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Abstract

This paper explores a semiparametric version of a time-varying regression,

where a subset of the regressors have a fixed coefficient and the rest a time-

varying one. We provide an estimation method and establish associated theo-

retical properties of the estimates and standard errors in extended for hetero-

geneity regression space. In particular, we show that the estimator of the fixed

regression coefficient preserves the parametric rate of convergence, and that, de-

spite of general heterogenous environment, the asymptotic normality property

for components of regression parameters can be established and the estimators

of standard errors have the same form as those given by White (1980). The

theoretical properties of the estimator and good finite sample performance are

confirmed by Monte Carlo experiments and illustrated by an empirical example

on forecasting.

JEL classification: C13, C14, C50

Keywords: structural change, time-varying parameters, non-parametric estima-

tion

1 Introduction

Many empirical studies in applied economics and finance rely on regressions with sta-

tionary or mixing covariates. The literature on structural change in regression param-
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eters is vast. A more recent strand of research turns the attention to regression space.

The investigation of regression space that permits estimation and inference on regres-

sion models with fixed or stochastic parameters, has received increasing interest, see

e.g. Phillips, Li, Gao (2017), Hu, Kasparis, Wang (2024), and Giraitis, Kapetanios, Li

(2024) and references therein. Phillips, Li, Gao (2017) study extensions of regression

modelling to non-stationary region for I(1) covariates, and theoretical framework in

Hu, Kasparis, Wang (2024) allows for a wide range of stationary regressors, which can

be strongly dependent, non-mixing and may exhibit long memory. Giraitis, Kapetan-

ios, Li (2024) contribute by shifting the focus from structural change in parameters

to regression covariates which is a new addition to regression literature. They show

that regression space permits both a stationary covariate ηt and its linear transform

µt + gtηt when the shift µt and the scale gt variables are independent of ηt, and other

assumptions on µt, gt are minimal. Such covariates still allow building confidence inter-

vals and estimation of standard errors for components of regression parameter (fixed

or time-varying).

The time series and regression modelling with deterministic smoothly varying pa-

rameters has a long pedigree in statistics, starting with the work of Priestley (1965)

and has been followed up by Robinson (1989), Robinson (1991), Dahlhaus (1997), Chen

and Hong (2012) and others. This approach, while popular in statistics, has been less

prominent in applied macroeconometrics where random coefficient models dominate,

see e.g. Muller and Watson (2008), Kapetanios and Yates (2008) and Muller and Peta-

las (2010). The estimation of locally stationary time series models with deterministic

parameters is well investigated, see e.g. Dahlhaus and Giraitis (1998). Building on

previous work, Giraitis, Kapetanios, and Yates (2014) have developed a framework for

the estimation of time series models with smoothly-varying stochastic parameters.

A number of tests for the presence of parameter breaks exist in the literature, see

Chow (1960), Brown, Durbin, Evans (1974), Ploberger and Kramer (1992), and for on

going smooth change, see Kristensen (2012), Chen and Hong (2012) and Chen (2015).

Testing for change of time varying deterministic parameter was investigated in the

recent work by Hu, Kasparis, Wang (2024).

This research builds on our previous work, Giraitis, Kapetanios, Li (2024), on

Robinson (1988) who introduced semiparametric regression modelling and Kristensen

(2012) who provided parameter estimates and a test for stability of time-varying pa-

rameter in regression model. This paper contributes by developing estimation theory

for partially time-varying regression (PTVR) model in extended for heterogeneity re-

gression space. PTVR methods allows simultaneous estimation of the fixed regression
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parameter (with parameteric rate) and time-varying parameter (with non-parametric

rate) which can be deterministic or stochastic. Simultaneous estimation of regression

parameters requires smooth evolution of the time varying parameter and scale factors.

This leads to significant challenges and differences from Giraitis, Kapetanios, Li (2024),

where regression models with fixed and time-varying parameters were considered sep-

arately.

