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Abstract

This paper introduces and analyses a setting with general heterogeneity in regression
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1 Introduction

Regression analysis is the cornerstone of statistical theory and practice. Ordinary least

squares (OLS) has been applied, within various regression contexts, to build an extensive

toolkit, for the exploration of economic and financial datasets. The basic theory underlying

OLS estimation and inference in regression models has been mostly settled for the best part

of a century (see e.g. Lai and Wei (1982)). Relatedly, the problem of robust estimation has

been a focus of empirical work in economics starting with the seminal work by White (1980)

and its importance is well-understood in applied econometrics: Angrist and Pischke (2010)

indicated that “Leamer (1983) diagnosed his contemporaries’ empirical work as suffering from

a distressing lack of robustness to changes in key assumptions” and Leamer (2010) reflected

that “sooner or later, someone articulates the concerns that gnaw away in each of us and

asks if the Assumptions are valid.”

Most recent theoretical developments have been focused on allowing more general and

robust regression settings. An important elaboration has been the consideration of settings

where the regression coefficient changes across different observations within the available

dataset. Relatedly, allowing more general structures for regressors and regression errors has

also been a major focus.

Our paper aims to provide important extensions to a regression setting and allow a very

general environment for regressors and error terms. One practical implication of our hetero-

geneity setting is that standard errors can be easily computed. Likewise, the investigation

of structural change in the parameters of statistical and econometric models has received

increasing attention in the literature over the past couple of decades. This development is

not surprising. Assuming, wrongly, that the model structure remains fixed over time has

clear adverse implications, such as inconsistency of parameter estimators and associated test-

statistics, and major forecast failures.

The modelling of deterministic smooth evolution of parameters has a long pedigree in

statistics, such as linear processes with time-varying spectral densities introduced by Priest-

ley (1965). The context of such modelling is nonparameteric and has been followed up by

Robinson (1989), Robinson (1991), Dahlhaus (1997), some of whom refer to such processes

as locally stationary. This approach, however, has not been prominent in other applied areas,

such as economics, where, random coefficient models dominate.

Various methods have been proposed to identify and handle structural change. In early

contributions, changes were supposed to be deterministic, to occur rarely, and to be abrupt.

Testing for the presence of parameter breaks leads back to the ground-breaking work by Chow

(1960), see e.g. also Brown et al. (1975), Ploberger and Krämer (1992). More recent standard

approaches allow for random evolution of parameters, where changes can be either discrete,

as in Markov Switching models Hamilton (1989) or threshold models Tong (1990), continuous

as in smooth transition models Terasvirta (1998), or driven by unobservable shocks, as in
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random coefficient models Nyblom (1989). Cogley and Sargent (2005) use random coefficient

models for stochastic volatility, and Primiceri (2005) studies whether changes in parameters

or in the variance of shocks - policy or otherwise - gave rise to the period of macroeconomic

calmness, referred to as the “Great Moderation”, after 1985. In these models, parameters

typically evolve as random walks or autoregressive processes.

Building on this work, Giraitis et al. (2014), Giraitis et al. (2018), Dendramis et al.

(2021) and others have developed a theoretical framework for random coefficient models and

their estimation using kernel methods which performs well in finite samples. They have

trivial computational cost and are easy to use in applied work, for example, Chronopoulos

et al. (2022) showed the empirical prevalence of persistent volatility, and, that GARCH

type volatility structures might be less common, than previously thought. However, a full

treatment of estimation and inference within a general regression model, has not, surprisingly,

been provided.

This paper combines and extends these two related but distinct work strands in a very

general regression context. Firstly, we start by considering OLS estimation and inference, in

the presence of heterogeneity or scale factors in both regressors and regression error terms

which allow to capture heterogeneity in data. Very little is assumed about these scale factors,

i.e. sample moments of regressors and regression error may not possess well defined limits.

This necessitates novel theoretical analysis of OLS estimation and its associated standard

errors. We clarify the relevance of our theory by showing how standard OLS inference fails

even in very common regression settings, while robust estimation trivially solves the inference

problem. While the form of our proposed inference coincides with that of White (1980), it is

applicable, and indeed necessary, in a much wider context than just heteroscedasticity. For

example, standard OLS inference does not apply to stationary autoregressive models with

martingale difference innovations, see section 5. Our inferential methods can accommodate

many other commonly adopted models, which have no heteroscedastic features, as defined in

White (1980), or more generally, regression with missing data. Further, we consider robust

OLS estimation of time-varying regression parameters, in our general regression setting which

permits a very wide class of regressors and regression noises.

The overall outcome is a general theory for regression models with fixed and time-varying

parameters under minimal assumptions on regressors and regression errors. Robust standard

errors are also derived and are easy to compute. Extensive simulations illustrate that robust

regression estimation procedures are well behaved, unlike commonly used alternatives. This

setting is well suited to modelling economic and financial data.

The remainder of this paper is structured as follows. Section 2 presents the regression

setting that allows for heterogeneity and dependence and outlines the theoretical results

for the fixed parameter case. Section 3 extends the analysis to the time-varying regression

parameter case. In Section 4 we show that our approach allows regression for a wide range

of missing data patterns. Section 5 discusses the robust estimation of an AR(p) model.
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Sections 6 presents Monte Carlo simulation results. In Section 7 we provide an empirical

example of the application of the robust regression analysis to the modelling of asset returns,

and in Section 8 we conclude. The proofs of our results are given in the Supplemental

Material.

2 OLS estimation under general heterogeneity

In this section we focus on the ordinary least squares (OLS) estimation in environment

permitting general heterogeneity in regression modelling. We analyze the model

yt = β′zt + ut, ut = htεt, (1)

where β is a p-dimensional vector, zt = (z1t, ...., zpt)
′ is a stochastic regressor and ut is an

uncorrelated noise. To allow for an intercept, we can set the initial component z1t = 1 to be

equal to 1.

Our primary interest is to expand the OLS estimation procedure to a broad setting

outlined by structural assumptions aligned with empirical research. They cover variety of

types of potential regression variables that may appear in applied work, and match the

generality of the setting used in Giraitis et al. (2024) in testing for absence of correlation and

cross-correlation under general heterogeneity.

We start with specification of an uncorrelated noise ut. We suppose that

ut = htεt, (2)

where {εt} is a zero mean stationary uncorrelated martingale difference noise and {ht} is a

deterministic or stochastic scale factor which is independent of {εt}. More specifically, we

impose

Assumption 2.1. {εt} is a stationary martingale difference (m.d.) sequence with respect to

some σ-field filtration Ft:

E[εt|Ft−1] = 0, Eε4t <∞, Eε2t = 1.

{εt} is independent of {ht}. Moreover, variable ε1 has probability distribution density f(x)

and f(x) ≤ c <∞ when |x| ≤ x0 for some x0 > 0.

The information set Ft will be generated by the past history Ft = σ(εs, s ≤ t) and possibly

other variables.

We suppose that the regressors zt = (z1t, ..., zpt)
′ have the following structure which is

the key feature of our regression setting. For k = 1, ..., p,

zkt = µkt + gktηkt, (3)
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where ηt = (η1t, ..., ηpt)
′ is a stationary sequence, gt = (g1t, ...., gpt)

′ are deterministic or

stochastic scale factors, and µt = (µ1t, ..., µpt)
′ is a vector of deterministic or stochastic

means. We assume that {µt, gt, ht} are independent of {εt, ηt}.

To account for the intercept in regression model (1), we can set

z1t ≡ 1 = µ1t + g1tη1t, µ1t = 0, g1t = η1t = 1. (4)

We suppose that in (3) Eηkt = 0 except for the intercept (4) where η1t = 1.

Regression setting (3) permits regressors zt = (z1t, ...., zpt)
′ with time-varying conditional

mean, µkt = E[zkt |F∗n], and conditional variance, g2kt = var(zkt|F∗n), with respect to the

information set F∗n = σ
(
µt, gt, ht, t = 1, ..., n

)
generated by scales and means.

The underlying stationary sequence {ηt} plays an important role in our environment,

although estimation of regression parameter β requires relaxed conditions on {ηt}.

Definition 2.1. We say that a (univariate) covariance stationary sequence {ξt} has short

memory (SM) if
∑∞

h=−∞ |cov(ξh, ξ0)| <∞.

Assumption 2.2. ηt = (η1t, ..., ηpt)
′ is Ft−1 measurable sequence, E[η2kt] = 1 and E[η4kt] <

∞.

(i) For k, j = 1, ..., p, {ηkt} and {ηjtηkt} are covariance stationary SM sequences.

(ii) E[η1η
′
1] is a positive definite matrix.

The novelty of this regression setting is that the structural postulation (3) of regressors

zt allows for a very wide class of scale factors and means {ht, gt, µt} which can be both

deterministic and stochastic and brings OLS estimation closer to practical work. Estimation

procedure permits triangular arrays of the means and scale factors
(
µt, gt, ht, t = 1, ..., n

)
=(

µnt, gnt, hnt, t = 1, ..., n
)

- they may vary with n. We skip the subindex n for the brevity

of notation.

Denote for k = 1, ..., p,

v2k =

n∑
t=1

g2kth
2
t , v2gk =

n∑
t=1

g2kt. (5)

We will write an � bn if an = Op(bn) and bn = Op(an).

Assumption 2.3. The scale factors ht ≥ 0 and gt ≥ 0 are deterministic or stochastic non-

negative variables such that for k = 1, ..., p,

max1≤t≤n g
2
kt

v2gk
= op(1),

max1≤t≤n µ
2
kt

v2gk
= op(1), (6)∑n

t=1 µ
2
kt

v2gk
= Op(1),

∑n
t=1 µ

2
kth

2
t

v2k
= Op(1), v2k �p v2gk. (7)
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To estimate the parameter β = (β1, ..., βp)
′, we use the standard OLS estimator

β̂ =
( n∑
j=1

zjz
′
j

)−1( n∑
j=1

zjyj
)

(8)

based on a sample yj , zj , j = 1, ..., n.

Consistency. First we establish consistency of the OLS estimator β̂. SetD = diag(v1, ..., vp).

Theorem 2.1. Suppose that (y1, ..., yn) is a sample of dependent variable (1) and Assump-

tions 2.1, 2.2 and 2.3 are satisfied. Then, the OLS estimator β̂ is consistent:

D(β̂ − β) =
(
v1(β̂1 − β1), ..., vp(β̂p − βp)

)′
= Op(1). (9)

Theorem 2.1 implies that the k-th component β̂k of the OLS estimator β̂ is vk-consistent:

β̂k − βk = Op(v
−1
k ). It is worth noting that the rate of convergence of β̂k may differ across k

and depart from the parametric rate
√
n. Observe that vk, vgk ≥ c

√
n if gkt, ht ≥ c > 0 for

all t, n.

Assumption 2.3 is satisfied by regressors zt and noises ut which have bounded 4 + δ moment.

Lemma 2.1. Suppose that zt, ut are such that v2k �p n, v2gk �p n for k = 1, ..., p and

Ez4kt ≤ c, E|ut|4+δ ≤ c for some δ > 0, (10)

where c <∞ does not depend on t, n. Then Assumptions 2.3 and 2.4(ii) hold.

It follows directly from the proof of the lemma, that (10) implies v2k = Op(n), v2gk = Op(n).

Asymptotic normality. Asymptotic normality property for an element β̂k of the OLS

estimator and computation of standard errors requires additional assumptions on scale factors

and stationary processes {ηt, εt}.

Assumption 2.4. (i) For k, j = 1, ..., p, {ε2t }, {ηjtηktε2t } and {ηjtε2t } are covariance station-

ary SM sequences. (ii) For k = 1, ..., p,

max1≤t≤n g
2
kth

2
t

v2k
= op(1),

max1≤t≤n µ
2
kth

2
t

v2k
= op(1). (11)

We will describe standard errors using the following notation.

Szz =
∑n

t=1 ztz
′
t, Szzuu =

∑n
t=1 ztz

′
tu

2
t ,

Ωn = (E[Szz |F∗n])−1E[Szzuu |F∗n](E[Szz |F∗n])−1 = (ωjk). (12)

Generality of our regression setting limits asymptotic theory for β̂t we can establish. While

multivariate asymptotic theory for β̂t is not available, we can derive the asymptotic normality
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property for linear combinations a′β̂ of elements of β̂ and we can build feasible asymptotic

theory for components βk of β.

Theorem 2.2. Suppose that assumptions of Theorem 2.1 are satisfied and Assumption 2.4

holds. Then, for any a = (a1, ..., ap)
′ 6= 0, the OLS estimator β̂ has property:

a′D(β̂ − β)√
a′DΩnDa

→d N (0, 1). (13)

The t-statistic for the parameter βk, k = 1, ..., p satisfies

β̂k − βk√
ωkk

→d N (0, 1). (14)

Property (13) does not appear to be workable since it requires estimation of D, Ωn. One prac-

tical application of (13) is that it implies (14), where standard error
√
ωkk can be consistently

estimated by computing

Ω̂n = S−1zz SzzûûS
−1
zz = (ω̂jk), ût = yt − β̂′zt. (15)

Corollary 2.1. Under the assumption of Theorem 2.2, for k = 1, ..., p, as n→∞,

β̂k − βk√
ω̂kk

→d N (0, 1),
ω̂kk
ωkk

= 1 + op(1),
√
ωkk �p v−1k . (16)

This result is the main contribution of Section 2. It enables an easy computation of standard

errors and building confidence intervals for the regression parameters βk contained in β =

(β1, ..., βp)
′. The novelty of this finding is that the order of the standard error

√
ωkk may

differ from the standard one n−1/2, they may be random, and they do not require to exhibit

asymptotic behaviour, i.e. to be proportional to n−1/2.

Notable, the estimator Ω̂n of robust standard errors in (12) coincides with the well-known

estimator of heteroskedasticity-consistent standard errors by White (1980). The regular

estimator of standard errors in OLS regression estimation is:

Ω̂(st)
n = S−1zz σ̂

2
u, σ̂2u = n−1

n∑
j=1

û2j . (17)

Differently from the robust standard errors
√
ω̂kk, they produce size distortions in estimation

of βk in regression model (1), see Section 6. This emphasizes the flexibility of the robust

standard errors and good performance of the normal approximation (16) even when we divert

to very complex regression models with arbitrary scale factors gt, ht and means µt.
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3 Time-varying OLS estimation under general heterogeneity

In this section we extend the regression setting (1) to allow for time-varying parameter βt.

