simply a system of linear equations with iid residuals. Let Z̃ and X̃ denote the matrices

holding the transformed dependent and covariates, respectively. The conditional posterior is
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normally distributed with mean M and variance V :

V =
(
S−1

0 + Ω−1
h ⊗ X̃

′X̃
)−1

(38)

M = V
(
S−1

0 β0 +
(

Ω−1
h ⊗ X̃

′X̃
)
βols

)
(39)

βols = vec

((
X̃ ′X̃

)−1 (
X̃ ′Z̃

))
(40)

• G(Ωh|Ξ): Given a draw for βh, the residuals εt+h can be easily calculated. The conditional

posterior of Ωh is inverse Wishart with scale matrix ε′t+hεt+h + Ω0 and degrees of freedom

T + T0.

• G(Θ̃|Ξ): The model can be written in state-space form:

Zt+h = βhXt +
(
Im Im × θ1 . . . Im × θq

)


εt
εt−1

...

εt−q

 (41)


εt
εt−1

...

εt−q

 =


0 0 . . . 0

1 0 . . . 0
...

. . .
...

...

0 . . . . . . . . .




εt−1

εt−2

...

εt−q−1

+


εt

...

0

 (42)

var



εt
0
...

0


 =


Ω 0 . . . 0

0 0 . . . 0
...

. . .
...

...

0 . . . . . . . . .

 (43)

We use a random walk Metropolis-Hastings step to draw Θ̃. We generate a candidate

draw using Θ̃new = Θ̃old + e, e ∼ N(0, τ). The draw is accepted with probability α =
F(Zt+h|Θ̃new,Ξ)×P(Θ̃new)
F(Zt+h|Θ̃old,Ξ)×P(Θ̃old)

where the likelihood function F
(
Zt+h|Θ̃,Ξ

)
is calculated using the

Kalman filter and the Normal prior P
(

Θ̃
)

is evaluated directly. We adjust the variance τ to

ensure an acceptance rate between 20 and 40%.

We employ 51000 Gibbs iterations and drop the first 1000 as burn-in. We keep every 5th draw of

the remainder for inference.

E Sectoral Evidence

We investigate the response of gross output (GO) output to the tax shocks in the high and low

R&D groups. The former group is defined as the industries that have a R&D intensity larger than

the median, while industries in the low group have intensity lower than the median. We construct

aggregate GO in these two groups and use our benchmark LP to estimate the response of these

series to the tax shocks. As the number of observations is limited, the model is kept parsimonious,
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Figure D.1: Coverage probabilities and inefficiency factors
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Notes: this figure shows the coverage probabilities for the Bayesian LP with and without lag augmentation (Panel
A) and inefficiency factors calculated using the MCMC draws of the impulse responses from the benchmark model
(Panel B).

with one lag of the tax rates and annual GDP as the control variables. The estimated impulse

responses are shown in Figure E.1. The top panel shows the response of GO in all sectors. As in

the benchmark case, corporate tax shocks have their largest effect in the medium to the long-run.

In contrast, personal tax shocks lead to an increase in output in the first 2 years. However, the

medium and long-run impact of this shock is not statistically different from zero. The bottom two

panels of Figure E.1 show the response of output in high and low R&D sectors. Consider the bottom

left panel. There is clear evidence that the response of output to corporate tax shocks is larger in

the high R&D group at long horizons. This heterogeneity is entirely absent when the response to

personal tax shocks is considered.

F Forecast Error Variance Decomposition

In this section, we use the LP estimates of Section 3 to assess the contribution of each shock to

the variance of endogenous variables at different forecast horizons. The results of this exercise are

summarised in Figure F.1, which reports the median estimates and 90% central credible sets of the

forecast error variance decomposition for the corporate income tax shock (in red) and the personal
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Figure E.1: Sectoral Evidence: Average Effects and Results by R&D Share
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Notes: output response using sectoral data from the US BEA. The first row show the average effect. The bottom row
further split sectors into high R&D intensive and low R&D intensive.

income tax shock (in blue).1

Two main results emerge. First, at the shorter horizon of one year, the contribution of both

shocks is similar, accounting for around 20% of the variance of GDP and investment, as well as 15%

to 20% of the variation in productivity and R&D spending. But as the forecast period increases, and

especially at longer horizons, the contribution of the corporate income tax shock becomes dominant,

peaking around year 8 and accounting for around 30% of the variance of GDP and consumption,

and 20% to 25% for productivity, investment and R&D expenditure. In contrast, the contribution

of personal income tax changes to longer-term fluctuations tends to be lower than 10%.2

1By estimating the Mertens and Ravn (2013) VAR-type structure using local projections, we sidestep practi-
cal issues associated with computing forecast error variance decompositions using local projection IV methods (see
Plagborg-Møller and Wolf (Forthcoming)).