We show rigorously that the PTVR estimates of a single component of parameters

have desirable theoretical properties of consistency and asymptotic normality. Under

our general framework, this requires significant technical effort. Further theoretical

and methodological contribution is showing that the estimators of the robust standard

errors have the same form as those given by White (1980), and in earlier work by Eicker

(1963). The conditions we use are rather weak. Under general heterogeneity covered

by our regression setting, stochastic parameters, regressors and scale factors require

8-th moments, no mixing assumption is used and regressors can take a very general

non-stationary form. It is worth noting that a model specification in Kristensen (2012)

uses non-stationary mixing covariates, and mixing assumption is common in modelling

smooth structural change, see e.g. Chen and Hong (2012), Giraitis, Kapetanios, and

Marcellino (2021) and Dendramis, Giraitis, and Kapetanios (2021).

The paper is structured as follows. In Section 2, we present the main results. In

Section 3 we use Monte Carlo simulations to show that the theoretical properties extend

to finite samples. Section 4 provides an empirical illustration and Section 5 concludes.

Proofs and further simulation findings are provided in the Online Supplement.

Below →d, →p stand for convergence in distribution and probability. We use notation

||A|| to denote Frobenius norm of a matrix A. We will write an �p bn if an = Op(bn)

and bn = Op(an).

2 Partially time-varying regression

In this paper we discuss the estimation of a partially time-varying regression model

(PTVR) for a univariate variable

yt = α′xt + β′tzt + ut, t = 1, ..., n, (1)

which combines a regression model with a fixed parameter and a regression model

with a time-varying parameter. Regressors in (1) can be divided into two groups,
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xt = (x1t, .., xqt)
′ and zt = (z1t, .., zpt)

′, where regression parameter α = (α1, .., αq)
′ at

xt is fixed and regression parameter βt = (β1t, .., βpt)
′ at zt is time varying. We suppose

that the regression noise ut is serially uncorrelated. Other assumptions on xt, zt and

ut will be specified later.

The setting of our PTVR model is indebted to innovatory work by Robinson (1988)

on
√
n-consistent semiparametric regression and also hinges upon semiparametric anal-

ysis and regression settings by Kristensen (2012) and Fan and Huang (2005). It allows

for general heterogeneity in regressors and noise and structural change of time-varying

regression coefficient over time.

Our research builds on the recent work by Giraitis, Kapetanios, Li (2024) which ex-

tends the existing literature on regression estimation in two directions. Firstly, it shows

that regression estimation of fixed parameter remains valid in very general heteroge-

nous environment, and under weak conditions it still permits developing asymptotic

theory, computation of robust standard errors and building confidence intervals for a

single component αk of the fixed regression parameter α. Secondly, it shows that the

same general environment allows point-wise kernel estimation of the components βkt

of time-varying parameter βt. βt is assumed to be smoothly-varying and it can be

stochastic or deterministic.

In this paper, we focus on simultaneous estimation of the fixed parameter α and

time-varying parameter βt. Our objective is to outline the setting and develop a prac-

tical estimation procedure, where at once the fixed parameter can be estimated with

parametric rate, the time-varying parameter with non-parametric rate, the asymptotic

normality for components of parameters can be established and the standard errors

computed. Simultaneous estimation requires slightly stronger assumptions in compar-

ison to Giraitis, Kapetanios, Li (2024). Nevertheless, it offers practical estimation of

partially time-varying regression model (1) for regressors under very general types of

heteroskedasticity. Our primarily interest is also developing a rigourous estimation

theory equipped with complete proofs. Although this requires considerable technical

effort, it notably validates and extends the use of partially time-varying regression

modelling in applied work.

First we derive closed-form OLS estimators for simultaneous estimation of α and βt

in partially time-varying regression model (1). Introduce notation of a time-varying

estimator

β̂t,α =
( n∑
j=1

bn,tjzjz
′
j

)−1( n∑
j=1

bn,tjzj(yj − α′xj)
)

(2)

of βt based on yj − α′xj. Assumptions on the weights bn,tj will be specified below.
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We define the OLS estimator α̂ of α as the minimizer of the following objective

function:

α̂ = argmin
α

L(α), L(α) =
n∑
t=1

(
yt − α′xt − β̂′t,αzt

)2
.