We consider the model

yj = β′jzj + uj , j = 1, ..., n, (18)

where regressors zj and regression noise uj are as in (3) and (2) and permit the same degree

of heterogeneity as the model (1).

Of primary concern is to develop a point-wise estimation procedure for the path β1, ..., βn

of the time-varying parameter βt in model (18). While {ηj , εj} and {µj , gj , hj} will remain

the same as in Section 2, the estimator and assumptions require some amendments.

The idea of estimation of time-varying parameter βt is rather straightforward and will

be reduced to large extent to estimation theory for regression model with a fixed parameter.

Assume that there are kernel weights bn,tj ≥ 0 such that bn,tj → 0 as |t−j| → ∞. We multiply

both sides of (18) by b
1/2
n,tj , to obtain a regression model:

ỹj = β′j z̃j + ũj , j = 1, ..., n,

where ỹj = b
1/2
n,tjyj , z̃j = b

1/2
n,tjzj and ũj = b

1/2
n,tjuj . With this, we do not change the structure

of regressors z̃t = (z̃1t, ..., z̃pt)
′ and ũt, and only multiply the means µt and scales gt, ht by

b
1/2
n,tj in settings (3) and (2).

This leads to a regression model with a fixed parameter βt:

ỹj = β′tz̃j + ũj + rj , j = 1, ..., n (19)

which includes an additional error term rj = (β′j − β′t)z̃j . It is rather easy to show that

the term rj is negligible because of “smoothness” of parameter βj when j is close to t, and

because of the down-weighting of data when j is distant from t. It follows directly from (19)

that βt can be estimated by the OLS estimator

β̂t =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j ỹj
)
.

Asymptotic theory for β̂t will succeed from the estimation theory for fixed parameter in

Section 2 by setting rj = 0 in (19).

Returning to the notation of the original regression (18), we obtain the following time-

varying OLS estimator of the regression parameter βt:

β̂t =
( n∑
j=1

bn,tjzjz
′
j

)−1( n∑
j=1

bn,tjzjyj
)
. (20)

8



The weights bn,tj are generated like this. Set

bn,tj = K(
|t− j|
H

), t, j = 1, ..., n, (21)

where H = Hn is a bandwidth parameter such that H → ∞ and H = o(n). The kernel

function K is bounded and there exist a0, δ > 0 and θ > 3 such that

K(x) ≥ a0 > 0, 0 ≤ x ≤ δ, (22)

K(x) ≤ Cx−θ, x > δ.

For example, (22) is satisfied by functions K(x) = I(x ∈ [0, 1]) and K(x) = p(x) where p(x)

is probability density of the standard normal distribution.

We need a smoothness assumption on the time-varying parameter βj which can be determin-

istic or stochastic.

Assumption 3.1. For some γ ∈ (0, 1], for t, j = 1, ..., n it holds

E||βt − βj ||2 ≤ c
( |t− j|

n

)2γ
, (23)

where c <∞ does not depend on t, j, n.

Regressors zt and standard errors have the same structure as in Section 2. While as-

sumptions on stationary process {ηt} and m.d. noise {εt} remain the same as in Section 2,

for simplicity of presentation, we replace complex assumptions on the scale factors gt, ht and

the means µt by simple sufficient assumptions similar to those used in Lemma 2.1. As before,

scale factors {ht, gt, µt} can be deterministic or stochastic, they may vary with n and they

are independent of {ηt, εt}.

Denote

v2kt =
∑n

j=1 b
2
n,tjg

2
kjh

2
j , v

2
gk,t =

∑n
j=1 b

2
n,tjg

2
kj , k = 1, ..., p.

Assumption 3.2. For k = 1, ..., p, v2kt �p H, v2gk,t �p H and

Ez4kt ≤ c, E|ut|4+δ ≤ c for some δ > 0, (24)

where c <∞ does not depend on t, n.

The proof of Lemma 2.1 shows that (24) implies v2kt = Op(H), v2gk,t = Op(H).

To describe standard errors, we will use the following notation.

Szz,t =
∑n

j=1 bn,tjzjz
′
j , Szzuu,t =

∑n
j=1 b

2
n,tjzjz

′
ju

2
j ,
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Ωnt = E[Szz,t]
−1E[Szzuu,t]E[Szz,t]

−1 = (ωjk,t).

The next theorem establishes consistency rate and the asymptotic normality property for the

components of the time-varying OLS estimator β̂t = (β̂1t, ..., β̂pt)
′.

Theorem 3.1. Suppose that (y1, ..., yn) is a sample from a regression model (18). Assume

that Assumptions 2.1, 2.2, 3.1 and 3.2 are satisfied. Then, for 1 ≤ t = tn ≤ n and k = 1, ..., p,

the following holds:

β̂kt − βkt = Op
(
H−1/2 + (H/n)γ

)
, (25)

β̂kt − βkt√
ωkk,t

→d N (0, 1) if H = o(n2γ/(2γ+1)), (26)

and
√
ωkk,t �p H−1/2.

The unknown standard errors
√
ωkk,t can be estimated using the estimator

Ω̂nt = S−1zz,tSzzûû,tS
−1
zz,t = (ω̂jk,t), ûj = yj − β̂′jzj . (27)

Corollary 3.1. Under assumption of Theorem 3.1, for k = 1, ..., p, assuming that H =

o(n2γ/(2γ+1)) it holds

β̂kt − βkt√
ω̂kk,t

→d N (0, 1),
ω̂kk,t
ωkk,t

= 1 + op(1). (28)

Computation of standard errors
√
ω̂kk,t is straightforward. It is worth noting that under

general heterogeneity the scale factors ht, gt, µt in model (18) are unknown, standard errors

might be random and the limit of H1/2√ωkk,t may not exist. The univariate asymptotic

normality for a component β̂kt of β̂t still can be shown, although such general environment

does not allow establishing multivariate asymptotic theory for β̂t.

The estimator Ω̂nt of robust standard errors in (27) is a time-varying version of heteroskedas-

ticity-consistent estimator of standard errors by White (1980). Simulations confirm that it

does not produce coverage distortions in estimation of βt under settings considered in this

section.

Example 3.1. A typical example of a deterministic time-varying parameter βt which satisfies

Assumption 3.1, is βt = βt,n = g(t/n), t = 1, ..., n, where g(·) is a deterministic smooth

function that has property |g(x)− g(y)| ≤ C|x− y|. Such βt satisfies (23) with γ = 1.

A standard example of a stochastic smooth parameter βt is a re-scaled random walk βt =

βt,n = n−1/2
∑t

j=1 ej, t = 1, ..., n, where {ej} is an i.i.d. sequence with E[et] = 0 and

E[e2j ] <∞. It satisfies (23) with γ = 1/2, that is for t > s,

E(βt − βs)2 = n−1E(
∑t

j=s+1 ej)
2 ≤ C(t− s)/n.
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4 Regression with missing data

Given the interest in empirical regression analysis, when some observations yt or regressors

zt might be missing, see, e.g., Enders (2022), we present below somewhat unexpected results

on regression estimation showing that the results of Section 2 and 3 allow to cover various

settings of missing data patterns.

Estimation of fixed parameter. Suppose that yt follows regression model (1) with fixed

parameter β, regressors zt as in (3) and regression noise ut as in (2) of Section 2. Our primary

interest is to estimate parameter β using subsample of yt, zt’s:

(yj1 , zj1), ..., (yjN , zjN ), N ≤ n.

To that purpose, we introduce missing data indicator τt, t = 1, ..., n: we set τt = 1 if both

yt and zt are observed, otherwise τt = 0. Overall, missing data indicator τt is a sequence of

random or deterministic variables, i.e. the indicator of regularly missing, block-wise missing

or randomly missing data. Then, setting (yt, zt) = (0, 0) for any time period t, where either

yt or zt is missing, we arrive at a sample ỹ1, ..., ỹn, ỹt = τtyt, from regression model

ỹt = β′z̃t + ũt, t = 1, ..., n, (29)

where regressors z̃t and the noise ũt are obtained from zt and ut by multiplying the means

and scale factors by τt:

z̃kt = µ̃kt + g̃ktηkt, µ̃kt = τtµkt, g̃kt = τtgkt, (30)

ũt = h̃tεt, h̃t = τtht.

We will impose the following assumptions on the missing data indicator, zt, ut and scale

factors gt, ht which imply that the model (29) is covered by the setting (1) of Section 2.

Assumption 4.1. Missing data indicator {τt} is independent of {εt, ηt} in (2) and (3).

Assumption 4.2. (i) Regressors zt and the noise ut satisfy moment assumption (10), and

there exists c > 0 such that scale factors gkt ≥ c > 0 and ht ≥ c > 0 are bounded away from

zero, where c does not depend on k, t, n.

(ii) εt, ηt satisfy Assumptions 2.1, 2.2, and 2.4(i).

In such a case we are able to estimate regression model with missing data.

Proposition 4.1. Suppose that ỹ1, ..., ỹn is a sample of regression model (29) and Assump-

tions 4.1 and 4.2 are satisfied. Assume that N =
∑n

t=1 τt �p n. Then, the OLS estimator β̂,

based on ỹ1, ..., ỹn and z̃1, ..., z̃n fulfills properties (16) of Corollary 2.1 and
√
ωkk �p n−1/2.
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It is worth noting that missing data does not have direct impact on the estimator β̂ nor the

estimates of the standard errors
√
ω̂kk. Proposition 4.1 shows that ignoring missing data does

not impact estimation. That is, the researcher can estimate parameter β and standard errors
√
ωkk using estimators based on a subsample yjt , zjt , t = 1, ..., N ,

β̃ =
( N∑
t=1

zjtz
′
jt

)−1( N∑
t=1

zjtyjt
)
, Ω̃n = S̃−1zz S̃zzûûS̃

−1
zz = (ω̃jk),

S̃zz =
∑N

t=1 zjtz
′
jt
, S̃zzûû =

∑N
t=1 zjtz

′
jt
û2jt , ũjt = yjt − β̂′zjt .

These estimates have property, ω̃
−1/2
kk (β̃k − βk)→d N (0, 1).

Estimation of time-varying parameter. Assume that yt follows regression model (18)

with time-varying parameter βt, where regressors zt and regression noise ut are as in (3) and

(2). In such a case, estimation of parameter βt, t = 1, ..., n from subsample (yj1 , zj1), ..., (yjN , zjN ),

N ≤ n builds on the results of Section 3. Firstly, we set (yt, zt) = (0, 0) for any t = 1, ..., n,

where either yt or zt is not observed, to obtain a sample ỹ1, ..., ỹn, ỹt = τtyt, from regression

model

ỹj = β′j z̃j + ũj , j = 1, ..., n, (31)

where regressors z̃t and the noise ũt are defined as in (30). Under Assumptions 4.1 and 4.2,

parameter βt, t = 1, ..., n can be estimated by the estimator β̂t given in (20) with kernel

weights bn,tj as in (21), as long as the missing data pattern has property:

Nt =
n∑
j=1

τjbn,tj �p H. (32)

The latter holds, if e.g. τj = 1 for |j − t| ≤ εH for some ε > 0.

Proposition 4.2. Suppose that ỹ1, ..., ỹn is a sample of regression model (31) with missing

data and Assumptions 4.1, 3.1 and 4.2 are satisfied. Assume that 1 ≤ t = tn ≤ n and (32)

holds. Then β̂kt, k = 1, ..., p satisfy properties (25) and (26) of Theorem 3.1,
√
ωkk,t �p

H−1/2, and Corollary 3.1 holds.

5 Estimation of a stationary AR(p) model with an m.d. noise

The robust OLS estimation theory of Section 2 extends to estimation of a stationary AR(p)

model

yt = φ0 + φ1yt−1 + ...+ φpyt−p + εt, (33)

where εt is a stationary martingale difference noise, and parameters φ0, ..., φp are such that

(33) has a stationary solution yt = µ+
∑∞

j=0 ajεt−j , where
∑∞

j=0 |aj | <∞ and µ = Eyt. We

12



assume that εt satisfies Assumption 2.1. This model can be written as regression model (1),

yt = β′zt + εt, where β = (β1, ..., βp+1)
′ = (φ0, ...., φp)

′ is a fixed parameter and regressors

zt = (z1t, z2t, ..., zp+1,t)
′ = (1, yt−1, yt−2, ..., yt−p)

′ are stationary variables. The theoretical

results of Section 2 allow to estimate the parameter β by the robust OLS estimator β̂ and

permit the evaluation of the robust standard errors.

Theorem 5.1. Suppose that (y1, ..., yn) is a sample from a stationary AR(p) model (33) and

Eε8t <∞. Then, the estimates β̂k, k = 1, ...., p+ 1 satisfy (16) and
√
ωkk �p n−1/2.

Monte Carlo findings in Section 6.4 show that the robust OLS estimation produces correct

95% confidence intervals for βk while the standard OLS method leads to coverage distortions,

when the noise εt is not i.i.d. This suggests that robust OLS estimation has a wider range of

applications, than just heteroscedasticity, and is applicable for regression settings not covered

by the standard OLS estimation and inference theory.

The asymptotic theory for Whittle estimators of parameters of a stationary ARMA model

with a stationary m.d. noise is provided in Giraitis et al. (2018). They do not consider

estimation of standard errors and constrain the practical implementation of their results to

AR(1) and MA(1) models.

6 Monte Carlo Simulations

In this section, we explore the finite sample performance of the robust and standard OLS

estimation methods in regression settings, outlined in Sections 2 and 3. We examine the

impact of time-varying deterministic and stochastic parameters, means, scale factors and

heteroskedasticity of regression noise on estimation. Comparison of simulation results for

standard and robust estimation methods shows that, despite the generality of our regression

setting, estimation based on the robust standard errors produces well-sized coverage intervals

for fixed and time-varying regression parameters β, βt, while application of the standard

confidence intervals leads to severe distortion of coverage rates.

6.1 Estimation of fixed parameters

We generate arrays of samples of regression model with fixed parameter and an intercept:

yt = β1 + β2z2t + β3z3t + ut, ut = htεt, β = (β1, β2, β3)
′ = (0.5, 0.4, 0.3)′. (34)

We set the sample size to n = 1500 and conduct 1000 replications and set the nominal coverage

probability at 0.95. (Estimation results for n = 200, 800 are available upon request).

This model includes three parameters and three regressors. We set z1t = 1 and define

zkt = µkt + gktηkt, k = 2, 3, (35)

13



Table 1: Robust OLS estimation in Model 6.1.