2These findings also echo results in earlier studies that focused more on short-term impact. Mertens and Ravn
(2012) find that Romer and Romer (2010) tax shocks explain around 20% of the output fluctuations at business
cycle frequencies, consistent with the short-term results in Appendix Figure F.1. Cloyne (2013) finds that narrative-
identified tax shocks in the U.K. account for around 20% of output variation at the ten-year horizon. McGrattan
(1994) finds that labour taxes account for around 25% of the in-sample variance of output and capital taxes around
5% at business cycle frequencies, using a completely different VAR-based identification approach.
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Figure F.1: Forecast Error Variance decomposition
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Notes: contribution of corporate and personal tax changes to the variance of each variable in the figure. The contri-
bution of corporate tax changes are shown in the red lines (posterior median and 68 percent band) and the shaded
area (90% band). The line with circles shows the contribution of the personal tax shock, with the posterior 68 % (90
%) bands shown by the dotted (dashed) lines.

G Incorporation

The top panel of the Figure G.1 reports the response of the annual series of C-corporation share

of net income from the Bureau of Economic Analysis (BEA) using the LPs of Section 2.2 and a

narratively identified corporate tax shock that reduce the tax rate by 1 %. The bottom panel of this

figure shows the response of TFP to a corporate tax cut that is all alike to the analysis of Section 3.2,

except that here we have added the C-corporation share of Net Income as an additional regressor

to control for any possible effect of corporate taxes on productivity working via incorporation. The

C-corporation share of Net Income is converted to quarterly frequency using linear interpolation.

Two main results can be inferred from Figure G.1. First, corporate tax cuts provide further incen-

tives for firms to incorporate (top panel). Second, even after controlling for any possible effect of

incorporation on productivity, a corporate tax cut has long-lasting effects on TFP (bottom panel).3

The evidence in this Appendix suggests a significant role for both the innovation and the incorpo-

3We obtain similar results for output and innovation.
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Figure G.1: C-Corporation share of Net income

5 10 15 20 25 30 35 40

-0.2

0

0.2

0.4

0.6

0.8

1 Benchmark
Including C-Corp share of Net income

1 2 3 4 5 6 7 8 9 10

-0.5

0

0.5

1

1.5

Notes. top panel: response of C-corporation share of net income to a corporate income tax cut; bottom panel:
response of TFP when using the (interpolated) C-corporation share of Net Income as additional control in the LPs.
Bands represent 90% credible sets.

ration channels in the transmission of tax policies to productivity and economic activity.

H Robustness

Bayesian LP with MA residuals. In Figure H.1, we use the Bayesian LPs described in section

D.2. While the response of GDP, TFP and R&D to corporate shocks is more volatile than the

benchmark, the results confirm that this shock has long-lasting effects on output and productivity.

In contrast, the estimated impact of personal tax shocks is short-lived. In Figure H.2, we show

that our main findings of very persistent effects of corporate tax changes on GDP and TFP are

robust also to varying the number of lags, using optimal priors, adding the measure of government

spending shocks proposed by Ramey (2011) and changing the ordering of the tax shocks.

Frequentist estimates of the Direct model and LPIV. In this part, we present two cases:

• using narrative measures as instruments. Figure H.3 presents impulse responses esti-

mated using the frequentist approach discussed in Section 2.2. The figure shows estimates

obtained using OLS and the smoothed version of LPIV (Barnichon and Brownlees (2019)).
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Figure H.1: IRFs using Bayesian LP with MA residuals
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Notes: this figure shows impulse responses estimated using the Bayesian LP with residuals modelled as an MA process.
The thin lines and shaded areas are the 68% and 90% error bands.

We also present the bias corrected OLS estimates of the impulse response using the method

of Herbst and Johannsen (2020). As noted in the text, these regressions use the narrative

measures of Mertens and Ravn (2013) as regressors/instruments.

• using VAR shocks as instruments. In this exercise, we use the structural tax shocks

estimated by the VAR of Mertens and Ravn (2013) as instruments. One advantage of this

approach is that the VAR shocks are orthogonal by construction and each of them can be

used to instrument the two tax rates separately. We proceed in the following steps:

1. estimate Mertens and Ravn (2013) VAR and obtain the estimates of structural corporate

and personal tax shocks (zct and zpt, respectively), which are orthogonal by construction.

2. we then estimate the following regression:

Zi,t+h = c(h) +B
(h)
1 xt +

L∑
j=1

b
(h)
j Zt−j + ut+h, ut+h ∼ N(0, σh) (44)

where xt is the endogenous variable (i.e. either the corporate or the personal tax rate)

which is instrumented by the appropriate shock obtained in step 1. The matrix Z denotes

the 8 variables considered in the benchmark specification and L is set equal to 1.
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Figure H.2: Response of real GDP, TFP and R&D: Different Specifications
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Notes: 90% bands for the baseline empirical real GDP result are shown in pink, together with the point estimates
from various alternative specifications. These include: (i) changing number of lags used as control variables, (ii)
adjusting the prior, (iii) including the Ramey (2011) defence news shock as a control (iv) changing the ordering of
the tax shocks. See text for more discussion.