We obtain the estimator β̂t of βt by setting β̂t = β̂t,α̂ in equation (2).

Introduce notation

β̂zx,t = S−1zz,tSzx,t, β̂zy,t = S−1zz,tSzy,t, (3)

where

Szz,t =
n∑
j=1

bn,tjzjz
′
j, Szx,t =

n∑
j=1

bn,tjzjx
′
j, Szy,t =

n∑
j=1

bn,tjzjyj. (4)

Lemma 2.1. The estimators α̂ and β̂t = β̂t,α̂ of α and βt in (1) take the form:

α̂ =
( n∑
t=1

(xt − β̂′zx,tzt)(xt − β̂′zx,tzt)′
)−1( n∑

t=1

(xt − β̂′zx,tzt)(yt − z′tβ̂zy,t)
)
, (5)

β̂t =
( n∑
j=1

bn,tjzjz
′
j

)−1( n∑
j=1

bn,tjzj(yj − x′jα̂)
)
. (6)

These are closed-form estimators for the fixed parameter α and time-varying parameter

βt and they are easy to compute. The proof of Lemma 2.1 is given in the Supplemental

Material.

Assumptions. Regression noise variables

ut = htεt, (7)

are uncorrelated and can be written as a product of a stationary martingale difference

noise {εt} and a stochastic or deterministic scale factor {ht} which is independent of

{εt}. More specifically, they have the following properties.

Assumption 2.1. {εt} is a stationary martingale difference (m.d.) sequence with

respect to some σ-field filtration Ft:

E[εt|Ft−1] = 0, Eε2t = 1.

{εt} is independent of {ht}. Moreover, variable ε1 has probability distribution density
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f(x) and f(x) ≤ c <∞ when |x| ≤ x0 for some x0 > 0.

The information set Ft will be generated by the past history Ft = σ(εs, zs, s ≤ t) and

possibly other variables.

We postulate that regressors xt = (x1t, ..., xqt)
′, zt = (z1t, ..., zpt)

′ can be written as a

product of a scale factor and a stationary process: for k = 1, ..., q and j = 1, ..., p,

xkt = gxk,tηxk,t, zjt = gzj,tηzj,t, (8)

where ηxt = (ηx1,t, ..., ηxq,t)
′, ηzt = (ηz1,t, ..., ηzp,t)

′ are stationary sequences, and gxt =

(gx1,t, ...., gxq,t)
′, gzt = (gz1,t, ...., gzp,t)

′ are deterministic or stochastic scale factors.

We assume that {gxt, gzt, ht} are independent of {ηxt, ηzt, εt} and sequences ηxt, ηzt

in (8) may have non-zero mean.

Definition 2.1. We say that a (univariate) covariance stationary sequence {ξt} has

short memory (SM) if
∑∞

h=−∞ |cov(ξh, ξ0)| <∞.

This setting becomes workable by imposing the following assumptions on stationary

sequences {ηxt}, {ηzt}, scale factors and time-varying parameter βt.

Assumption 2.2. ηxt = (ηx1,t, ..., ηxq,t)
′, ηzt = (ηz1,t, ..., ηzp,t)

′ are Ft−1 measurable

sequences, E[η2xk,t] = 1, E[η2zj,t] = 1 and E[η8xk,t] <∞, E[η8zj,t] <∞, E[ε8t ] <∞.

(i) {ηzk,t}, {ηxk,t}, {ηzk,tηz`,t}, {ηzk,tηx`,t} and {ηxk,tηx`,t} are covariance stationary SM

sequences.

(ii) E[ηz1η
′
z1] = Σzz is a positive definite matrix.

The scale factors in (8) are smoothly varying in the following terms.

Assumption 2.3. (i) The scale factors ht ≥ c0, gxk,t ≥ c0, gzj,t ≥ c0 are deterministic

or stochastic random variables bounded away from 0 by c0 > 0, and Eh8t ≤ C, Eg8xk,t ≤
C, Eg8zj,t ≤ C where c0, C do not depend on t, n, k and j.