Parameters Bias RMSE CP CPst SD

β1 -0.00570 0.04579 95.0 79.2 0.04544
β2 0.00206 0.03407 95.4 72.7 0.03401
β3 0.00204 0.03495 94.0 72.9 0.03489

µkt = 0.5 sin(πt/n) + 1, ηkt = 0.5ηk,t−1 + ξkt,

where ξ2t = εt−1 and ξ3t = εt−2. The stationary martingale difference noise εt in ut is

generated by an GARCH(1, 1) process

εt = σtet, σ2t = 1 + 0.7σ2t−1 + 0.2ε2t−1, et ∼ i.i.d.N (0, 1). (36)

Model 6.1. yt follows (34) with deterministic scale factors. We set: ht = 0.3(t/n) and

g2,t = g3,t = 0.4(t/n).

Model 6.2. yt follows (34) with stochastic scale factors. We set

ht =
∣∣∣ 1

2
√
n

t∑
j=1

ζj

∣∣∣+ 0.25, g2t = g3t =
∣∣∣ 1

2
√
n

t∑
j=1

νkj

∣∣∣+ 0.25.

The generating noises {ζj , ν2j , ν3j} are i.i.d. N (0, 1) and independent of {εj}.

Models 6.1 and 6.2 are regression models with fixed parameters. To verify the validity of

the asymptotic normal approximation of Corollary 2.1 in finite samples, we compute empirical

coverage rates (CP) for 95% confidence intervals used in robust OLS estimation, for parameter

β. For comparison, we compute the coverage rates CPst for standard confidence intervals

based on the standard errors (17) used in the standard OLS estimation. The robust and

standard OLS procedures share the same estimator β̂, and whence Bias, root mean square

error (RMSE) and standard deviation (SD). Their confidence intervals are based on different

standard errors, as the variances in their normal approximation are different.

Table 1 reports estimation results for Model 6.1 which contains determinist scale factors.

It shows that coverage rate CP for robust confidence intervals is close to the nominal 95%,

while coverage rate CPst of the standard confidence intervals drops below 80%. The Bias,

RMSE, and SD are small.

Table 2 shows estimation results for Model 6.2 which includes stochastic scale factors.

It shows that coverage rate CP for robust confidence intervals is close to the nominal 95%,

while standard estimation method produces coverage distortions for parameters β2 and β3.
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Table 2: Robust OLS estimation in Model 6.2.

Parameters Bias RMSE CP CPst SD

β1 -0.00420 0.05117 94.6 92.2 0.05100
β2 0.00208 0.03205 94.6 87.4 0.03199
β3 0.00071 0.01542 94.8 85.3 0.01541

6.2 Estimation of time-varying parameters

In this section we examine the validity of the normal approximation for the estimator β̂t,

(20), of time-varying parameter βt established in Corollary 3.1 of Section 3. Subsequently,

we replace the fixed regression parameter β in the regression model (34) by a time-varying

parameter βt = (β1t, β2t, β3t)
′:

yt = β1t + β2tz2t + β3tz3t + ut, ut = htεt, (37)

where z1t = 1 and z2t, z3t are defined with µ2t, µ3t and η2t, η3t as in (35).

We consider two models. In Model 6.3, parameters and scale factors are deterministic.

Model 6.4 combines deterministic and stochastic parameters and scale factors.

Model 6.3. yt follows (37) with εt as in (36). The scale factors ht, g2t, g3t and parameters

β1t, β2t, β3t are deterministic:

ht = 0.5 sin(2πt/n) + 1, g2t = g3t = 0.5 sin(πt/n) + 1.

β1t = 0.5 sin(0.5πt/n) + 1, β2t = 0.5 sin(πt/n) + 1, β3t = 0.5 sin(2πt/n) + 1.

Model 6.4. yt follows (37) with εt ∼ i.i.d.N (0, 1) and scale factors:

ht = 0.5 sin(2πt/n) + 1, g2t =
∣∣∣ 1

2
√
n

t∑
j=1

ζj

∣∣∣+ 0.25, g3t = 0.5 sin(πt/n) + 1.

Parameters β1t, β2t are the same as in Model 6.3, and parameter β3t is stochastic:

β3t =
∣∣∣ 1

2
√
n

t∑
j=1

νj

∣∣∣+ 0.3(t/n), ζj , νj ∼ i.i.d.N (0, 1).

We estimate βt through the estimator β̂t, (20), where the weights bn,tj = K(|t − j|/H)

are computed using the Gaussian kernel function K(x) = (2π)−1/2 exp(−x2/2) with the

bandwidth H = nh, h = 0.4, 0.5, 0.6, 0.7.

Figure 1 displays parameter estimation results for a single simulation from Model 6.3. It

depicts the estimates β̂k1, ..., β̂kn (red line) of the true parameters βkt (blue line), k = 1, 2, 3

obtained with the bandwidth H = n0.5, and their point-wise 95% confidence intervals (grey

15



(a) β1,t (b) β2,t (c) β3,t

Figure 1: Robust 95% confidence intervals for time-varying parameters β1t, β2t, β3t in Model
6.3: n = 1500, bandwidth H = n0.5. Single replication.

(a) β1,t (b) β2,t (c) β3,t

Figure 2: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.3: n = 1500, bandwidth H = n0.5.

(a) β1,t (b) β2,t (c) β3,t

Figure 3: RMSE for time-varying parameters β1t, β2t, β3t in Model 6.3: n = 1500, bandwidth
H = nh, h = 0.4, 0.5, 0.6, 0.7.
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(a) β1,t (b) β2,t (c) β3,t

Figure 4: Robust 95% confidence bands for time-varying parameters β1t, β2t, β3t in Model
6.4: n = 1500, bandwidth H = n0.5. Single replication.

(a) β1,t (b) β2,t (c) β3,t

Figure 5: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.4: n = 1500, bandwidth H = n0.5.

dashed lines), computed using robust standard errors. The robust time-varying confidence

intervals cover the true parameters βkt, t = 1, ..., n for most of the times.

Figure 2 reports the point-wise empirical coverage rates (blue line) in time-varying robust

estimation of parameters βkt, k = 1, 2, 3 which are close to the nominal 95% for most of

the times. Figure 3 shows the RMSE’s for different choices of the bandwidth H = nh,

h = 0.4, 0.5, 0.6, 0.7. As expected, the RMSE depends on the smoothness of the parameter

βkt and often is minimized by moderately large values of H, e.g. H = n0.6.

Figure 4 reports estimation results for a single simulation from Model 6.4, and Figure 5

displays point-wise empirical coverage rates for robust 95% confidence intervals. For deter-

ministic parameters β1t and β2t, estimation quality is good and results are similar to those

obtained for Model 6.3. For the stochastic parameter β3t, the robust point-wise confidence

intervals cover the path of stochastic parameter β3t for most of the times, see Figure 4(c).

Figure 5(c) shows that coverage rates of robust time-varying confidence intervals for β3t might

be slightly affected by stochastic changes in parameter and scale factors. Nevertheless, they

are still satisfactory and not far from the nominal 95% coverage.
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Table 3: Robust OLS estimation in Model 6.1 with block missing data (Type 1).

Parameters Bias RMSE CP CPst SD

β1 -0.00818 0.04983 94.60 74.60 0.04915
β2 0.00356 0.03875 94.00 67.90 0.03859
β3 0.00246 0.03840 93.80 70.00 0.03832

Table 4: Robust OLS estimation in Model 6.1 with randomly missing data (Type 2).

Parameters Bias RMSE CP CPst SD

β1 -0.00567 0.05732 94.30 66.60 0.05704
β2 0.00144 0.04251 95.20 63.50 0.04249
β3 0.00289 0.04128 94.80 64.70 0.04118

6.3 Estimation of regression parameter with missing data

To examine the impact of missing data on the robust and standard OLS estimation based

on partially observed data (yj1 , zj1), (yj2 , zj2), ...., (yjN , zjN ), we use two types of missing data

patterns over the time period 1, ..., 1500.

Type 1. The block of data j ∈ [650, 850] is missing.

Type 2. 500 single observations are missing at randomly selected times.

Tables 3 and 4 report robust and standard estimation results for Model 6.1 with fixed

parameter. Table 3 shows that block missing data (Type 1) do not lead to visible changes of

Bias, RMSE and SD, and coverage rate for robust confidence intervals is still around 95%.

At the same time, coverage rate CPst of the standard confidence intervals is significantly

distorted.

Table 4 shows that randomly missing data do not affect the coverage rate of robust

confidence intervals which is close to the nominal 95%, while the coverage rate of the standard

confidence intervals hovers around 65%. This emphasises the flexibility of the robust OLS

estimation of the fixed parameter in presence of block missing data

Figure 6 – 8 report estimation results for Model 6.3 with time-varying parameter βt.

Figure 6 shows the coverage rates in time-varying robust estimation with block missing

data (Type 1, shaded region) for t = 1, ..., 1500. The coverage is close to the nominal 95%,

with some distortion for parameters β1,t and β2,t and larger distortion for parameter β3,t in

the shaded region. The distortion peaks at the centre of the block, as expected. Although the

width of missing data block, 200, exceeds the bandwidth H = n0.5 = 39 used in the estimation

of βt, the coverage distortion seems to be offset by the smooth down-weighting of data and

the performance of the robust time-varying OLS estimation exceeds our expectations.

Figure 7 reports the path of the estimator β̂kt and the point-wise robust confidence
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(a) β1,t (b) β2,t (c) β3,t

Figure 6: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.3 with block missing data (Type 1), n = 1500, bandwidth H = n0.5.

(a) β1,t (b) β2,t (c) β3,t

Figure 7: Robust 95% confidence bands for time-varying parameters β1t, β2t, β3t in Model 6.3
with block missing data (Type 1), n = 1500, bandwidth H = n0.5. Single replication.

intervals, for a single simulation. The robust confidence intervals become wider in the shaded

region, which may explain the satisfactory coverage performance in that time period.

Figure 8 shows that randomly missing data (Type 2) does not distort the robust time-

varying OLS estimation. For all three parameters and time periods t, the coverage rate is

close to the nominal. Overall, the robust estimation of time-varying parameter does not seem

to be affected by randomly missing data.

6.4 Estimation of a stationary AR(p) model

We assess the performance of the robust and standard procedures in a case of a stationary

AR(2) model:

yt = β1 + β2yt−1 + β3yt−2 + εt, β = (β1, β2, β3)
′ = (0.5, 0.4, 0.3)′, (38)

where εt = etet−1, et ∼ i.i.d.N (0, 1) is a stationary martingale difference noise. Here regres-

sors zt = (z1,t, z2,t, z3,t)
′ = (1, yt−1, yt−2)

′ include an intercept and the two past lags of yt. By

Theorem 5.1, parameter β can be estimated by the robust estimation method.

Table 5 shows that the coverage rate for the robust OLS estimation method is close to

the nominal 95% while the standard OLS estimation leads to extensive coverage distortion
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(a) β1,t (b) β2,t (c) β3,t

Figure 8: Coverage rates (in %) of robust confidence intervals for time-varying parameters
β1t, β2t, β3t in Model 6.3, 500 randomly missing data, n = 1500, bandwidth H = n0.5.

Table 5: Robust OLS estimation in AR(2) model (38).

Parameters Bias RMSE CP CPst SD

β1 -0.00808 0.05250 94.9 92.3 0.05187
β2 0.00104 0.04183 94.5 75.0 0.04182
β3 0.00356 0.03091 94.8 88.8 0.03070

for β2 and β3.

7 Empirical experiment

In this section, we consider the problem of the structure and modelling of daily S&P 500 log

returns, rt, from 02/01/1990 to 31/12/2019, (sample size n = 7558). We use robust regression

estimation to verify whether returns rt obey the following regression model for uncorrelated

noise:

rt = µt + ut, ut = htεt, (39)

where {εt} is an i.i.d.(0, 1) noise and the time-varying mean and scale factor µt, ht are inde-

pendent of {εt}. Our objective is to estimate µt (time-varying mean), the scale factor ht and

test for absence of correlation in |ut| = ht|εt| to confirm the fit of the model (39) to the data.

Indeed, if rt follows (39) with i.i.d. noise εt, then for t 6= s, |ut|’s are uncorrelated:

cov(|ut|, |us|) = cov(ht|εt|, hs|εs|) = E
[
hthscov(|εt|, |εs|)

]
= 0.

Conversely, under the presence of ARCH effects (stationary conditional heteroskedasticity)

in εt, |ut| would be a sequence of correlated variables and the hypothesis of absence of

correlation in |ut| would be rejected. To estimate the intercept µt, we have used the time-

varying OLS estimator with bandwidths H = n0.4, n0.5, ..., n0.7. Figure 9(a) displays the path

and corresponding confidence intervals for µ̂t for H = n0.6 and reveals that µt is very likely

to change over time.
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(a) Confidence bands for µt (b) Confidence bands for β1t = htE|εt|

Figure 9: Robust 95% confidence bands for µt in model (39) and β1t = htE|εt| in model (40),
n = 7558, H = n0.6.

(a) Testing at individual lag: ̂̃uj (b) Testing at individual lag: û∗j

Figure 10: Robust and standard tests for absence of correlation in subsample of residuals ̂̃uj ,
û∗j , j ∈ [500, 1000], H = n0.6, significance level 5%.

Assumption (39) implies that

|ut| = |rt − µt| = ht|εt| = htE|εt|+ ht(|εt| − E|εt|).

Then, |ût| = |rt − µ̂t| ∼ htE|εt| + ht(|εt| − E|εt|) and thus yt = |ût| follows a time-varying

regression model

yt = β1t + ũt, ũt = gtηt, (40)

where β1t = htE|εt| is a time-varying intercept, gt = ht is a scale factor and ηt = |εt| −E|εt|
is an i.i.d. noise. Hence β1t can be estimated using the time-varying OLS estimator β̂1t.

Figure 9(b) displays the estimate β̂1t and confidence intervals for β1t = htE|εt| for bandwidth

H = n0.6 which reveals significant time variation in ht.

Figure 10(a) reports testing results for zero correlation at lags k = 1, ..., 20 in the residual

sequence ̂̃ut = yt − β̂1t. We employ the standard test and robust test procedure developed
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in Giraitis et al. (2024). Since the sample size n = 7558 is large and β1t is estimated non-

parametrically with bandwidth H = n0.6, we restrict testing to the subsample j ∈ [500, 1000].

Both tests report no evidence of significant correlation in this subsample, and this suggests

a good fit of the model (39) to the returns rt in this time period.