The IRFs are given by B
(h)
1 ; error bands use HAC standard errors. Figure H.4 reveals that the

LPIV estimates broadly support the benchmark results. We reach similar conclusions when

we employ the smooth local projections (SLP) of Barnichon and Brownlees (2019).

• Instrument Strength. We use the robust test proposed by Lewis and Mertens (2022) to

assess the strength of the VAR shocks as instruments in the LPs at each horizon. The test is

carried out separately for the two orthogonal instruments using the LP in equation 44. The

test is implemented using the Newey and West (1987) covariance matrix with the lag set to

the impulse response horizon. Figure H.5 shows that the test statistic lies above the critical

value for the CT shock at all horizons considered in the LP. For the PT shock, the test fails to

reject the null for a few quarters but this instrument appears strong at the remaining horizons.

Persistence of the tax rates and the response of GDP In this section, we present two

methods to control for the possibility that the impact of the tax shocks may have an effect on the

tax rates that differs in persistence. We show that controlling for persistence does not affect our key

result that corporate tax shocks have long run effects on GDP while personal tax shocks do not.
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Figure H.3: Responses of GDP, TFP and R&D expenditure to Corporate and Personal Tax Changes
using alternative local projection models

5 10 15 20 25 30 35 40
-0.5

0

0.5

1

1.5

R
ea

l G
D

P

Corporate Income Tax Shock

5 10 15 20 25 30 35 40

-0.5

0

0.5

R
ea

l G
D

P

Personal Income Tax Shock

5 10 15 20 25 30 35 40

-0.5

0

0.5

1

1.5

2

T
F

P

5 10 15 20 25 30 35 40

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

T
F

P

5 10 15 20 25 30 35 40

-0.2

0

0.2

0.4

0.6

0.8

R
&

D

5 10 15 20 25 30 35 40
-0.6

-0.4

-0.2

0

0.2

0.4

R
&

D

LPIV

Direct

Bias Corrected

Notes: responses of the average tax rates, real GDP, and TFP to a 1% cut in the average rate of corporate income taxes
(left column) and the average rate of personal income taxes (right column). Red and grey shadow bands represent
90 percent confidence intervals based on Newey and West (1987) standard errors. The blue dotted line presents the
OLS point estimate corrected for bias using the method of Herbst and Johannsen (2020)

First, we follow Nguyen et al. (2021b) and compute a present value cumulated response (PVCR) of

GDP with respect to the tax shock, defined as:

PV CR =

∑k
i=0(1 + r̄)−iyi∑k
i=0(1 + r̄)−iτi

(45)

where yi denotes the response of GDP, τi is the response of the relevant tax rate, k denotes the

response horizon and r̄ is the quarterly real interest rate that we set equal to the sample average 0.28

%. We scale this measure with the ratio of average tax revenue to average tax base to account for

the differences in the size of the corporate and personal tax bases. Figure H.6 shows the posterior

distribution of the PVCR for the two tax shocks at a horizon of 8 years. The distribution of the

corporate tax response is concentrated in the negative quadrant, with a median of −2.3. In contrast

the posterior median of the personal tax response −1.87 and the distribution includes 0 indicating

the null hypothesis of a zero effect cannot be rejected.

Our second approach uses an informative prior in the benchmark Bayesian LP. In particular, we

center the prior for the reduced form response of the two tax rates on AR(1) models and use a small

prior variance (see Miranda-Agrippino and Ricco (2021)). The persistence of the AR(1) models is
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Figure H.4: LPIV estimates using Mertens and Ravn (2013) VAR shocks as instruments
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Notes: Impulse responses using IV estimates of local projections.The black lines show TSLS estimates, while the
dotted red lines are smoothed local projections. The shaded areas are the the 90% error bands, respectively. These
are constructed using the Newey and West (1987) HAC estimator for the variance of the coefficients. The bandwidth
parameter is set to the horizon of the impulse response

chosen so that the resulting structural IRF of the tax rates is approximately equal in persistence. A

loose prior is used for the response of all remaining variables in the system. Figure H.7 displays the

resulting response of the tax rates and GDP. It is clear from the figure that making the persistence

of the response of the tax rates approximately equivalent has no effect on the GDP responses. The

response of GDP to corporate tax shocks remains highly persistent.
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Figure H.5: Test for instrument strength. Mertens and Ravn (2013) VAR shocks as instruments
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Notes: the figure shows the gmin statistic of Lewis and Mertens (2022) at each horizon. The solid line depicts the
5 percent critical value. The test is constructed using the Newey and West (1987) HAC estimator. The bandwidth
parameter is set to the horizon of the impulse response.