(ii) For some γ1 ∈ (3/4, 1], for t, s = 1, .., n,

(E||gxt − gxs||8)1/8 ≤ C
( |t− s|

n

)γ1 , (E||gzt − gzs||8)1/8 ≤ C
( |t− s|

n

)γ1 , (9)

where C <∞ does not depend on t, s and n.
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The triangular arrays of scale factors ht = hn,t, gxt = gnx,t, gzt = gnz,t may vary with

n. We skip the subindex n for the brevity of notation. Assumptions 2.2 and 2.3 imply

that

Eu8t ≤ C, E||xt||8 ≤ C, E||zt||8 ≤ C, (10)

where C < ∞ does not depend on t, n. Triangular arrays of parameters βt = βnt,

t = 1, ..., n in (1) are deterministic or stochastic processes. They satisfy the following

property.

Assumption 2.4. For some γ2 ∈ (3/4, 1],

(E||βt − βs||4)1/4 ≤ C
( |t− s|

n

)γ2 , E||βt||4 ≤ C, t, s,= 1, ..., n, (11)

where C <∞ does not depend on t, s and n.

It is worth noting that no restrictions on dependence between scale factors gxt, gzt, ht

and the time-varying parameter βt are imposed and no smoothness restrictions on

the scale factor ht in regression noise ut = htεt are required. In Kristensen (2012),

regression space is limited to deterministic and smooth ht and ht needs to be estimated

from the data. In addition, he imposes the assumption that E[ε2t |xt, zt] = 1 which

restricts mutual dependence between εt and ηxt, ηzt. As a consequence, estimation

procedures suggested in Kristensen (2012) are not robust to heterogeneity permitted

by our regression space.

In the estimation of the regression parameters we use the following weights:

bn,tj = K
( |t− j|

H

)
. (12)

We suppose that the kernel function K on its support satisfies the following property:

for some d > 4 and C <∞,

K(x) ≤ C(1 + xd)−1, |(d/dx)K(x)| ≤ C(1 + xd)−1, x ≥ 0. (13)

Examples of kernel weights satisfying this assumption include the flat kernel, K(x) =

(1/2)I(|x| ≤ 1) and Gaussian kernel, K(x) = (1/
√

2π)e−x
2/2.

In the estimation of the fixed parameter α we assume that β̂zx,t, β̂zy,t in α̂ are computed

with the bandwidth H that has the property that

na ≤ H = O(n2/3), a > 1/2. (14)
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Subsequently, the estimator β̂t in (6) can be computed using the weights bn,tj either

with the same bandwidth H as in α̂ or with a different bandwidth Hz →∞, Hz = o(n).

2.1 Estimation of the fixed parameter

This section contains results on estimation of the fixed parameter α = (α1, ..., α
′
q) in

partially time-varying regression model (1) by the estimator α̂ = (α̂1, ..., α̂
′
q) given in

(5). This estimators can be written as

α̂ = S−1v̂v̂ Sv̂ỹx (15)

using notation

v̂t = xt − β̂′zx,tzt, ỹxt = yt − β̂′zy,tzt, (16)

Sv̂v̂ =
∑n

t=1 v̂tv̂
′
t, Sv̂ỹx =

∑n
t=1 v̂tỹ

′
xt.

The fact that we allow for a very general regression setting rules out standard asymp-

totic normality theory results that are common in regression literature. However, we

show that this setting admits estimation of a single component αk of the fixed parame-

ter α = (α1, ..., αq)
′. We show that the asymptotic normality property for the estimator

α̂k of the component αk can be established which allows to build confidence intervals

for αk.

We need an additional assumption. Denote

νt = ηxt − E[ηxtη
′
zt](E[ηztη

′
zt])
−1ηzt. (17)

Assumption 2.5. (i) For any k, `, the products wt = ηzk,tηz`,t and wt = ηzk,tηx`,t have

the following properties:

(i) {ε2t}, {wtε2t} are covariance stationary SM sequences.

(ii) E[ν1ν
′
1] is a positive definite matrix.