The same is not likely true if r∗t = rt − µ̂t follows a GARCH(1,1) model, and this is

confirmed by the following experiment. We match a GARCH(1,1) model to data r∗t = rt− µ̂t,

r∗t = σtεt, σ2t = 1.563× 10−6 + 0.88913σ2t−1 + 0.096974r∗ 2t−1,

generate a GARCH(1,1) sample r∗g1, ...., r
∗
gn, fit to y∗t = |r∗gt| regression model (40) and com-

pute residuals, û∗t = y∗t − β̂1t. Figure 10(b) shows that both standard and robust test detect

significant correlation in residuals û∗t .

8 Conclusion

The robust OLS and time-varying OLS regression estimation and inference methods, pre-

sented in this paper, offer considerable flexibility in specifying regression models for economic

and financial empirical applications. It allows for general heterogeneity in regression com-

ponents and structural change of regression coefficient over time. The generalization of the

structure of regressors and error terms further expands the area of scenarios to which robust

OLS regression method can be applied. In particular, the present paper develops asymptotic

theory of general regression modelling, when regressors are stochastic and may include in-

tercept, and provides data based robust standard errors for building confidence intervals for

regression parameters. Our Monte Carlo analysis shows the remarkable performance of the

robust estimation approach under complex settings, and verifies the asymptotic normality

property and consistency of parameter estimators.
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This Supplement provides proofs of the results given in the text of the main paper. It

is organised as follows: Section 9, 10, 11 provide proofs of the main theorems. Section 12

contains auxiliary technical lemmas used in the proofs.

Formula numbering in this supplement includes the section number, e.g. (8.1), and

references to lemmas are signified as “Lemma 10.#”, e.g. Lemma 10.1. Theorem references

to the main paper include section number and are signified, e.g. as Theorem 2.1, while

equation references do not include section number, e.g. (1), (2).

In the proofs, C stands for a generic positive constant which may assume different values

in different contexts.

9 Proofs of Theorems 2.1 and 2.2, Lemma 2.1 and Corollary

2.1

Proof of Theorem 2.1. Notice that in view of (1),

β̂ − β =
( n∑
j=1

zjz
′
j

)−1( n∑
j=1

zj(z
′
jβ + uj)

)
− β

= S−1zz Szu, Szz =
n∑
j=1

zjz
′
j , Szu =

n∑
j=1

zjuj .

Recall definition (5) of D and Dg. Then

D(β̂ − β) = (DS−1zz D)(D−1Szu)

= (DD−1g )(DgS
−1
zz Dg)(D

−1
g D)(D−1Szu) = Op(1), (9.1)

1



since DD−1g = Op(1) by (7) of Assumption 2.3, D−1Szu = Op(1) by (12.7) of Lemma 12.2.

Moreover, by (12.6) and (12.3),

DgS
−1
zz Dg = DgE[Szz |F∗n]−1Dg + op(1) = Op(1).

This completes the proof of the consistency claim (9) of the theorem. �

Recall that for p× p symmetric matrices A, B and a p× 1 vector b it holds:

||AB||sp ≤ ||A||sp||B||sp, ||AB|| ≤ ||A||sp||B||, ||A||sp ≤ ||A||,

where ||A||sp denotes the spectral norm and ||A|| the Euclidean norm of the matrix A.

Proof of Theorem 2.2. Proof of (13). By (9.1),

D(β̂ − β) = {DS−1zz D}{D−1Szu}.

Moreover, by the same argument as in the proof of (9.1),

DS−1zz D = (DD−1g )(DgS
−1
zz Dg)(D

−1
g D)

= (DD−1g )(DgE[Szz |F∗n]−1Dg + op(1))(D−1g D)

= DE[Szz |F∗n]−1D + op(1), DS−1zz D = Op(1). (9.2)

Hence,

a′D(β̂ − β) = a′{DE[Szz |F∗n]−1D + op(1)}{D−1Szu}

= dnSzu + op(1), dn = a′(DE[Szz|F∗n]−1). (9.3)

By (12.11) of Lemma 12.2,

v2n := (a′DΩnDa) ≥ bn, b−1n = Op(1). (9.4)

This together with (9.3) implies:

a′D(β̂ − β)√
a′DΩnDa

= v−1n dnSzu + op(1).

Write

sn = v−1n dnSzu =
n∑
t=1

ξt, ξt = v−1n dnztut.

2



To prove (13), it remains to show that

sn →d N (0, 1). (9.5)

Notice that {ξt} is an m.d. sequence with respect to the σ-field

Fn,t = σ(ε1, ..., εt; µs, hs, gs, s = 1, ..., n):

E[ξt |Fn,t−1] = E[v−1n dnzthtεt|Fn,t−1] = v−1n dnzthtE[εt|Fn,t−1] = 0. (9.6)

Therefore, by Corollary 3.1 of Hall and Heyde (1980), to prove (9.5), it suffices to show that

(a)
n∑
t=1

E[ξ2t |Fn,t−1]→p 1, (9.7)

(b)

n∑
t=1

E[ξ2t I(ξ2t ≥ ε) |Fn,t−1] = op(1) for any ε > 0.

To verify (a), notice that

ξ2t = (v−1n dnztut)
2 = v−2n dnztz

′
td
′
nu

2
t ,

E[ξ2t |Fn,t−1] = v−2n dnztz
′
td
′
nE[u2t |Fn,t−1] = v−2n dnztz

′
td
′
nh

2
tE[ε2t |Ft−1].

Then, setting S
(c)
zzuu =

∑n
t=1 ztz

′
th

2
tE[ε2t |Ft−1], we can write,

n∑
t=1

E[ξ2t |Fn,t−1] = v−2n dn S
(c)
zzuu d

′
n

= v−2n a′{DE[Szz|F∗n]−1D}{D−1S(c)
zzuuD

−1}{DE[Szz|F∗n]−1D}a. (9.8)

Recall that by (9.2), DE[Szz|F∗n]−1D = Op(1). We show in (12.14) of Lemma 12.2 that

D−1S(c)
zzuuD

−1 = D−1E[Szzuu|F∗n]D−1 + op(1).

Together with (9.4), this implies

n∑
t=1

E[ξ2t |Fn,t−1] = v−2n a′{DE[Szz|F∗n]−1E[Szzuu|F∗n]E[Szz|F∗n]−1D}a+ op(1)

= v−2n (a′DΩnDa) + op(1) = 1 + op(1)

which proves (a).

Next we prove (b). We have

ξt = v−1n dnztut = v−1n (dnD)(D−1ztut),

ξ2t ≤ v−2n ||dnD||2||D−1ztut||2.
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By definition of dn, ||dnD||2 = ||a′DE[Szz|F∗n]−1D||2. On the other hand, by (12.18) of

Corollary 12.1, for any a,

a′D−1E[Szzuu|F∗n]D−1a ≥ bn||a||2, b−1n = Op(1),

where bn is F∗n measurable, and, thus, also Fn,t−1 measurable. Then,

v2n = a′DΩnDa = {a′D(E[Szz|F∗n])−1D}{D−1E[Szzuu|F∗n]D−1}{D(E[Szz|F∗n])−1Da}

≥ ||a′D(E[Szz|F∗n])−1D||2bn = ||dnD||2bn,

ξ2t ≤ b−1n ||D−1ztut||2.

Hence,

n∑
t=1

E[ξ2t I(ξ2t ≥ ε) |Fn,t−1] ≤
n∑
t=1

E
[
b−1n ||D−1ztut||2I

(
b−1n ||D−1ztut||2 ≥ ε

)
|Fn,t−1

]
= op(1),

by (12.54) of Lemma 12.3. This completes the proof (b) and the claim (13) of the theorem.

The claim (14) follows from (13) by setting a = (a1, ..., ap)
′ = (0, ..., 0, 1, 0....)′ where ak = 1

and aj = 0 for j 6= k. Then a′D = vk and a′DΩnDa = v2kωkk, where ωkk is the (k, k)-th

diagonal element of Ωn. Then,

a′D(β̂ − β)√
a′DΩnDa

=
(β̂ − β)
√
ωkk

→d N (0, 1).

This completes the proof of the theorem. �

Proof of Lemma 2.1. Proof of (6). It suffices to show that

in = v−2gk max
1≤t≤n

(g2kt + µ2kt) = op(1). (9.9)

Notice also that z2kt = µ2kt + 2µktgktηkt + g2ktη
2
kt,

E[z2kt |F∗n] = µ2kt + 2µktgktE[ηkt |F∗n] + g2ktE[η2kt |F∗n] = µ2kt + g2kt. (9.10)

In addition, by assumption of lemma, v−2gk = (
∑n

t=1 g
2
kt)
−1 = Op(n

−1). Thus,

in = Op(1)in,1, in,1 = n−1 max
1≤t≤n

E[z2kt |F∗n].

We will show that Ein,1 = o(1) which implies (9.9). Observe that for any L ≥ 1,

z2kt ≤ L+ z2ktI(z2kt ≥ L) ≤ L+ L−1z4kt.
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By assumption (10), E[z4kt] ≤ c <∞ where c does not depend on t, n. Hence,

in,1 ≤ n−1L+ n−1L−1 max
t=1,...,n

E[z4kt |F∗n],

Ein,1 ≤ n−1L+ n−1L−1
∑n

t=1E[z4kt] ≤ n−1L+ L−1c→ 0, n, L→∞

which implies in = op(1) and proves (6).

Proof of (11). It suffices to verify that

in = v−2k max
1≤t≤n

(g2kt + µ2kt)h
2
t = op(1). (9.11)

By assumption of lemma, v−2k = Op(n
−1). This together with (9.10) implies that

in = Op(1)in,2, in,2 = n−1 max
1≤t≤n

E[z2kth
2
t |F∗n].

We will show that Ein,2 = o(1) which implies in,2 = op(1) and proves (9.11).

Similarly as above, for any L ≥ 1, setting L0 = logL, for δ > 0 we obtain

z2kth
2
t ≤ L+ z2kth

2
t I(z2kth

2
t ≥ L)

≤ L+ L−10 z4ktI(h2t ≤ L−10 z2kt) + h4tL0I(h2t > L−10 z2kt)I(h4tL0 ≥ L)

≤ L+ L−10 z4kt + h4tL0

( h4t
LL−10

)δ
≤ L+ L−10 z4kt + h4+4δ

t AL, AL = L−δL1+δ
0 .

By assumption (10), E[z4kt] ≤ c and there exists δ > 0 such that E[|ut|4+4δ] ≤ c, where c <∞
does not depend on t, n. Hence, E[h4+4δ

t ] = E[(E[u2t |F∗n])2+2δ] ≤ E[|ut|4+4δ] ≤ c. Notice

that AL → 0 as L→∞. Therefore, as n,L→∞,

Ein,2 ≤ n−1L+ L−10 n−1
∑n

t=1E[z4kt] +ALn
−1∑n

t=1E[h4+4δ
t ]

≤ n−1L+ L−10 c+ALc→ 0,

which implies in = op(1) and proves (11).

Proof of (7). Recall that v2k �p n, v2gk �p n by assumption of lemma. By (9.10),

µ2kt ≤ E[z2kt |F∗n], E[µ2kt] ≤ E[z2kt] ≤ c,

E[µ4kt] ≤ E[(E[z2kt |F∗n])2] ≤ E[(E[z4kt |F∗n])] ≤ E[z4kt] ≤ c,

E[g4kt] ≤ E[(E[z2kt |F∗n])2] ≤ c,

E[h4t ] = E[(E[u2t |F∗n])2] ≤ E[(E[u4t |F∗n])] ≤ E[u4t ] ≤ c,

E[µ2kth
2
t ] ≤ (E[µ4kt]E[h4t ])

1/2 ≤ c,

E[g2kth
2
t ] ≤ (E[g4kt]E[h4t ])

1/2 ≤ c,
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where c <∞ does not depend on t, n. Hence,

n−1E[
∑n

t=1 µ
2
kt] ≤ c,

∑n
t=1 µ

2
kt = Op(n),

n−1E[
∑n

t=1 µ
2
kth

2
t ] ≤ c,

∑n
t=1 µ

2
kth

2
t = Op(n),

n−1E[
∑n

t=1 g
2
kth

2
t ] ≤ c,

∑n
t=1 g

2
kth

2
t = Op(n),

which proves (7). This completes the proof of the lemma. �

Proof of Corollary 2.1. We will show that

ω̂kk
ωkk

= 1 + op(1) (9.12)

which together with (14) implies (16):

β̂k − βk√
ω̂kk

=
(√ωkk

ω̂kk

) β̂k − βk√
ωkk

= (1 + op(1))
β̂k − βk√

ωkk
→d N (0, 1).

To prove (9.12), we will verify that

DΩ̂nD = DΩnD + op(1) (9.13)

which implies the following property for diagonal elements:

v2kω̂kk = v2kωkk + op(1).

In (12.11) of Lemma 12.2 it is shown that

a′DΩnDa ≥ bn, a′DΩnDa ≤ bn2 (9.14)

for any a = (a1, ..., ap)
′, ||a|| = 1 where bn, bn2 > 0 do not depend on a, n and b−1n = Op(1),

bn2 = Op(1). Set a = (0, ..., 1, ...0)′, where aj = 0 for j 6= k and ak = 1. Then a′DΩnDa =

v2kωkk, and by (9.14), v2kωkk ≥ bn > 0. This proves (9.12):

ω̂kk
ωkk

=
v2kω̂kk
v2kωkk

=
v2kωkk + op(1)

v2kωkk
= 1 + op(1).

In addition, the bounds (9.14) imply that
√
ωkk �p v−1k :

v−1k ≤ b
−1/2
n

√
ωkk = Op(

√
ωkk), vk

√
ωkk = Op(1),

√
ωkk = Op(v

−1
k ).

Proof of (9.13). Set Vn = DD−1g . By (7) of Assumption 2.3, Vn = Op(1). We have

DΩ̂nD = Vn{DgS
−1
zz Dg}Vn{D−1SzzûûD−1}Vn{DgS

−1
zz Dg}Vn,
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DΩnD = VnW
−1
zz VnWzzuuVnW

−1
zz Vn,

W−1zz = DgE[Szz |F∗n]−1Dg, Wzzuu = D−1E[Szzuu |F∗n]D−1.

By (12.6), (12.3), (12.12) and (12.10) of Lemma 12.2,

DgS
−1
zz Dg = W−1zz + op(1), W−1zz = Op(1),

D−1SzzuuD
−1 = Wzzuu + op(1), Wzzuu = Op(1).