Figure H.6: Present Value Cumulated Response at horizon of 8 years (posterior distribution)
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Notes: The figure shows the posterior distribution of the PVCR of GDP (see Equation 45) at horizon of 32 quarters.
Note that we remove extreme values from the tails of the distributions that are generated by division of numbers close
to zero in equation 45. δ denotes the proportion of draws for which the corporate income tax PVCR is smaller than
the personal income tax PVCR.
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Figure H.7: Response of GDP to tax shocks. Restricted dynamics of tax rates
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Notes: The figure shows the response of GDP to the tax shocks in a version of the benchmark model where the IRF
of the tax rates is apriori restricted to be approximately equal.

Figure H.8: Response of Primary Surplus and Federal Debt
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Notes: The figure shows the response of Primary surplus (Tax revenue minus Government spending) and Federal debt
to the tax shocks. The revenue response is constructed as described in footnote 9 in Mertens and Ravn (2013)
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I Prior Predictive Analysis

Prior predictive analysis involves drawing a candidate Υi from the marginal prior distributions of

the parameters. For each candidate Υi, the associated set of IRFs, Φ (Υi), are computed. This is

repeated 100,000 times, thereby generating a distribution of impulse responses.4 Prior predictive

analysis allows us to elicit a number of useful insights. First, we can see the range of different possible

outcomes that the model is likely to generate given our prior distributions. Second, we can see what

our priors imply about the shorter and longer-term effects of tax changes. In Appendix Figure I.1,

we report the distributions of the model impulse responses implied by our prior distributions. The

solid (shaded) red lines report the median and central 68% (90%) prior credible sets of the IRF

prior distribution. The blue line with circles refers to the impulse responses of the model evaluated

at the estimated posterior median of the parameters. The main takeaway from this exercise is that

our prior distributions give far more weight to an economy in which the effects of both personal

and corporate income taxes are quite short-lived and productivity is virtually a-cyclical. As shown

in Section 5, however, the posterior distributions paint a quite different picture.

Figure I.1: Prior and Posterior Distributions of the response of the main variables in the model

Notes: this figure shows the response of the average tax rates, real GDP, productivity, consumption, investment and
R&D to a 1% cut in the average tax rate of corporate income taxes (left column) and the average tax rate of personal
income taxes (right column). Red shadow bands and solid lines represent the 90th and 68th percentiles of the prior
distribution of impulse response functions. Blue lines with circles represent the impulse responses of the model in
Section 4 evaluated at the posterior median of estimated model parameters.

J Model Appendix

J.1 Production Sector and Endogenous Productivity

There exists a continuum of measure At of monopolistically competitive intermediate goods firms.

Each of them manufactures a differentiated product: intermediate goods firm i produces output

4For more details on prior predictive analysis, we refer interested readers to Leeper et al. (2017).
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Yi,t. The endogenous state variable At is the mass of intermediate goods adopted in production

(equivalently, the stock of adopted technologies). As detailed in the text, At grows as a result of

expenditures on applied research, which we call adoption. The final goods composite is the following

CES aggregate of individual intermediate goods, with θ > 1:

Yt =

(∫ At

0
(Yi,t)

1
θ di

)θ
(46)

Let Kg,i,t be the stock of capital that firm i uses, Ut denotes capital utilization (described below),

and Lg,i,t represents the stock of labour employed. Firm i produces output Yi,t according to the

following Cobb-Douglas technology:

Yi,t = (UtKi,t)
α (Li,t)

1−α . (47)

Given a symmetric equilibrium for intermediate goods, the aggregate production function is:

Yt = Aθ−1
t · (UtKg,t)

α(Lg,t)
1−α. (48)

Lg,t and Kg,t are aggregate capital and labour employed in the goods production sector.

J.2 Households and the Corporate Sector

The representative household consumes, supplies labour, saves and receives dividends from the

corporate sector (described below). There is habit formation in consumption. The model differs

from the standard setup in the specification of labour supply. There are three types of labour: goods

production (g), R&D (z) and adoption labour (a). Households supply the three types of labour

competitively but choose hours Hj,t+1 one period in advance, and face a quadratic adjustment cost

when changing hours. Following the realization of uncertainty in period t, the household chooses

effort, ej,t, and we assume that the effective labour supply is given by Lj,t = Hj,tej,t. The household’s

maximization problem and budget constraint are:

max
Ct,St+1,Hj,t+1,ej,t

Et
∞∑
t=0

βt

log

(
Ct
Nt
− bCt−1

Nt−1

)
−

∑
j∈{g,a,z}

1 + ēje
1+χj
j,t

1 + χj

Hj,t

Nt

 , (49)

and

Ct + PS,tSt+1 =
∑

j∈{g,a,z}

[
(1− τp,t)wj,tej,tHj,t −

ψj
2

(
Hj,t+1

(1 + gn)Hj,t
− 1

)2

Ψt

]
+ Tt + St (PS,t +Dt) ,

(50)

where Ct is consumption, St are shares in the corporate sector (which trade at price PS,t), Dt are

dividends from the corporate sector, wj,t are real wages, and Tt are government transfers.5 The

symbol Ψt denotes a scaling factor that grows at the same rate as aggregate output, required to

ensure that labour adjustment costs do not vanish along the balanced growth path. The household’s

investment decisions are managed on their behalf by a representative investment fund that invests in

the physical capital stock (with associated quadratic adjustment cost), rents capital to intermediate