(iii) There exists a sequence m = mn = O(log n) such that for j, i > t+m,

E[wj|Ft] = E[wj] + rmt,j, (Er4mt,j)
1/4 ≤ Cn−2, (18)

E[wjwi|Ft] = E[wjwi] + rmt,ji, (Er2mt,ji)
1/2 ≤ Cn−2,

where C <∞ does not depend on j, i, t and m.
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Remark 2.1. Observe that under Assumption 2.2, the components of νt = (ν1t, ..., νqt)
′

and of νtν
′
t = (νktν`t) are a covariance stationary SM sequences. Moreover, under As-

sumption 2.5, the product wt = νzk,tνz`,t of components of νt also satisfies Assumption

2.5, and wtε
2
t is a covariance stationary SM sequence.

Remark 2.2. Stationary processes ηzt and ηxt satisfy Assumption 2.5(iii) in the fol-

lowing cases: (i) {ηzt}, {ηxt} are mutually independent of {εt}.

(ii) ηzj, ηxi are independent of εt for j, i ≥ t+ L for some L > 0.

(iii) {ηzt}, {ηxt} are stationary linear processes as in Lemma 2.2 below.

To describe the standard error in the estimation of component αk of the parameter

α = (α1, ..., αq)
′ we introduce additional notation:

vt = xt − E[xtz
′
t|F∗n](E[ztz

′
t|F∗n])−1zt,

Svv =
∑n

t=1 vtv
′
t, Svvuu =

∑n
t=1 vtv

′
tu

2
t ,

Ωα,n = (E[Svv|F∗n])−1E[Svvuu|F∗n](E[Svv|F∗n])−1 = (ωjk) (19)

where F∗n = σ
(
ht, gxt, gzt, t = 1, ..., n

)
is the information set generated by scales.

The next theorem focuses on estimation of components of the parameter α =(
α1, ..., αq

)′
and derives the asymptotic normality property for the estimator α̂k of αk.

Theorem 2.1. Suppose Assumptions 2.1-2.5 are satisfied and (14) holds.

Then, the t-statistic for the parameter αk, k = 1, ..., q has property:

α̂k − αk√
ωkk

→d N (0, 1),
√
ωkk �p n−1/2. (20)

In practical applications, the standard error
√
ωkk can be estimated by the diagonal

element
√
ω̂kk of the matrix

Ω̂α,n = S−1v̂v̂ Sv̂v̂ûûS
−1
v̂v̂ = (ω̂jk), ût = yt − α̂′xt − β̂′tzt. (21)

The estimator β̂t using residuals ût is computed with the same bandwidth H as in

estimator α̂.

Corollary 2.1. Under the assumptions of Theorem 2.1, for k = 1, ..., q,

α̂k − αk√
ω̂kk

→d N (0, 1),
ω̂kk
ωkk

= 1 + op(1). (22)
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This result allows to compute robust standard errors and build robust confidence in-

tervals for the components αk of α.

The estimator of robust standard errors Ω̂α,n has the same form as the estimator

for heteroskedasticity-consistent standard errors by White (1980). When regressors xt

and zt are stationary processes and {ut} is an i.i.d. noise independent of {xt, zt}, Ω̂α,n

can be replaced by

Ω̂
(st)
α,t = S−1v̂v̂,t σ̂

2
u, σ̂2

u = n−1
n∑
j=1

û2j . (23)

Unlike Ω̂α,t, this estimator (23) is not robust to presence of heterogeneity in data, see

examples in the Monte Carlo study in the Online Supplement.

The following lemma provides conditions when a stationary linear process satisfies

Assumption 2.5(iii).

Lemma 2.2. Suppose that components of ηzt = (ηz1,t, ..., ηzq,t)
′ and ηxt = (ηx1,t, ..., ηxp,t)

′

are stationary linear processes

ηzk,t =
∞∑
i=0

bzk,iξzk,t−i, ηx`,t =
∞∑
i=0

bx`,iξx`,t−i (24)

with exponentially decaying weights bzk,i, bx`,i:

|bzk,i| ≤ Cρi, |bx`,i| ≤ Cρi, (0 < ρ < 1). (25)

{ξzk,i}, {ξx`,i} are uncorrelated stationary noises with the 8-th finite moment, and C, ρ

do not depend on k, `, i. Suppose that Ft = σ(es, s ≤ t) and variables ξzk,i, ξx`,i are

independent of et, et−1, ... when i ≥ t + L for some L ≥ 0. Then Assumption 2.5(iii)

holds with m = b log n for large enough b.