We will show that

D−1SzzûûD
−1 = D−1SzzuuD

−1 + op(1). (9.15)

This implies (9.13):

DΩ̂nD = Vn{W−1zz + op(1)}Vn{Wzzuu + op(1)}Vn{W−1zz + op(1)}Vn
= VnW

−1
zz VnWzzuuVnW

−1
zz Vn + op(1) = DΩnD + op(1).

Proof of (9.15). By definition,

||D−1(Szzûû − Szzuu)D−1|| = ||
n∑
t=1

D−1ztz
′
tD
−1(û2t − u2t )||

≤
n∑
t=1

||D−1zt||2 |û2t − u2t | ≤ in × (
n∑
t=1

||D−1zt||2), in = max
t=1,...,n

|û2t − u2t |.

Notice that
n∑
t=1

||D−1zt||2 ≤ ||D−1Dg||2
n∑
t=1

||D−1g zt||2 = Op(1),

since ||DgD
−1|| = Op(1) by assumption (7) and

∑n
t=1 ||D−1g zt||2 = Op(1) by (12.8) of Lemma

12.2. Hence, to verify (9.15), it suffices to show that

in = op(1). (9.16)

Recall the equality û2t − u2t = (ût − ut)2 + 2(ût − ut)ut. Denote qn = ||D(β − β̂)||. Then,

ût − ut = (β − β̂)′zt = {(β − β̂)′D}{D−1zt},

|ût − ut| ≤ ||D−1zt|| qn,

|û2t − u2t | ≤ (ût − ut)2 + 2|(ût − ut)ut| ≤ ||D−1zt||2 q2n + 2||D−1zt|| |ut| qn.

Hence,

in ≤ ( max
t=1,...,n

||D−1zt||2) q2n + 2( max
t=1,...,n

||D−1ztut||) qn = op(1),
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where qn = Op(1) by Theorem 2.1, and

max
t=1,...,n

||D−1zt||2 = op(1), max
t=1,...,n

||D−1ztut|| = op(1)

by (12.53) of Lemma 12.3. This implies (9.16) and completes the proof of the corollary. �

10 Proofs of Theorem 3.1 and Corollary 3.1

Proof of Theorem 3.1. By (19), ỹj = z̃′jβt + ũj + rj . Thus,

β̂t =
( n∑
j=1

z̃j z̃
′
j

)−1( n∑
j=1

z̃j ỹj
)

= β̃t +Bt, (10.1)

β̃t =
( n∑
j=1

z̃j z̃
′
j

)−1 n∑
j=1

z̃j(z̃
′
jβt + ũj), Bt =

( n∑
j=1

z̃j z̃
′
j

)−1 n∑
j=1

z̃jrj .

The term β̃t is the OLS estimator of the fixed parameter βt in the regression model

y∗j = β′tz̃j + ũj , j = 1, ..., n.

As is shown below, the consistency rate and the asymptotic normality for β̃t − βt can be

derived using results of Section 2. The term Bt = (B1t, ...., Bpt)
′ arises due to time variation

in the parameter βj . It can be treated as a negligible term or a “bias” term. First we will

show that for k = 1, ..., p,

β̃kt − βkt = Op(H
−1/2),

β̃kt − βkt√
ωkk,t

→d N (0, 1),
√
ωkk,t �p H−1/2, (10.2)

Bkt = Op
(
(H/n)γ

)
. (10.3)

Proof of (10.2). Recall that z̃j = (z̃1j , ..., z̃pj)
′, and

z̃kj = µ̃kj + g̃kjηkj , ũj = h̃jεj , (10.4)

µ̃kj = b
1/2
n,tjµkj , g̃kj = b

1/2
n,tjgkj , h̃j = b

1/2
n,tjhj .

By Lemma 10.1, under assumptions of theorem, µ̃kj and the scale factors {g̃kj , h̃j} satisfy

Assumptions 2.3 and 2.4(ii). Thus, by Theorem 2.1,

β̃kt − βkt = Op(v
−1
k ) = Op(H

−1/2),

where v2k ≡ v2kt =
∑n

j=1 g̃
2
kj h̃

2
j =

∑n
j=1 bn,tjg

2
kjh

2
j �p H by Assumption 3.2. This proves the

first claim in (10.2), while the second claim holds by (14) of Theorem 2.2. The third claim
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holds since by (16) of Corollary 2.1 and Assumption 3.2,

√
ωkk,t �p (

n∑
j=1

g̃2kj h̃
2
j )
−1/2 �p H−1/2. (10.5)

Proof of (10.3). Write

Bt = S−1z̃z̃,tSz̃z̃β,t, where Sz̃z̃β,t =
∑n

j=1 z̃j z̃
′
j(βj − βt).

We will show that

||S−1z̃z̃,t|| = Op(H
−1), ||Sz̃z̃β,t|| = Op

(
H(H/n)γ

)
, (10.6)

which implies ||Bt|| ≤ ||S−1z̃z̃,t|| ||Sz̃z̃β,t|| = Op
(
(H/n)γ

)
. Then, |Bkt| ≤ ||Bt|| = Op

(
(H/n)γ

)
which implies (10.3).

To verify (10.6), recall notation of the p× p diagonal matrix

Dg̃ = diag(vg̃1, ..., vg̃p), vg̃ =
∑n

j=1 g̃
2
kj , k = 1, ..., p.

Notice that

||S−1z̃z̃,t|| = ||D−1g̃ (Dg̃S
−1
z̃z̃,tDg̃)|D−1g̃ || ≤ ||D

−1
g̃ ||

2||Dg̃S
−1
z̃z̃,tDg̃|| = Op(H

−1)

because ||D−1g̃ ||
2 =

∑p
k=1 v

2
g̃k = Op(H

−1) by Assumption 3.2. On the other hand, Dg̃S
−1
z̃z̃,tDg̃ =

Op(1) by (12.6) and (12.3) of Lemma 12.2. This proves the first claim in (10.6).

Next, bound

E||Sz̃z̃β,t|| ≤ E[

n∑
j=1

||z̃j ||2||βj − βt||] ≤
n∑
j=1

(E||z̃j ||4)1/2(E||βj − βt||2)1/2.

We have ||z̃j ||4 = b2n,tj ||zj ||4. Recall that E||zj ||4 ≤ c by Assumption 3.2, E||βj − βt||2 ≤
c(|t − j|/n)2γ by Assumption 3.1, and it is trivial to show that under (22),

∑n
j=1 bn,tj(|t −

j|/H)γ = O(H). This implies

E||Sz̃z̃β,t|| ≤ CH(H/n)γ
(
H−1

n∑
j=1

bn,tj(|t− j|/H)γ
)
≤ CH(H/n)γ

which proves the second claim in (10.6).

We now use (10.2) and (10.3) to prove the results of the theorem. By (10.1), β̂t = β̃t+Bt.

Thus, (10.2) and (10.3) imply the consistency result (25):

β̂t − βt = (β̃t − βt) +Bt = Op
(
H−1/2 + (H/n)γ

)
.

9



Further, suppose that H = o(n2γ/(2γ+1)). We have

β̂kt − βkt√
ωkk,t

=
β̃kt − βkt√

ωkk,t
+ ω

−1/2
kk,t Bt.

By (10.5), ω
−1/2
kk,t = Op

(
H1/2

)
. Together with (10.3) this implies that

ω
−1/2
kk,t Bt = Op

(
H1/2(H/n)γ

)
= op(1). Then,

β̂kt − βkt√
ωkk,t

=
β̃kt − βkt√

ωkk,t
+ op(1)→d N (0, 1)

by (10.2) which proves the asymptotic normality property (26) of the theorem. Noting that

we already proved (10.5), this completes the proof of the theorem. �

Proof of Corollary 3.1. Write the time-varying regression model as a regression model

ỹj = z̃′jβt + ũj + rj with a fixed parameter (19) where rj = (βj − βt)′z̃j . We showed in the

proof of Theorem 3.1 that regressors z̃j and the noise ũj satisfy assumptions of Theorem 2.2

and that the term rj is asymptotically negligible. That allowed us to establish the asymptotic

normality property (26) of Theorem 3.1 for β̂kt using results of Section 2.

Clearly, to prove Corollary 3.1, it suffices to verify the second claim in (28),

ω̂kk,t
ωkk,t

= 1 + op(1).

Proof of the corresponding result in the case of fixed parameter in Corollary 2.1 shows that

we need to verify the validity of (9.15) for our regression model (19), i.e. to show that

jn = D−1Sz̃z̃ûûD
−1 = D−1Sz̃z̃ũũD

−1 + op(1), (10.7)

where ûj = ỹj − β̂′tz̃j and D = diag(v1, ...., vk)
′, v2k =

∑n
j=1 g̃

2
kj h̃

2
j .

Set û∗j = (βt − β̂t)′z̃j + ũj . Write

jn = D−1Sz̃z̃û∗û∗D
−1 +D−1(Sz̃z̃ûû − Sz̃z̃û∗û∗)D−1 = jn1 + jn2.

By (9.15), jn1 = D−1Sz̃z̃ũũD
−1 + op(1). Hence, to prove (10.7), we need to show that

jn2 = op(1). (10.8)

By Assumption 3.2, ||D−1|| = Op(H
−1/2). Hence,

||jn2|| ≤ ||D−1||2||Sz̃z̃ûû − Sz̃z̃û∗û∗ || = Op(1)||jn3||, jn3 = H−1(Sz̃z̃ûû − Sz̃z̃û∗û∗).
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We will show that jn3 = op(1) which implies (10.8). Notice that

ûj = ỹj − β̂′tz̃j = (βt − β̂t)′z̃j + ũj + rj = û∗j + rj ,

û2j − û∗ 2j = (ûj − û∗j )2 + 2(ûj − û∗j )û∗j
= r2j + 2rj û

∗
j = r2j + 2rj(βt − β̂t)′z̃j + 2rj ũj . (10.9)

Using the inequality 2|ab| ≤ a2 + b2, we can bound in (10.9),

2|rj(βt − β̂t)′z̃j | ≤ r2j +
(
(βt − β̂t)′z̃j

)2 ≤ r2j + ||βt − β̂t||2||z̃j ||2.

Next we evaluate |rj ũj | in (10.9). Let L > 1 be large number. Then,

|rj | ≤ L−1||z̃j || I
(
|rj | ≤ L−1||z̃j ||

)
+ |rj |I

(
|rj | > L−1||z̃j ||

)
≤ L−1||z̃j ||+ Lr2j ||z̃j ||−1,

|rj ũj | ≤ L−1||z̃j || |ũj |+ Lr2j ||z̃j ||−1 |ũj |.

Hence,

|û2j − û∗ 2j | ≤ 2r2j + ||βt − β̂t||2||z̃j ||2 + 2L−1||z̃j || |ũj |+ 2L||z̃j ||−1 |ũj |r2j .

Since r2j ≤ ||βj − βt||2||z̃j ||2, this yields

||z̃j ||2|û2j − û∗ 2j | ≤ 2||βj − βt||2||z̃j ||4 + ||βt − β̂t||2||z̃j ||4 + 2L−1||z̃j ||3 |ũj |

+2L||z̃j ||3 |ũj | ||βj − βt||2.

Recall that z̃j = b
1/2
n,tjzj and ũj = b

1/2
n,tjuj . Denote θj = 2||zj ||4 + 2||zj ||3|uj |. Then,

||z̃j ||2|û2j − û∗ 2j | ≤ Lb2n,tj ||βj − βt||2θj +
(
||βt − β̂t||2 + L−1

)
b2n,tjθj .

Hence,

|jn3| = H−1
∣∣∑n

j=1 z̃j z̃
′
j(û

2
j − û∗ 2j )

∣∣ ≤ H−1∑n
j=1 ||z̃j ||2|û2j − û∗ 2j |

≤ L{H−1
∑n

j=1 b
2
n,tj ||βj − βt||2θj}+ (||βt − β̂t||2 + L−1){H−1

∑n
j=1 b

2
n,tjθj}

≤ L{
∑n

j=1 bn,tj ||βj − βt||2}{H−1
∑n

j=1 bn,tjθj}

+(||βt − β̂t||2 + L−1){H−1
∑n

j=1 b
2
n,tjθj}

= Lqn1qn2 + (||βt − β̂t||2 + L−1)qn3. (10.10)

By (25) of Theorem 3.1, ||βt − β̂t||2 = op(1), and L−1 can be made arbitrarily small by

selecting large L. We will show that

Eqn1 = o(1), Eqn2 = O(1), Eqn3 = O(1). (10.11)
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Combining this with (10.10), we obtain

|jn3| = Lop(1) +
(
op(1) + L−1

)
Op(1),

so that the right hand side can be made arbitrarily small by selecting a large enough L and

letting n→∞. This proves (10.8).

To bound Eqn1 observe that by Assumption 3.1, E||βt − βj ||2 ≤ C(|t − j|/n)2γ , where

0 < γ ≤ 1 and under assumption (22), H−1
∑n

j=1 bn,tj(|t− j|/H)2γ = O(1). Hence,

Eqn1 ≤
n∑
j=1

bn,tjE||βj − βt||2 ≤ C
(
H(

H

n
)2γ
)
{H−1

n∑
j=1

bn,tj(
|t− j|
H

)2γ}

≤ C(H/n)2γ = o(1)

when H = o(n2γ/(2γ+1)). This proves (10.11) for Eqn1.

To bound Eqn2 and Eqn3, recall that by Assumption 3.2, Ez4kj ≤ C and Eu4j ≤ C

which implies that Eθj ≤ C. Moreover, under (22) it holds H−1
∑n

j=1 bn,tj = O(1) and

b2n,tj ≤ Cbn,tj . Hence,

Eqn2 ≤ H−1
∑n

j=1 bn,tjEθj ≤ CH−1
∑n

j=1 bn,tj = O(1),

Eqn3 ≤ H−1
∑n

j=1 b
2
n,tjEθj ≤ CH−1

∑n
j=1 bn,tj = O(1).

This completes the proof of (10.11) and the corollary. �

Lemma 10.1. Suppose that Assumption 3.2 holds and Assumptions 2.1, 2.2 are satisfied.

Then {µ̃kj , g̃kj , h̃j} in (10.4) satisfy Assumption 2.3 and Assumption 2.4(ii).