5Changes in dividend taxes are a small part of the personal income tax measure in the Mertens and Ravn (2013)
data set. As a result, we abstract from explicitly modelling dividend taxes.
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goods firms, finances innovation costs, and chooses the rate of capital utilization in the goods

sector, Ut, with associated cost ν(Ut)Kg,t, where ν(U) is increasing and convex. The objective

is to maximize lifetime dividends to households, discounted using the household’s discount factor,

Λt,t+1. The investment fund owns all firms in the economy. Individual firms and innovators make

the specific production, R&D and technological adoption decisions, as described earlier.

Dividends in period t are given by overall corporate sector income minus corporate taxes due:

Dt = CIt − τc,tCITAXt , (51)

where CIt is net corporate income, which is GDP net of wages, investment and utilization:

CIt = Yt −
∑

j∈{g,a,z}

[
wj,tLj,t + Ij,t

(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

))]
− ν (Ut)Kg,t (52)

τc,t is the corporate income tax rate and CITAX is corporate income minus deductions for depreci-

ation and amortisation. As with intellectual property assets (described above), we follow Auerbach

(1989), Mertens and Ravn (2011) and Winberry (2021) in modelling depreciation allowances for the

capital stock as a geometric process: in every period, a fraction δ̂ of investment can be deducted

from taxable profits, with the remaining portion 1-δ̂ carried into the next period. Details of the

derivation of amortisation allowances and taxable corporate income are in Appendix J.3.

Factor demands. Intermediate goods firm i chooses capital services UtKi,t, and labour Li,t to

minimize costs, given the rental rate rkt , the real wage wt and the desired markup ς. Expressed in

aggregate terms, the first-order conditions from firms’ cost minimization problem are given by:

α
MCtYt
UtKg,t

= rg,t, (53)

(1− α)
MCtYt
Lg,t

= wg,t, (54)

where MCt is the real marginal cost of production. We allow the actual markup ς to be smaller

than the optimal unconstrained markup θ due to the threat of entry by imitators, as is common in

the literature (e.g Aghion and Howitt, 1998, Anzoategui et al., 2019).

Investment good producers. There are three types of capital goods in the economy, used

in the goods-producing, R&D and adoption sectors. Competitive producers use final output to

produce these goods which they sell to the investment fund, which in turn rents capital to firms.

Following Christiano et al. (2005), we assume flow adjustment costs of investment for the three

types of capital goods. The adjustment cost functions (for j ∈ {g, z, a})are fj

(
Ij,t

(1+gy)Ij,t−1

)
, with

each function increasing and concave, with fx (1) = f
′
x (1) = 0 and f

′′
x (1) > 0; and Ij,t is new capital

of type i produced in period t. The first-order conditions are:

Qj,t = 1 + fj

(
Ij,t

(1 + gy) Ij,t−1

)
+

Ij,t
(1 + gy) Ij,t−1

f ′j

(
Ij,t

(1 + gy) Ij,t−1

)
−βEtΛt,t+1

(
1− τc,t+1

1− τc,t

)
(1 + gy)

(
Ij,t+1

(1 + gy) Ij,t

)2

f ′j

(
Ij,t+1

(1 + gy) Ij,t

)
,

(55)

where Qj,t is the price of type j capital.
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Price Setting. Nominal prices are set on a staggered basis following the Calvo adjustment rule.

Denoting by ξp the probability that a firm cannot adjust its price, by π̂t the inflation rate and by m̂ct
the marginal cost in log-deviation from steady state, the Phillips curve reads π̂t = κpm̂ct+βEt[π̂t+1]

with slope κp =
(1−ξpβ)(1−ξp)

ξp
.

Fiscal Policy. The government’s budget constraint is given by:

Ḡ (1 + gy)
t − Tt = τp,t

 ∑
j∈{g,a,z}

wj,tLj,t

+ τc,tCI
TAX
t , (56)

For simplicity, the government finances consumption using personal and corporate income taxes;

lump sum taxes adjust to balance the budget every period. The process of tax rates τc,t and τp,t

log (τxt ) = (1− ρτx) τ̄x + ρτx log
(
τxt−1

)
+ ετxt , (57)

follows an AR(1) process in logs for x ∈ {c, p}, with ρτx ∈ (0, 1), and ετxt ∼ N (0, 1) is i.i.d..

Monetary Policy. The nominal interest rate Rn,t+1 is set according to a Taylor rule Rn,t+1 =((
πt
π̄

)φπ (Lt
L̄

)φy
Rn

)1−ρR
(Rn,t)

ρR where Rn is the steady state nominal rate, π̄ the target rate of

inflation, Lt total effective labour supply and L̄ steady-state labour supply; φπ and φy are the

feedback coefficients on, respectively, the inflation gap and the capacity utilization gap, measured

as in Anzoategui et al. (2019).