The estimation of PTVR parameters in Theorem 2.1 requires smooth change of scale

factors gzk,t, gxk,t and time-varying parameter βt, see Assumptions 2.3 and 2.4, and no

smoothness restrictions on the scale factor ht in regression noise ut = htεt are imposed.

Typical examples of smooth deterministic or stochastic change are as follows.

Example 2.1. A deterministic sequence gt = f(t/n), t = 1, ..., n, where f(·) ≥ 0 is

a Lipschitz smooth function, |f(x) − f(y)| ≤ C|x − y|γ with parameter γ ∈ (1/2, 1],

has property |gt − gs| ≤ C(|t − s|/n)γ, and is a standard example of is a scale factor

satisfying smoothness assumption (9) with parameter γ ∈ (1/2, 1].
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An example of stochastic smoothly varying scale factor is a stochastic process

gt = n−ν
∣∣ t∑
j=1

ξj
∣∣, t = 1, ..., n,

where {ξj} is a stationary ARFIMA(0, d, 0) process with parameter d ∈ (0, 1/2) and

zero mean, see e.g. Chapter 7 in Giraitis, Koul and Surgailis (2012). It satisfies

smoothness property (9) with γ = 1/2 + d. Indeed, then for t > s,

|gt − hs| = n−γ
∣∣∣∣∣∑t

j=1 ξj
∣∣− ∣∣∑s

j=1 ξj
∣∣∣∣∣ ≤ n−γ|

∑t
j=s+1 ξj|

≤ (|t− s|/n)γ|St,s|, St,s = (t− s)−γ
∑t

j=s+1 ξj.

If ARFIMA process is generated by i.i.d. innovations with p ≥ 2 finite moments, then

by stationarity and Propositions 4.4.3 and 3.3.1 in Giraitis, Koul and Surgailis (2012),

E|St,s|p = E|St−s,0|p ≤ (ES2
t−s,0)

p/2 ≤ C.

Then, (E|gt − gs|p)1/2 ≤ C(|t− s|/n)γ where C <∞ does not depend on t, s and n.

2.2 Estimation of the time-varying parameter

This subsection outlines results on estimation of the time-varying parameter βt =

(β1t, ..., βpt)
′ in partially time-varying regression model (1). The estimator β̂t = (β̂1t, ..., β̂pt)

′

given in (6) can be written as

β̂t = S−1zz,tSzỹz,t (26)

using notation:

Szz,t =
∑n

j=1 bn,tjzjz
′
j, Szỹ,t =

∑n
j=1 bn,tjzj ỹzj, ỹzj = yj − x′jα̂. (27)

We compute the weights bn,tj in the estimator β̂t with bandwidth parameter Hz →∞
which can be different from the bandwidth H used in the estimation of the fixed

parameter α. The bandwidth Hz satisfies Hz = o(n), Hz →∞. It is required to satisfy

assumption (14) only in the estimation of standard errors in Corollary 2.2.

We consider the point-wise estimation of components βkt of the parameter vector

βt for t = 1, ..., n. In particular, we derive the asymptotic normality property and

estimation procedure for standard errors for the estimator β̂kt of βkt at time t.

11



Standard errors for the estimator β̂kt will be described using the diagonal elements

ωβkk,t of the matrix

Ωβ,t = (E[Szz,t|F∗n])−1E[Szzuu,t|F∗n](E[Szz,t|F∗n])−1 = (ωjk,t), (28)

Szzuu,t =
∑n

j=1 b
2
n,tjzjz

′
ju

2
j .

In the next theorem we establish the consistency rate and the asymptotic normality

property for estimation of the component βkt of the time-varying parameter βt by the

estimator β̂kt in partially time-varying regression model (1).