Proof of Lemma 10.1. Notice that assumptions (22) imply
∑n

j=1 bn,tj � H. Thus, the

claim of Lemma 10.1 follows using the same argument as in the proof of Lemma 2.1. �

11 Proofs of Propositions 4.1, 4.2 and Theorem 5.1

Proof of Proposition 4.1. Under Assumptions 4.1 and 4.2 and N �p n, regressors z̃t,

the noise ũt and the scale factors g̃t, h̃t have property vk �p n1/2 and satisfy assumptions of

Lemma 2.1. This Lemma implies that regression model (29) satisfies Assumptions 2.3 and

2.4(ii), and overall Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Hence assumptions of Theorem

2.2 are satisfied, (16) of Corollary 2.1 remains true, and
√
ωkk �p v−1k �p n

−1/2. �

Proof of Proposition 4.2. Under Assumptions 4.1, 4.2, 3.1 and (32), regression model (31)

satisfies Assumptions 2.1, 2.2, 3.1 and 3.2 of Theorem 3.1 and Corollary 3.1 which implies

the claims of the proposition. �
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Proof of Theorem 5.1. The AR(p) model (33) can be written as regressions model, yt =

β′zt + εt with fixed parameter β = (β1, ..., βp+1)
′ = (φ0, ...., φp)

′ and stationary regressors

zt = (z1t, z2t, ..., zp+1,t)
′ = (1, yt−1, yt−2, ..., yt−p)

′. They include the intercept 1 and the past

lags yt−k which are Ft = σ(εs, s ≤ t) measurable. For k ≥ 2, regressors can be written as in

(3), zkt = µkt + gktηkt = µ+ (yt−k+1 − µ), where the scale factors gkt are equal to 1 and the

means µkt = µ = Ey1.

Under assumptions of theorem, yt − µ =
∑∞

j=0 ajεt−j , where
∑∞

j=0 |aj | < ∞. If a sta-

tionary m.d. sequence εt satisfies E|εt|p <∞, for some p > 2, then

E
∣∣ ∞∑
j=0

ajεt−j
∣∣p ≤ C( ∞∑

j=0

a2j
)p/2

,

where C < ∞ does not depend on n, see e.g., Lemma 2.5.2 in Giraitis et al. (2012). By

assumption of theorem, Eε8t <∞. Hence E(yt − µ)8 <∞ and Eη8kt <∞.

Thus, regressors zt and regression noise ut = εt satisfy Assumptions 2.1, 2.2, 2.3 and 2.4 of

Section 2. Therefore, the robust OLS estimator β̂ of β has properties derived in Corollary

2.1 which implies Theorem 5.1. �

12 Proofs of Section 2: Auxiliary lemmas

This section contains auxiliary lemmas used in the proofs of the main results for Section 2.

For the ease of referencing, we include the statement of Lemma 12.1(i) established in Giraitis

et al. (2024).

Lemma 12.1. Assume that sequences {βt} and {zt} are mutually independent.

(i) If {zt} is a covariance stationary short memory sequence, then

n∑
t=1

βtzt =
( n∑
t=1

βt

)
Ez1 +Op

(
(

n∑
t=1

β2t )1/2
)
. (12.1)

(ii) If E|zt| <∞, then

∣∣ n∑
t=1

βtzt
∣∣ = Op

( n∑
t=1

|βt|
)

( max
t=1,...,n

E|zt|). (12.2)

Proof of Lemma 12.1. The claim (i) of Lemma 12.1 was derived in (Giraitis et al. (2024),

Lemma A5). To prove (ii), denote sn =
∑n

t=1 |βt|. Then,

E
[
s−1n

∑n
t=1 |βt| |zt|

]
=

∑n
t=1E[s−1n |βt|]E[|zt|]

≤ (maxt=1,...,nE|zt|)E[s−1n
∑n

t=1 |βt|] = maxt=1,...,nE|zt|,
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s−1n
∑n

t=1 |βt| |zt| = Op

(
maxt=1,...,nE|zt|

)
.

This implies

∣∣∑n
t=1 βtzt

∣∣ ≤ sn{s−1n ∑n
t=1 |βt| |zt|

}
= snOp

(
maxt=1,...,nE|zt|

)
.

This completes the proof of (12.2) and the lemma. �

Recall notation

Szz =
∑n

t=1 ztz
′
t, Szzuu =

∑n
t=1 ztz

′
tu

2
t , Szu =

∑n
t=1 ztut,

D = diag(v1, ..., vp), vk = (
∑n

t=1 g
2
kth

2
t )

1/2,

Dg = diag(vg1, ..., vgp), vgk = (
∑n

t=1 g
2
kt)

1/2.

Recall definition F∗n = σ(µt, gt, t = 1, ..., n) and Fn,t−1 in (9.6). Denote

Wzz = D−1g E[Szz|F∗n]D−1g , Wzzuu = D−1E[Szzuu|F∗n]D−1,

Ωn = (E[Szz|F∗n])−1(E[Szzuu|F∗n])(E[Szz|F∗n])−1.

Lemma 12.2. Suppose that zt and ut satisfy Assumptions 2.1, 2.2 and 2.3. Then the fol-

lowing holds.

(i) There exists bn > 0 such that b−1n = Op(1) and such that for any a = (a1, ..., ap)
′, ||a|| = 1,

a′Wzza ≥ bn, ||W−1zz ||sp ≤ b−1n , (12.3)

||Wzz|| ≤ b2n = Op(1). (12.4)

Moreover,

D−1g SzzD
−1
g = Wzz + op(1), (12.5)

DgS
−1
zz Dg = W−1zz + op(1), (12.6)

D−1Szu = Op(1), (12.7)
n∑
t=1

||D−1g zt||2 = Op(1). (12.8)

(ii) In addition, if Assumption 2.4 holds, then there exists bn > 0 such that b−1n = Op(1) and

such that for any a = (a1, ..., ap)
′, ||a|| = 1,

a′Wzzuua ≥ bn, ||W−1zzuu||sp ≤ b−1n , (12.9)

||Wzzuu|| ≤ b2n = Op(1), (12.10)

a′DΩnDa ≥ bn, a′DΩnDa ≤ b2n = Op(1). (12.11)
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Moreover,

D−1SzzuuD
−1 = Wzzuu + op(1), (12.12)

DS−1zzuuD = W−1zzuu + op(1), (12.13)

D−1S(c)
zzuuD

−1 = Wzzuu + op(1), S(c)
zzuu =

n∑
t=1

ztz
′
tE[u2t |Fn,t−1]. (12.14)

Before the proof of lemma, we will state the following corollary. Denote

c∗,n =
n∑
t=1

||D−1g µt||2, c∗∗,n =
n∑
t=1

||D−1µtht||2. (12.15)

Notice that under (7) of Assumption 2.3,

c∗,n =

p∑
k=1

{v−2gk
n∑
t=1

µ2kt} = Op(1), c∗∗,n =

p∑
k=1

{v−2k
n∑
t=1

µ2kth
2
t } = Op(1). (12.16)

Corollary 12.1. In Lemma 12.2, the claims (12.3) and (12.9) hold with bn as below:

a′Wzza ≥ bn =

c−1 : Case 1 (intercept not included),

c−1(1 + c∗,n)−1 : Case 2 (intercept included),
(12.17)

a′Wzzuua ≥ bn =

c−1(1 + c∗∗,n)−4 : Case 1 (intercept not included),

c−1(1 + c∗∗,n)−9 : Case 2 (intercept included),
(12.18)

where c > 0 does not depend on n, b−1n = Op(1) and bn is F∗n measurable.

Proof of Lemma 12.2(i). Proof of (12.3). Set Igt = diag(g1t, ..., gpt). By definition,

zt = µt + Igtηt = µt + z̃t, z̃t = Igtηt. (12.19)

Then

ztz
′
t = (µt + z̃t)(µt + z̃t)

′ = z̃tz̃
′
t + µtµ

′
t + µtz̃

′
t + z̃tµ

′
t,

E[ztz
′
t|F∗n] = E[z̃tz̃

′
t|F∗n] + µtµ

′
t + µtE[z̃′t|F∗n] + E[z̃t|F∗n]µ′t

= E[z̃tz̃
′
t|F∗n] + µtµ

′
t + µte

′
t + etµ

′
t

= E[z̃tz̃
′
t|F∗n] + (µt + et)(µt + et)

′ − ete′t, (12.20)

where et = E[z̃t|F∗n] = IgtE[ηt]. Using (12.20), we can write

a′Wzza =
n∑
t=1

a′D−1g E[ztz
′
t|F∗n]D−1g a
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=

n∑
t=1

a′D−1g E[z̃tz̃
′
t|F∗n]D−1g a+

n∑
t=1

(a′D−1g µt)
2 + 2

n∑
t=1

(a′D−1g µt)(e
′
tD
−1
g a) (12.21)

=
n∑
t=1

a′D−1g E[z̃tz̃
′
t|F∗n]D−1g a+

n∑
t=1

(a′D−1g (µt + et))
2 −

n∑
t=1

(a′D−1g et)
2. (12.22)

We split the proof into two cases when regression model (1) does not include intercept and

when intercept is included.

Case 1 (no intercept): et = IgtE[ηt] = (0, ..., 0)′.

Case 2 (intercept included): et = IgtE[ηt] = Igt(1, 0, ..., 0)′ = (g1t, 0, ..., 0)′, g1t = 1.

Case 1. Let et = 0. Then (12.21) implies

a′Wzza ≥
n∑
t=1

a′D−1g E[z̃tz̃
′
t|F∗n]D−1g a. (12.23)

In this instance,

E[z̃tz̃
′
t|F∗n] = IgtE[ηtη

′
t]Igt = IgtΣIgt,

where E[ηtη
′
t] = Σ = (σjk)j,k=1,...,p. By Assumption 2.2(ii), the matrix Σ is positive definite.

Therefore, there exists b > 0 such that for any α = (α1, ..., αp)
′,

α′Σα ≥ b||α||2.

Hence, setting γkt = v−1gk gkt, we derive

n∑
t=1

a′D−1g E[ztz
′
t|F∗n]D−1g a =

n∑
t=1

{a′D−1g Igt}Σ{IgtD−1g a}

≥ b
n∑
t=1

||a′D−1g Igt||2 = b

n∑
t=1

[ p∑
k=1

a2kγ
2
kt

]
= b

p∑
k=1

a2k (

n∑
t=1

γ2kt) = b

p∑
k=1

a2k = b||a||2 = b,

since
∑n

t=1 γ
2
kt = 1 and ||a|| = 1. With (12.23) this proves the first claim in (12.3):

a′Wzza ≥ b. (12.24)

Matrix Wzz is symmetric and, thus, it has real eigenvalues. The bound (12.24) implies that

the smallest eigenvalue of Wzz has property λmin ≥ bn > 0. Therefore Wzz is positive definite,

and the largest eigenvalue θmax of W−1zz has property θmax = λ−1min ≤ 1/bn, which implies that

||W−1zz ||sp ≤ 1/bn. This proves the second claim in (12.3).

Case 2 (intercept included): et = IgtE[ηt] = Igt(1, 0, ..., 0)′ = (g1t, 0, ..., 0)′. Recall that in
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presence of intercept, g1t = 1 and η1t = 1.

Proof of (12.3). Set a = (a1, ..., ap)
′, ã = (a2, ..., ap)

′. Recall that

1 = ||a||2 = a21 + ....+ a2p = a21 + ||ã||2. (12.25)

We will show that there exists b > 0 such that for any a and n ≥ 1,

a′Wzza ≥ b||ã||2, (12.26)

a′Wzza ≥ b||ã||2 + {a21 − 2|a1| ||ã||c1/2∗,n}, (12.27)

where c∗,n is defined as in (12.15). These bounds imply (12.3). Indeed, suppose that ||ã|| >
(1− b)|a1|/(2c1/2∗,n ). By (12.25), this is equivalent to

||ã||2 > (1− b)2a21
4c∗,n

=
(1− b)2(1− ||ã||2)

4c∗,n
, ||ã||2 > (1− b)2

(1− b)2 + 4c∗,n
.

Then, by (12.26),

a′Wzza ≥ b||ã||2 =
b(1− b)2

(1− b)2 + 4c∗,n
.

On the other hand, if ||ã|| ≤ (1− b)|a1|/(2c1/2∗,n ), then in (12.27),

a21 − 2|a1| ||ã||c1/2∗,n ≥ a21 − (1− b)a21 = b a21

which together with (12.27) implies

a′Wzza ≥ b||ã||2 + a21b = b(||ã||2 + a21) = b||a||2 = b.

Therefore,

a′Wzza ≥ min
( b(1− b)2

(1− b)2 + 4c∗,n
, b
)

=
b(1− b)2

(1− b)2 + 4c∗,n
.

This implies that there exists c > 0 such that

a′Wzza ≥ bn = c−1(1 + c∗,n)−1, (12.28)

where b−1n = c(1 + c∗,n) = Op(1) by (12.16). This verifies the first claim in (12.3).

Proof of (12.26). Below we will show that there exists b > 0 such that

in =

n∑
t=1

a′D−1g E[z̃tz̃
′
t|F∗n]D−1g a ≥ a21 + b||ã||2. (12.29)
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In addition, observe that in Case 2,

e′tD
−1
g a = a1v

−1
g1 g1t,

n∑
t=1

(a′D−1g et)
2 = a21v

−2
g1

n∑
t=1

g21t = a21. (12.30)

Then from (12.22), using (12.29) and (12.30) we arrive at (12.26):

a′Wzza ≥
n∑
t=1

a′D−1g E[z̃tz̃
′
t|F∗n]D−1g a−

n∑
t=1

(a′D−1g et)
2

≥ {a21 + b||ã||2} − a21 = b||ã||2.

Proof of (12.27). By (12.21) and (12.29),

a′Wzza ≥
n∑
t=1

a′D−1g E[z̃tz̃
′
t|F∗n]D−1g a− 2

∣∣ n∑
t=1

(a′D−1g µt)(e
′
tD
−1
g a)

∣∣ (12.31)

≥ {a21 + b||ã||2} − 2|qn|, qn =
n∑
t=1

(a′D−1g µt)(e
′
tD
−1
g a).

By Cauchy inequality and (12.30),

|qn| ≤
{ n∑
t=1

(a′D−1g µt)
2

n∑
t=1

(e′tD
−1
g a)2

}1/2
= |a1|

( n∑
t=1

(a′D−1g µt)
2
)1/2

.