Resource Constraint. Finally, the aggregate resource constraint is given by:

Yt = Ct+
∑

j∈{g,a,z}

[(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

))
Ij,t +

ψj
2

(
Hj,t+1

(1 + gn)Hj,t
− 1

)2

Ψt

]
+ν (Ut)Kt+Ḡ (1 + gy)

t .

(58)

J.3 Derivation of Taxable Corporate Income

Taxable corporate income is corporate income minus amortisation and depreciation allowances for

capital and intellectual property assets. To derive this, we start by defining corporate income:

CIt = Yt − wg,tLg,t − rg,tKg,t − Pa,t∆At︸ ︷︷ ︸
Goods-producing firms

+
∑

j∈{g,a,z}

(rj,tKj,t −Qj,tIj,t)− ν (Ut)Kt︸ ︷︷ ︸
Investment firm

+
∑

j∈{g,a,z}

(
Qj,tIj,t − Ij,t

(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

)))
︸ ︷︷ ︸

Capital-producing firms

+Pz,t∆Zt − wz,tLz,j,t − rz,tKz,j,t︸ ︷︷ ︸
R&D firms

+Pa,t∆At − wa,tLa,t − ra,tKa,t − Pz,t∆Zt︸ ︷︷ ︸
Adoption firms

,

(59)

where ∆At ≡ At+1−φAt and ∆Zt ≡ Zt+1−φZt are the measures of newly adopted and discovered

technologies, respectively, such that the terms in red are the aggregate entry costs in the goods-
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producing and adoption sectors (which are equal to the aggregate revenues of the adoption and

R&D sectors). Netting out terms, corporate income is given by:

CIt = Yt −
∑

j∈{g,a,z}

[
wj,tLj,t − Ij,t

(
1 + fj

(
Ij,t

(1 + gy) Ij,t−1

))]
− ν (Ut)Kg,t, (60)

which is real output minus wages and the cost of investment in each of the goods-producing, adoption

and R&D sectors, and utilization cost in the goods-producing sector. Consistent with the US tax

code, in the model firms deduct depreciation and amortisation from taxable profits to arrive at

taxable income. We model these allowances as a geometric process in which a fraction δ̂ of the

value of investments can be deducted from profits each period. Denoting amortisation allowances

by Ξ, the laws of motion for aggregate allowances in capital and intellectual property products are

given respectively by:

ΞIP,t+1 =
(

1− δ̂IP
)

(ΞIP,t + PZ,t∆Zt + PA,t∆At) (61)

ΞK,t+1 =
(

1− δ̂K
)ΞK,t +

∑
j∈{g,a,z}

Qj,tIj,t

 (62)

Depreciation allowances at t+ 1 are 1− δ̂• times depreciation allowances at t plus the value of new

investments in the three types of capital and the two types of intellectual property products. Using

this notation, taxable corporate income is:

CITAXt = CIt + ν (Ut)Kg,t − δ̂K

ΞK,t +
∑

j∈{g,a,z}

Qj,tIj,t

− δ̂IP (ΞIP,t + PZ,t∆Zt + PA,t∆At)

(63)

To arrive at taxable corporate income, we add back a non-deductible expense (capital utilization)

and subtract the depreciation allowances that reduce the corporate sector tax liabilities.

K Social Returns to R&D

subsectionThe social returns to R&D The social returns to innovation are calculated as the return

in additional units of consumption relative to the balanced growth path of reallocating one unit of

output from consumption to R&D today, and consuming the proceeds in the future. In our model,

the future proceeds from an increase in R&D today are the sum of the two components in the

Jones and Williams (1998) calculation, plus a novel dimension due to the adoption margin: (i) the

additional output generated, (ii) the future reduction in R&D such that the subsequent stock of

unadopted technologies is unchanged, and (iii) the future reduction in adoption expenditure such

that the subsequent stock of adopted technologies is unchanged.

Following Jones and Williams (1998), the production function for new unadopted technologies

is given by a function G of research efforts and the stock of unadopted technologies:

Zt+1 − φZt = G (Xz,t, Zt) = Z1+ζ
t Xρz

z,t
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The increase in technology associated with a marginal change in research effort is

∇Zt+1 =

(
∂G

∂Xz

)
t

,

where ∇ denotes the change relative to the balanced growth path. Note that Xz,t is in units of the

R&D good, which is produced using R&D labour and capital. Denoting by PXz,t the price of this

composite good, 1 unit of consumption yields P−1
Xz,t units of the R&D good. Since we are computing

the return in terms of consumption, the relative prices of R&D and adoption will be used in the

calculation.