Theorem 2.2. Suppose assumptions of Theorem 2.1 are satisfied. Then, for 1 ≤ t =

tn ≤ n and k = 1, ..., p, the following holds:

β̂kt − βkt = Op

(
H−1/2z + (Hz/n)γ2

)
. (29)

Moreover, if Hz = o(n2γ2/(2γ2+1)), then:

β̂kt − βkt√
ωkk,t

→d N (0, 1),
√
ωkk,t �p H−1/2z . (30)

Furthermore, the unknown standard error
√
ωkk,t in the normal approximation above

can be estimated using the diagonal element ω̂kk,t of the matrix:

Ω̂β,t = S−1zz,tSzzûû,tS
−1
zz,t = (ω̂jk,t), ûj = yj − α̂′xj − β̂′jzj. (31)

Corollary 2.2. Assume that bandwidth Hz satisfies property (14). Then, under as-

sumptions of Theorem 2.2, for k=1, ..., p, the following holds:

β̂kt − βkt√
ω̂kk,t

→d N (0, 1),
ω̂kk,t
ωkk,t

= 1 + op(1). (32)

Computation of standard errors
√
ω̂kk,t in estimation of partially time-varying model is

straightforward. The estimator Ω̂β,t of robust standard errors in (31) is a time-varying

version of heteroskedasticity-consistent standard errors by White (1980).

The robust estimation of standard errors by Ω̂β,t differs from the standard estima-
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tion by

Ω̂
(st)
β,t = (K2,t/Kt)S

−1
zz,t σ̂

2
u, σ̂2

u = n−1
n∑
j=1

û2j , ûj = yj − α̂′xj − β̂′zj, (33)

K2,t =
∑n

j=1 b
2
n,tj, Kt =

∑n
j=1 bn,tj.

Estimator (33) is applicable when regressors are stationary processes and independent

of regression noise ut which is a stationary martingale difference noise. It is not robust

to heterogeneity, and fails to estimate standard errors under heteroskedasticity settings,

see examples considered in the Monte Carlo study in the Online Supplement.

3 Monte Carlo study

In this section, we use Monte Carlo simulations to examine the theoretical properties of

the estimators of parameters of the partially time-varying regression model, established

in Section 2. The theory shows that the fixed parameter α can be estimated with the

parametric rate
√
n and the time-varying parameter βt with a non-parametric rate

which is slower than
√
n. In particular, we explore the validity of the asymptotic

normality property of t-statistics established for the components of parameters α and

βt in finite samples and its robustness to heterogeneity. We consider a variety of scale

factors, noises and time-varying parameters βt allowed by our model setting, see also

Section 8 in the Online Supplement.

The simulations confirm the validity of our theoretical results. The estimators show

good finite sample performances, reveal robustness to heterogeneity under different

regression settings and confirm the ease of practical application.

We set the sample size to n = 1500, conduct 1000 replications, and use the bandwidth

H = nh and Hz = nh, h = 0.4, 0.5, 0.6, 0.7. (Estimation results for n = 200, 800 are

available upon request).

3.1 Estimation of PTVR model

We generate arrays of samples yt, t = 1, ..., n of a partially time-varying regression

model

yt = αxt + β′tzt + ut, ut = htεt (34)

= β1t + αxt + β2tz2t + ut,

13



with a fixed parameter α = 0.5, time-varying parameter βt = (β1t, β2t)
′ and regressors

zt = (1, z2t)
′, where β1t = 0.5 sin (πt/n) + 1, t = 1, ..., n is a time-varying intercept.

The regression noise ut = htεt is a product of an i.i.d. N (0, 1) noise εt and a determin-

istic scale factor

ht = 0.5 sin (0.8πt/n) + 1, t = 1, ..., n. (35)

The regressors {xt} and {z2t} are univariate, and are products of scale factors gxt, gzt

and stationary MA(1) processes ηxt, ηzt,

xt = gxtηxt, ηxt = 0.2 + εxt + 0.5εx,t−1, (36)

zt = gztηzt, ηzt = 0.2 + εzt + 0.5εz,t−1,

where {εxt}, {εzt} are mutually independent i.i.d. N (0, 1) noises and mutually inde-

pendent of {gxt, gzt}.