Since µ1t = 0, then |a′D−1g µt| ≤ ||ã|| ||D−1g µt||. Hence, using notation c∗,n introduced in

(12.15), we obtain

n∑
t=1

(a′D−1g µt)
2 ≤ ||ã||2(

n∑
t=1

||D−1g µt||2) = ||ã||2c∗,n,

which together with (12.31) and (12.29) proves (12.27):

a′Wzza ≥ {a21 + b||ã||2} − 2|a1|||ã||c1/2∗,n = b||ã||2 + {a21 − 2|a1| ||ã||c1/2∗,n}.

Proof of (12.29). Recall, that in presence of intercept, ηt = (1, η2t, ..., ηpt)
′ and E[ηkt] = 0.

Denote η̃ = (η2t, ...., ηpt)
′ and Σ̃ = E[η̃η̃′]. Then

E[z̃tz̃
′
t|F∗n] = IgtE[ηtη

′
t]Igt = Igtdiag(1, Σ̃)Igt = diag

(
g21t, ĨgtΣ̃Ĩgt

)
,

where diag(1, Σ̃) is a block diagonal matrix and Ĩgt = diag(g2t, ..., gpt). By assumption, the

matrix Σ̃ is positive definite. Denote D̃g = diag(vg2, ..., vgp). Then,

in =

n∑
t=1

a′D−1g E[z̃tz̃
′
t|F∗n]D−1g a
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= a21{v−2g1
n∑
t=1

g21t}+

n∑
t=1

ã′D̃−1g ĨgtΣ̃ĨgtD̃
−1
g ã

= in,1 + in,2.

Observe that in,1 = a21 since v−2g1
∑n

t=1 g
2
1t = 1. Recall that ||ã|| ≤ 1. Hence, by (12.24),

in,2 ≥ b||ã||2, in ≥ a21 + b||ã||2

for some b > 0 which does not depend on n and a. This implies (12.29).

Summarizing, note that by (12.24) and (12.28),

a′Wzza ≥ bn =

c−1 : Case 1 (intercept not included),

c−1(1 + c∗,n)−1 : Case 2 (intercept included),
(12.32)

where c > 0 does not depend on n. Notice that b−1n ≤ c(1 + c∗,n) = Op(1) by (12.16). This

proves the first claim in (12.3).

Proof of the second claim in (12.3) is the same as in Case 1.

Proof of (12.4). Observe that

||Wzz|| ≤ ||E
[
(
n∑
t=1

D−1g ztz
′
tD
−1
g

∣∣F∗n]|| ≤ E
[
||

n∑
t=1

D−1g ztz
′
tD
−1
g )||

∣∣F∗n]

≤
n∑
t=1

E[||D−1g zt||2 |F∗n] ≤ c(1 + c∗,n) = Op(1)

by (12.51) of Lemma 12.3. This proves (12.4).

Proof of (12.5), (12.6), (12.7) and (12.8). Denote by δjk the jk-th element of the matrix

D−1g SzzD
−1
g −Wzz =

n∑
t=1

D−1g {ztz′t − E[ztz
′
t|F∗n]}D−1g =

(
δjk
)
. (12.33)

To prove (12.5), it remains to show that

δjk = op(1). (12.34)

Case 1: et = 0. Then, by (12.20), we have

ztz
′
t − E[ztz

′
t|F∗n] = Igt(ηtη

′
t − E[ηtη

′
t])Igt + µtη

′
tIgt + Igtηtµ

′
t.
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Therefore, setting γjt = v−1gj gjt, we can write

δjk =

n∑
t=1

γjtγkt(ηjtηkt − E[ηjtηkt]) +

n∑
t=1

{v−1gj µjtγkt}ηkt +

n∑
t=1

{v−1gk µktγjt}ηjt

= Sn,1 + Sn,2 + Sn,3, (12.35)

δ2jk ≤ 3(S2
n,1 + S2

n,2 + S2
n,3).

By assumption, sequences {w1t = ηjtηkt − E[ηjtηkt]}, {w2t = ηkt} and {w3t = ηjt} are

covariance stationary short memory sequences with zero mean, and the weights {b1t = γjtγkt}
are independent of {w1t}, {b2t = v−1gj µjtγkt} are independent of {w2t} and {b3t = v−1gk µktγjt}
are independent of {w3t}, Thus, applying Lemma 12.1 to Sn,i, i = 1, 2, 3, we obtain

δ2jk = OP

( n∑
t=1

(b21t + b22t + b23t)
)
.

Denote rjn = maxt=1,...,n γ
2
jt. Then,

n∑
t=1

(b21t + b22t + b23t) ≤ rjn

n∑
t=1

γ2kt + rkn(v−2gj

n∑
t=1

µ2jt) + rjn(v−2gk

n∑
t=1

µ2kt).

Notice that
∑n

t=1 γ
2
kt = 1. Observe that rjn = op(1) by (6) and v−2gj

∑n
t=1 µ

2
jt = Op(1) by (7)

of Assumption 2.3. This implies δ2jk = op(1) which proves (12.34).

Case 2. Let et = (1, 0, ..., 0)′.

To prove (12.5), it suffices to show that δjk, j, k = 1, ..., p in (12.33) have property (12.34):

δjk = op(1). Recall that in presence of intercept we have zt = (1, z2t, ..., zpt)
′.

First, observe that for j, k = 2, ..., p, δjk are the same as in (12.35) and whence δjk = op(1)

by (12.34). Second, δ11 = 0 since z1t = 1. Finally, for k = 2, ..., p, we have

z1tzkt = zkt = µkt + gktηkt,

E[z1tzkt|F∗n] = E[zkt|F∗n] = µkt.

Then,

δ1k =

n∑
t=1

v−1g1 {z1tzkt − E[z1tzkt|F∗n]}v−1gk

= v−1g1

n∑
t=1

{v−1gk gkt}ηkt = n−1/2
n∑
t=1

γktηkt.

By assumption, {ηkt} is a covariance stationary short memory sequence with E[ηkt] = 0, and
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{ηkt} and {γkt} are mutually independent. Therefore, by Lemma 12.1,

δ1k = n−1/2Op

(
(
n∑
t=1

γ2kt)
1/2
)

= n−1/2Op(1) = op(1)

which proves (12.34). This completes the proof of (12.5) in Case 2.

Proof of (12.6). It follows using the same argument as in Case 1.

Proof of (12.7). To prove that D−1Szu = Op(1), write

D−1Szu =

n∑
t=1

D−1ztut =

n∑
t=1

D−1(µt + Igtηt)htεt = (ν1, ..., νp)
′.

It suffices to show that

νk = Op(1). (12.36)

We have

νk =
n∑
t=1

{v−1k µktht}εt +
n∑
t=1

{v−1k gktht}ηktεt

= Sn,1 + Sn,2,

ν2k ≤ 2S2
n,1 + 2S2

n,2.

By Assumptions, 2.1 and 2.2, the sequences {w1t = εt}, {w2t = ηktεt} are covariance station-

ary short memory sequences with zero mean, the weights {b1t = v−1k µktht} are independent

of {w1t}, and {b2t = v−1k gktht} are independent of {w2t}.

Thus, applying Lemma 12.1 to each of the sum Sn,1, Sn,2, we obtain

ν2k = OP

( n∑
t=1

(b21t + b22t)
)
.

Notice that,

n∑
t=1

(b21t + b22t) = v−2k

n∑
t=1

µ2kth
2
t + v−2k

n∑
t=1

g2kth
2
t = v−2k

n∑
t=1

µ2kth
2
t + 1 = Op(1)

by (7) of Assumption 2.3 which proves (12.36).

Proof of (12.8). Observe that by (12.5) and (12.4) of Lemma 12.2, D−1g (
∑n

t=1 ztz
′
t)D

−1
g =

Op(1). Therefore,

n∑
t=1

||D−1g zt||2 = trace
(
D−1g (

n∑
t=1

ztz
′
t)D

−1
g

)
= Op(1).

21



This proves (12.8) and completes the proof of the part (i) of the lemma.

Proof of Lemma 12.2 (ii). Proof of (12.9). We can write

a′Wzzuua =

n∑
t=1

a′D−1E[ztz
′
tu

2
t |F∗n]D−1a

= E
[( n∑

t=1

||a′D−1ztht||2ε2t
)
|F∗n
]
.

Let δ > 0 be a small number which will be selected below. Then,

ε2t = {ε2t I(ε2t ≥ δ) + δI(ε2t < δ)}+ (ε2t − δ)I(ε2t < δ)

≥ δ − δI(ε2t < δ).

Thus,

a′Wzzuua ≥ δ
{
E
[( n∑

t=1

||a′D−1ztht||2
)
|F∗n
]
− E

[( n∑
t=1

||a′D−1ztht||2I(ε2t < δ)|F∗n
]}

= δ{q1,n − q2,n}. (12.37)

We will show that there exist bn > 0 and δ = δn > 0 such that b−1n = Op(1), δ−1n = Op(1)

and for any a = (a1, ..., ap)
′, ||a|| = 1 and n ≥ 1,

q1,n ≥ bn, (12.38)

q2,n ≤ bn/2. (12.39)

Using these bounds in (12.37), we obtain

a′Wzzuua ≥ b∗n = δn{bn − (bn/2)} = δnbn/2, 1/b∗n = Op(1). (12.40)

First we prove (12.38). Setting

Zt = {htµt}+ {htIgt}ηt = µ∗t + Ig∗tηt, where µ∗t = htµt, g
∗
t = htgt,

Dg∗ = (vg∗1, ..., vg∗p)
′, vg∗k = (

∑n
t=1 g

∗ 2
kt )1/2,

we can write

q1,n =
n∑
t=1

a′D−1g∗ E[ZtZ
′
t|F∗n]D−1g∗ a = a′WZZ a.

Observe that the variables Zt = µ∗t + Ig∗tηt satisfy assumptions of Lemma 12.2(i). Hence by
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(12.32),

a′WZZa ≥ bn =

c−1 : Case 1 (intercept not included),

c−1(1 + c∗∗,n)−1 : Case 2 (intercept included),
(12.41)

where c > 0 does not depend on n. Notice that b−1n ≤ c(1 + c∗∗,n) = Op(1) by (12.16). This

proves (12.38).

To prove (12.39), recall that ||a|| = 1. Bound

qn,2 ≤ ||a||2q∗n,2 = q∗n,2, q∗n,2 =
n∑
t=1

E[||D−1ztht||2I(ε2t < δ)|F∗n
]
.

In (12.52) of Lemma 12.3 we show that q∗n,2 ≤ c1(1+c∗∗,n)δ1/4, where c1 > 0 does not depend

on n and c∗∗,n is defined in (12.15). Thus, selecting

δn =
( bn/2

c1(1 + c∗∗,n)

)4
,

we obtain qn,2 ≤ c1(1 + c∗∗,n)δ
1/4
n = bn/2, which proves the bound (12.39). Notice that

δn ≤ (2cc1)
−4 can be made small by selecting large c in (12.41).

In turn, by (12.40),

a′Wzzuua ≥ (bn/2)δn = (bn/2)
( (bn/2)

c1(1 + c∗∗,n)

)4
where bn is defined in (12.41). This implies

a′Wzzuua ≥ b∗n =

c−1(1 + c∗∗,n)−4 : Case 1 (intercept not included),

c−1(1 + c∗∗,n)−9 : Case 2 (intercept included)
(12.42)

for some c > 0 which does not depend on n. Notice that b∗n is F∗n measurable, and (b∗n)−1 ≤
c(1 + c∗∗,n)9 = Op(1) by (12.16). This proves the first claim in (12.9). The second claim

follows using the same argument as in the proof of (12.3).

Proof of (12.10). Observe that

||Wzzuu|| ≤ ||E
[
(
n∑
t=1

D−1ztz
′
tu

2
tD
−1)
∣∣F∗n]|| ≤ E

[
||

n∑
t=1

D−1ztu
2
t z
′
tD
−1||

∣∣F∗n]

≤
n∑
t=1

E[||D−1ztut||2 |F∗n] ≤ bn3 = c(1 + c∗∗,n) = Op(1)

by (12.51) of Lemma 12.3 which implies (12.10).
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Proof of (12.11). Write DΩnD = W−1zz WzzuuW
−1
zz , (DΩnD)−1 = WzzW

−1
zzuuWzz. By (12.3),

(12.4), (12.9) and (12.10),

||DΩnD||sp ≤ ||DΩnD|| ≤ ||W−1zz || ||Wzzuu|| ||W−1zz || ≤ bn4 = Op(1), (12.43)

||(DΩnD)−1||sp ≤ ||(DΩnD)−1|| ≤ ||Wzz|| ||W−1zzuu|| ||Wzz|| ≤ bn5 = Op(1). (12.44)

We will show that

a′DΩnDa ≥ bn := b−1n5 . (12.45)

Since b−1n = bn5 = Op(1) this proves the first claim in (12.11). To verify (12.45), notice

that the smallest eigenvalue λmin of the matrix DΩD and the largest eigenvalue θmax of the

inverse matrix (DΩnD)−1 are related by the equality θmax = λ−1min. By (12.44), θmax ≤ bn5.

Thus, for ||a|| = 1,

a′DΩnDa ≥ λmin = θ−1max ≥ bn := b−1n5 ,

where b−1n = bn5 = Op(1) which proves (12.45). Finally, by (12.43), for ||a|| = 1, a′DΩnDa ≤
||DΩnD||sp ≤ bn4 = Op(1) which proves the second bound in (12.11).

Proof of (12.12) and (12.13). Write

D−1SzzuuD
−1 −Wzzuu =

n∑
t=1

D−1{ztz′tu2t − E[ztz
′
tu

2
t |F∗n]}D−1 =

(
δjk
)
.

To prove (12.12), it suffices to verify that

δjk = op(1). (12.46)

Recall that zt = µt + z̃t and ut = htεt, where Eε2t = 1. Hence,

E[u2t |F∗n] = h2t ,

E[z̃tu
2
t |F∗n] = h2t IgtE[ηtε

2
t ] = Igth

2
t ē, ē = E[η1ε

2
1].

By (12.20),

ztz
′
tu

2
t = z̃tz̃

′
tu

2
t + µtµ

′
tu

2
t + µtz̃

′
tu

2
t + z̃tµ

′
tu

2
t ,

E[ztz
′
tu

2
t |F∗n] = E[z̃tz̃

′
tu

2
t |F∗n] + µtµ

′
tE[u2t |F∗n] + µtE[z̃′tu

2
t |F∗n] + E[z̃tu

2
t |F∗n]µ′t

= E[z̃tz̃
′
tu

2
t |F∗n] + µtµ

′
th

2
tE[ε2t ] + {htµt}ē′{htIgt}+ {htIgt}ē{htµ′t}.