To determine how much consumption is gained in time t + 1 from the reduction in R&D that

returns Z to its balanced growth path, note that Zt+2 − φZt+1 = G (Xz,t+1, Zt+1) and that the

deviation of Z from its balanced growth path is given by:

∇Zt+2 = ∇Zt+1 +

(
∂G

∂Xz

)
t+1

∇Xz,t+1 +

(
∂G

∂Z

)
t+1

∇Zt+1

where the terms are, respectively: the deviation in Z occasioned by the increase in research effort;

the reduction in Z from a cut in research effort; and the change in research efficiency as a result of

additional technologies. The gain in consumption from returning Z to its balanced growth path is

found by setting ∇Zt+2 = 0:

∇Xz,t+1 = −

(
∂G
∂Xz

)
t(

∂G
∂Xz

)
t+1

((
∂G

∂Z

)
t+1

+ 1

)
.

Following the same logic, the change in adopted technologies at t+ 1, which determines the change

in output, is given by At+2 − φAt+1 = φλt (Zt+1 −At+1).

Note that, because there is a one period delay between when technologies are discovered and

when adopters can start working to adopt them, the initial change in R&D affects the stock of

adopted technologies, and therefore output, at time t + 2. Defining ∇At+2 as the deviation in

adopted technologies from the balanced growth path,

∇At+2 = ∇Zt+1
∂At+2

∂Zt+1
= ∇Zt+1

(
φ

(
(Zt+1 −At+1)

(
∂λ

∂Z

)
t+1

+ λ

))
.

The change in technologies has two components: (i) an increase in Zt increases adoption efficiency, so

any technology is more likely to be adopted; (ii) λ∇Zt+1 extra technologies are adopted. At t+ 2,

the contribution to output of these additional technologies is given by ∇Yt+2 =
(
∂Y
∂A

)
t+2
∇At+2

Furthermore, at t+ 2, the deviation in the stock of adopted technologies is given by:

∇At+3 = ∇At+2 +

(
∂λ

∂Xa

)
t+2

∇Xa,t+2,

and as with R&D, we compute the reduction in adoption expenditure that returns the economy to

the balanced growth path by solving for the value of ∇Xa,t+2 such that ∇At+3 = 0:

∇Xa,t+2 = − ∇At+2(
∂λ
∂Xa

)
t+2
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Grouping all terms, the social return to R&D is given by

1 + r̃RD = β2

(
∂Y

∂A

)
t+2

∇At+2

PXz,t
+ β2PXa,t+2

PXz,t

∇At+2(
∂λ
∂Xa

)
t+2

+ β
PXz,t+1

PXz,t

(
∂G
∂Xz

)
t(

∂G
∂Xz

)
t+1

((
∂G

∂Z

)
t+1

+ 1

)
,

where β and β2 terms appear because the gains happen at different times, and each of the terms is

scaled by the relative price of the R&D goods at t and t+1 or the adoption good at t+2, which con-

verts all terms into units of consumption in the given time period, relative to price of R&D goods at

time t. Defining the social cost of a new idea in units of consumption as P̃Z,t =
(
∇Zt+1

PXz,t

)−1
, and gP̃Z

as the growth rate of the social cost, and d̃t = β

P̃Z,t

(
β ∂At+2

∂Zt+1

((
∂Y
∂A

)
t+2

+
PXa,t+2(
∂λ
∂Xa

)
t+2

)
+ P̃Z,t+1

(
∂G
∂Z

)
t+1

)
,

we obtain the expression in the main text,

r̃RD =
d̃t

P̃Z,t
+ gP̃Z . (64)

The “social dividend” of R&D has three components: the increase in output, the decrease in

adoption expenditures, and the change in the efficiency of R&D. The social return on R&D is a

function of (i) model parameters, namely gn (the population growth rate) and β (the discount

factor), plus the parameters of the endogenous growth block of the model (θ, ρz, ρλ, φ, ζ, λ̄; see

Tables 1 and 2 for definitions); and (ii) the expenditure shares of R&D and adoption, which are in

turn also functions of parameters, including the tax parameters (τ̂c, δ̂IP , and to a lesser extent τ̂p
and δ̂K).

Endowed with Equation (64), we use the posterior distributions in Table 2 to calculate the social

returns to R&D implied by our structural model. We estimate that the social returns to investment

in innovation, r̃RD, range from 20.8% to 74.5% (95% confidence level), with a posterior median of

35.9%. Excluding the consumption gains to adoption from the social dividend lowers this interval

to [14.9%,40%] with a median value of 22%, highlighting the importance of the complementarity

between R&D and adoption in determining the social returns to innovation.