Then,

ztz
′
tu

2
t − E[ztz

′
tu

2
t |F∗n] = htIgt(ηtη

′
tε

2
t − E[ηtη

′
tε

2
t ])htIgt + µtµ

′
th

2
t (ε

2
t − E[ε2t ])

+htµt(η
′
tε

2
t − E[η′tε

2
t ])htIgt + htIgt(ηtε

2
t − E[η′tε

2
t ])htµ

′
t.
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Therefore, setting γjt = v−1j gjtht, it follows that

δjk =

n∑
t=1

γjtγkt(ηjtηktε
2
t − E[ηjtηktε

2
t ]) +

n∑
t=1

{v−1j µjtht}γkt(ηktε2t − E[ηktε
2
t ])

+
n∑
t=1

{v−1k µktht}γjt(ηjtε2t − E[ηjtε
2
t ]) +

n∑
t=1

{v−1j µjtht}{v−1k µktht}(ε2t − E[ε2t ])

= r
(1)
n,jk + r

(2)
n,jk + r

(3)
n,jk + r

(4)
n,jk.

To prove (12.46), it suffices to show that

r
(i)
n,jk = op(1), i = 1, ..., 4. (12.47)

By Assumption 2.4, {ηjtηktε2t }, {ηktε2t } and {ε2t } are covariance stationary short memory

zero mean sequences, and these sequences are mutually independent of the weights {γjtγkt},
{v−1j µjthtγkt} and {(v−1j µjtht)(v

−1
k µktht)}. Moreover, definition of vk and γkt and (7) of

Assumption 2.3 imply that

n∑
t=1

γ2kt = 1, v−2k

n∑
t=1

µ2kth
2
t = Op(1)

and by (11) of Assumption 2.4,

max
t=1,...,n

γ2kt = op(1), v−2k max
t=1,...,n

µ2kth
2
t = op(1).

Thus, (12.47) follows by using Lemma 12.1 and applying a similar argument as in the proof

of (12.5). This completes the proof of (12.12).

The claim (12.13) follows using (12.12) and property W−1zzuu = Op(1) of (12.9):

DS−1zzuuD =
(
D−1SzzuuD

−1)−1 =
(
Wzzuu + op(1)

)−1
= W−1zzuu

(
1 +W−1zzuu × op(1)

)−1
= W−1zzuu

(
1 + op(1)

)−1
= W−1zzuu + op(1).

Proof of (12.14). Write

D−1S(c)
zzuuD

−1 = D−1SzzuuD
−1 +D−1(S(c)

zzuu − Szzuu)D−1. (12.48)

By (12.12), D−1SzzuuD
−1 = Wzzuu + op(1). We will show that

D−1(S(c)
zzuu − Szzuu)D−1 = op(1), (12.49)

which together with (12.48) implies (12.14): D−1S
(c)
zzuuD−1 = Wzzuu + op(1). We have, u2t −
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E[u2t |Fn,t−1] = h2t (ε
2
t − σ2t ), where σ2t = E[ε2t |Ft−1]. Write

D−1(Szzuu − S(c)
zzuu)D−1 =

n∑
t=1

D−1ztz
′
t(u

2
t − E[u2t |Fn,t−1])D−1 =

(
δjk
)
.

Then (12.49) follows if we show that

δjk = op(1). (12.50)

We have zt = µt + z̃t and ut = htεt. So,

ztz
′
t = z̃tz̃

′
t + µtµ

′
t + µtz̃

′
t + z̃tµ

′
t,

ztz
′
t(u

2
t − E[u2t |Fn,t−1]) = ztz

′
th

2
t (ε

2
t − σ2t )

= htIgtηtη
′
tIgtht(ε

2
t − σ2t ) + µtµ

′
th

2
t (ε

2
t − σ2t )

+htµtη
′
tIgtht(ε

2
t − σ2t ) + Igtηtµ

′
th

2
t (ε

2
t − σ2t ).

Hence, denoting γjt = v−1j gjtht, we obtain

δjk =
n∑
t=1

γjtγkt{ηjtηkt(ε2t − σ2t )}+
n∑
t=1

{v−1j µjtht}γkt{ηkt(ε2t − σ2t )}

+
n∑
t=1

{v−1k µktht}γjt{ηjt(ε2t − σ2t )}+
n∑
t=1

{v−1j µjtht}{v−1k µktht}{ε2t − σ2t }

= r
(1)
n,jk + r

(2)
n,jk + r

(3)
n,jk + r

(4)
n,jk.

Observe, that sequences {w1t = ηjtηkt(ε
2
t − σ2t )}, {w2t = ηkt(ε

2
t − σ2t )}, {w3t = ηjt(ε

2
t − σ2t )},

{w4t = ε2t −σ2t } are sequences of uncorrelated random variables with zero mean and constant

variance. For example, by assumption, ηjtηkt are Ft−1 measurable. Then, for t ≥ s,

E[w1t] = E
[
E[w1t|Ft−1]

]
= E

[
ηjtηktE[(ε2t − σ2t )|Ft−1]

]
= 0,

E[w1tw1s] = E
[
ηjtηktηjsηks(ε

2
s − σ2s)E[(ε2t − σ2t )|Ft−1]

]
= 0,

E[w2
1t] = E

[
η2jtη

2
ktE[(ε2t − σ2t )2|Ft−1]

]
≤ E

[
η2jtη

2
ktE[ε4t |Ft−1]

]
= E

[
E[η2jtη

2
ktε

4
t |Ft−1]

]
= E

[
η2j1η

2
k1ε

4
1

]
<∞.

Then using the same argument as in the proof of (12.47) it follows

r
(i)
n,jk = op(1), i = 1, ..., 4.

which proves (12.50) and completes the proof of (12.14).

This completes the proof of the part (ii) and of the lemma. �

Proof of Corollary 12.1. The claim (12.17) is shown in (12.32), and the claim (12.18) is
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shown in (12.42). �

Lemma 12.3. Under Assumptions of Theorem 2.1, the exists c > 0 such that

n∑
t=1

E
[
||D−1g zt||2 |F∗n

]
≤ c(1 + c∗,n),

n∑
t=1

E
[
||D−1ztut||2 |F∗n

]
≤ c(1 + c∗∗,n), (12.51)

n∑
t=1

E
[
||D−1ztht||2I(ε2t < δ)|F∗n

]
≤ c(1 + c∗∗,n)δ1/4, (12.52)

for sufficiently small δ > 0, where c does not depend on n and δ and c∗,n = Op(1),

c∗∗,n = Op(1).

In addition, under assumptions of Theorem 2.2,

max
t=1,...,n

||D−1ztut||2 = op(1), max
t=1,...,n

||D−1g zt||2 = op(1), (12.53)

n∑
t=1

E
[
b−1n ||D−1ztut||2I

(
b−1n ||D−1ztut||2 ≥ ε

)
|Fn,t−1

]
= op(1) for any ε > 0,(12.54)

where bn is F∗n measurable, b−1n = Op(1) and Fn,t−1 is defined as in (9.6).

Proof of Lemma 12.3. Proof of (12.51). Denote

b1t = ||D−1g µt||2 + ||D−1g Igt||2, θ1t = 1 + ||ηt||2,

b2t = ||D−1g µtht||2 + ||D−1g Igtht||2, θ2t = ε2t + ||ηt||2ε2t .

By (12.19),

||D−1g zt||2 = ||D−1g µt +D−1g Igtηt||2 ≤ 2(||D−1g µt||2 + ||D−1g Igt||2||ηt||2)

≤ 2b1tθ1t, (12.55)

||D−1g ztut||2 = ||D−1g µthtεt +D−1g Igtηthtεt||2 ≤ 2b2tθ2t.

By Assumption 2.2(i) and Assumption 2.4(i),

E[θ1t |F∗n] = E[θ1t] = E[θ11], E[θ2t |F∗n] = E[θ2t] = E[θ21].

This implies

E
[
||D−1g zt||2 |F∗n

]
≤ 2b1tE[θ11], (12.56)

E
[
||D−1ztut||2 |F∗n

]
≤ 2b2tE[θ21],∑n

t=1E
[
||D−1g zt||2 |F∗n

]
= 2E[θ11](

∑n
t=1 b1t),∑n

t=1E
[
||D−1g ztut||2 |F∗n

]
= 2E[θ21](

∑n
t=1 b2t).
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Notice that

∑n
t=1 b1t =

∑n
t=1 ||D−1g µt||2 +

∑n
t=1 ||D−1g Igt||2 = c∗,n + p,∑n

t=1 b2t =
∑n

t=1 ||D−1µtht||2 +
∑n

t=1 ||D−1Igtht||2 = c∗∗,n + p, (12.57)

by definition (12.15) of c∗,n and c∗∗,n and because

∑n
t=1 ||D−1g Igt||2 =

∑p
k=1 v

−2
gk (
∑n

t=1 g
2
kt) = p,∑n

t=1 ||D−1Igtht||2 =
∑p

k=1 v
−2
k (
∑n

t=1 g
2
kth

2
t ) = p.

Moreover, c∗,n = Op(1), c∗∗,n = Op(1) by (12.16). Clearly, (12.56) and (12.57) prove (12.51).

Proof of (12.52). Denote

θ2t(δ) = I(ε2t < δ) + ||ηt||2I(ε2t < δ).

Recall, that by assumption, εt is a stationary sequence, and by Assumption 2.2(i), E[||ηt||4] =

E[||η1||4]. Then,

E[θ2t(δ)] ≤ E[I(ε2t < δ)] + (E[||ηt||4)1/2(E[I(ε2t < δ)])1/2

= E[I(ε21 < δ)] + (E[||η1||4)1/2(E[I(ε21 < δ)])1/2.

We will show that for sufficiently small δ > 0,

E[I(ε21 < δ)] ≤ Cδ1/2.

Indeed, by Assumption 2.1, the variable ε1 has probability distribution density f(x) and

f(x) ≤ c <∞ when |x| ≤ x0 for some x0 > 0. Without restriction of generality assume that

δ ≤ x0. Then,

E[I(ε21 < δ)] =
∫
I(|x| ≤ δ1/2)f(x)dx ≤ c

∫
I(|x| ≤ δ1/2)dx ≤ Cδ1/2.

Therefore, E[θ2t(δ)] ≤ Cδ1/4, and as in (12.56), we obtain

E
[
||D−1ztht||2I(ε2t < δ) |F∗n

]
≤ 2b2tE[θ2t(δ)] ≤ Cδ1/4b2t,

n∑
t=1

E
[
||D−1ztht||2I(ε2t < δ) |F∗n

]
≤ Cδ1/4(

n∑
t=1

b2t) ≤ Cδ1/4(p+ c∗∗,n),

which proves (12.52).

Proof of (12.53). We will prove the first claim (the proof of the second claim is similar). By

(12.55), ||D−1ztut||2 ≤ 2b2tθ2t. Let K > 0 be a large number. Then, θ2t ≤ K+θ2tI(θ2t ≥ K).

Therefore,

max
t=1,...,n

||D−1ztut||2 ≤ 2K( max
t=1,...,n

b2t) + 2
n∑
t=1

b2t θ2tI(θ2t ≥ K). (12.58)
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By (11) of Assumption 2.4 and (12.57),

max
t=1,...,n

b2t = op(1),
n∑
t=1

b2t = Op(1). (12.59)

Since {bt} and {θ2t} are mutually independent, then by (12.2) of Lemma 12.1,

n∑
t=1

b2t θ2tI(θ2t ≥ K) = Op
( n∑
t=1

b2t
)
∆n,K , ∆n,K = max

t=1,...,n
E[θ2tI(θ2t ≥ K)]. (12.60)

We will show that

∆n,K ≤ ∆K , (12.61)

where ∆K → 0, K →∞ and ∆K does not depend on n. Together with (12.58) this implies

max
t=1,...,n

||D−1ztut||2 ≤ Kop(1) +Op(1)∆K = op(1), n,K →∞.

Next we prove (12.61). Set L = K1/4. Then, letting ε2+L,t = ε2t I(ε2t > L), we obtain

θ2t = ε2t (||ηt||2 + 1) ≤ {ε2+L,t + LI(ε2t ≤ L)}(||ηt||2 + 1),

θ2tI(θ2t ≥ K) ≤ ε2+L,t(||ηt||
2 + 1) + L(||ηt||2 + 1)I

(
L(||ηt||2 + 1) ≥ K

)
,

E[θ2tI(θ2t ≥ K)] ≤ (E[(ε2+L,t)
2])1/2(E[(||ηt||2 + 1)2])1/2 + LE[(||ηt||2 + 1)4](K/L)−1

≤ (E[(ε2+L,1)
2])1/2(E[(||η1||2 + 1)2])1/2 + (L2/K)E[(||η1||2 + 1)2]

=: ∆K → 0, K →∞

since, as K → ∞, L2/K = K−1/2 → 0, E[(ε2+L,1)
2] → 0 and E[||η1||4 < ∞. This implies

(12.61).

Proof of (12.54). Denote by in the left hand side of (12.54). By (12.55), ||D−1ztut||2 ≤ 2b2tθ2t.

Let K > 0 be a large number. Then,

b−1n ||D−1ztut||2I(b−1n ||D−1ztut||2 ≥ ε) ≤ 2b−1n b2tθ2tI
(
2b−1n b2tθ2t ≥ ε

)
≤ 2b−1n b2tKI

(
2b−1n b2tK ≥ ε

)
I(θ2t ≤ K) + 2b−1n b2tθ2tI(θ2t > K)

≤ K(ε/K)−1(2b−1n b2t)
2 + 2b−1n b2tθ2tI(θ2t > K).

Observe, that b−1n b2t is Fn,t−1 measurable. Then,

in ≤ K(ε/K)−1(2b−1n )2
∑n

t=1 b
2
2t + 2b−1n

∑n
t=1 b2tθ2tI(θ2t > K).

Together with (12.60), (12.61) and (12.59), this implies:

in ≤ K(ε/K)−1(2b−1n )2(maxt=1,...,n b2t)(
∑n

t=1 b2t) + 2b−1n (
∑n

t=1 b2t)∆K
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≤ K(ε/K)−1Op(1)op(1) +Op(1)∆K = op(1), n,K →∞.

This proves (12.54) and completes the proof of the lemma. �
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