L Decomposing the Effects of Personal Income Taxes

Figure L.1 is the personal income tax counterpart of Figure L.1, and so also decompose the GDP

response and its TFP contribution into channels of transmission. The output decomposition as well

as the counterfactual analyses with no applied research and no endogenous growth makes it clear

that variable labour utilisation is the most important driver of the GDP and TFP responses to the

personal income tax shock at short horizons. The mechanism behind the effects of personal income

taxes is very different from the one behind corporate taxes, as the former works primarily on the

household side. The reduction in personal income taxes encourages workers (applied researchers) to

supply more labour but, due to employment adjustment costs, the rise in hours worked (endogenous

TFP) is gradual. On the other hand, labour utilisation responds contemporaneously via increased

efforts, implying that labour productivity increases on impact. This channel, however, has no direct

influence on firms’ incentives to innovate, and therefore lasts as long as the distortionary personal

income tax rate is below its steady state level.
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Figure L.1: GDP Decomposition and Counterfactual Analysis
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M Estimates of the model with no endogenous growth

This section reports the prior and posterior distributions of the parameters of the structural model

in the restricted specification with neither technological adoption nor R&D expenditure. The main

difference relative to Table 2 is that the investment adjustment cost parameter is significantly higher

than the estimates based on the model with endogenous growth. Furthermore, and in sharp contrast

to Table 2, the estimate of this parameter in Table M.1 is in line with the available estimates in

the business cycle literature on DSGE model (see for instance Smets and Wouters, 2007, Justiniano

et al., 2010), which typically assume an exogenous growth path.

Table M.1: Estimated Parameters - No technological adoption or R&D spending

Parameter Description Prior No Adoption Posterior No R&D Posterior
Distr Mean Std. Dev. Median 90% int. Median 90% int.

Preference & HHs
h Consumption habit beta 0.5 0.2 0.37 [0.13, 0.66] 0.37 [0.12, 0.72]
γg Inverse effort elasticity (goods) gamma 1 0.5 0.31 [0.1, 0.95] 0.35 [0.1, 1.06]
γz Inverse effort elasticity (R&D) gamma 1 0.5 1.75 [1.04, 2.86] - -

Frictions & Production
f ′′z R&D adjustment normal 4 1.5 3.27 [0.23, 6.06] - -
f ′′I Investment adjustment normal 4 1.5 1.63 [0.3, 4.8] 3.16 [0.87, 5.76]
ν′′ Capital utilization adjustment beta 0.6 0.15 0.34 [0.24, 0.46] 0.36 [0.25, 0.48]
ξp Calvo prices beta 0.5 0.2 0.21 [0.07, 0.4] 0.25 [0.08, 0.46]

Endogenous Technology
θ-1 Dixit-Stiglitz parameter gamma 0.15 0.1 0.1 [0.04, 0.24] - -
ρZ R&D elasticity beta 0.5 0.2 0.83 [0.62, 0.95] - -
ζ R&D returns to scale - - - -0.09 [-0.19, -0.04] - -

Shocks
ρτ,c Corporate taxes AR beta 0.85 0.07 0.94 [0.93, 0.95] 0.94 [0.93, 0.94]
ρτ,p Labour taxes AR beta 0.85 0.07 0.8 [0.76, 0.83] 0.8 [0.76, 0.83]
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N Tax amortisation of Intangible Assets around the World

In Table N.1, we report the legal tax amortisation periods (in years) for the main types of intangible

assets in selected countries as of 2016. The tax treatment of intangible assets varies widely across

jurisdictions. Interestingly, advanced economies typically have longer tax amortisation periods on

intellectual property products than developing countries.

Table N.1: An International Perspective on Tax amortisation of Intangible Assets

Country Patents Technology Trademark

Australia 20 5 no TAB

Austria RUL RUL 15

Canada 20 20 20

China RUL (≥10) RUL (≥10) RUL (≥10)

France RUL (≥5) RUL (≤5) no TAB

Germany 15 RUL (≤3) 25

Greece RUL (≤5) 5 20

Hungary RUL 5 10

India 10 RUL (≤3) 10

Indonesia 10 10 10

Ireland 20 15 no TAB

Italy RUL (≥3) 5 RUL (≤5)

Japan RUL RUL 20

Malaysia 20 20 no TAB

Mexico 20 20 10

Netherlands 20 5 no TAB

New Zealand 15 5 no TAB

Norway 20 RUL 10

Poland RUL 5 5

Portugal RUL (≤5) RUL (≤5) no TAB

Romania 20 5 15

Russia 15 15 10

Singapore 5 5 no TAB

Slovakia 15 4 no TAB

Slovenia RUL 5 no TAB

South Africa 20 5 no TAB

Spain RUL (≥5) RUL (≤5) RUL (≤5)

Sweden 10 10 10

Switzerland 20 5 no TAB

Taiwan 20 15 no TAB

Thailand 20 5 20

Turkey 20 10 no TAB

UK 25 20 20

USA 15 15 15

Vietnam 10 10 10

Notes: RUL: for Remaining Useful Lifetime; TAB: tax amortisation benefit. The table reports the legal tax
amortisation life time in years of the main types of intangible assets across selected countries in 2016. Source:
http://www.taxamortisation.com/tax-amortisation-benefit.html
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