We consider two cases of scale factors gxt, gzt, t = 1, ..., n:

Deterministic : gxt = 0.5 sin (0.3πt/n) + 1, gzt = 0.5 sin (0.4πt/n) + 1, (37)

Stochastic : gxt = |n−γ
t∑
i=1

υxi|+ 0.2, gzt = |n−γ
t∑
i=1

υzi|+ 0.2, (38)

where {υxi}, {υzi} are stationary ARFIMA(0, d, 0) processes with memory parameter

d = 0.4.

We centre on two cases of time-varying parameter βt:

Deterministic : β2t = 0.5 sin (0.5πt/n) + 1, t = 1, ..., n, (39)

Stochastic : β2t = |n−γ
t∑
i=1

ei|+ 0.2, (40)

where ei is an ARFIMA(0, d, 0) process with parameter d = 0.4.

The stochastic processes gxt, gzt in (38) satisfy the smoothness assumption (9) with pa-

rameter γ1 = 0.5+d = 0.9, and the stochastic parameter β2t in (38) satisfies smoothness

assumption (11) with parameter γ2 = 0.5 + d = 0.9, see Example 2.1.

We consider two partially time-varying regression models. Model 3.1 combines de-

terministic scale factors and time-varying parameter β2t, while Model 3.2 is based on

stochastic scale factors and β2t.

Model 3.1. yt, t = 1, ..., n follows model (34) with deterministic scale factors {gxt, gzt}

14



as in (37) and parameter β2t as (39).

Model 3.2. yt, t = 1, ..., n follows model (34) with stochastic scale factors {gxt, gzt}
as in (38) and parameter β2t as in (40).

More complex simulation examples, that verify the robustness of our estimation and

inference approach, can be found in the Online Supplement.

We start with the analysis of the deterministic setting of Model 3.1. Table 1 reports

the bias, RMSE and coverage rate (in %) for 95% confidence intervals for the fixed

parameter α. The estimation results confirm the good performance of the PTVR

estimation method for the fixed parameter α, achieving small bias, RMSE and good

coverage rates for bandwidth H = n0.6 and Hz = n0.4, n0.5, ..., n0.7. We find that PTVR

estimation shows little difference over combinations of H,Hz. So, in PTVR estimation

of parameters α, one can consider pre-selecting H, e.g. in this simulation study we set

H = n0.6. The impact of Hz on the quality of estimation of α is also minimal. Hence

in estimation of α once could set H = Hz as recommended by the theory.

Table 1: Estimation of α in Model 3.1.

h Bias RMSE CP SD

0.4 0.00014 0.02735 94.6 0.02735
0.5 0.00017 0.02679 94.1 0.02679
0.6 0.00025 0.02645 94.5 0.02645
0.7 0.00025 0.02639 94.2 0.02639

Table 2: Estimation of α in Model 3.2.

h Bias RMSE CP SD

0.4 0.00017 0.06834 93.5 0.06834
0.5 0.00021 0.06736 94.1 0.06736
0.6 0.00020 0.06690 94.3 0.06690
0.7 0.00035 0.06660 94.3 0.06660

Figure 1 displays point-wise estimation results for parameter βt for a single sample

of Model 3.1 for the bandwidths H = n0.6, Hz = n0.5 and sample size n = 1500. It

reports the true parameters βt (blue solid line), the estimates β̂t (red solid line) and

their point-wise 95% confidence bands (gray dash lines). The first row of panels reports

estimation results for the deterministic time-varying intercept β1t. The 95% confidence

band covers β1t and the estimator β̂1t follows closely the path of the true intercept β1t.

The time-varying parameter β2t, is also covered by the 95% confidence interval almost

everywhere and the estimator β̂2t tracks the changes in β2t.

The three panels of Figure 1 (a) (b) (c) spell out the importance of selection of Hz in the

estimation of time-varying parameter βt. For Hz = n0.4, n0.5, n0.6, the true parameter

βt is well-covered by the 95% confidence bands including the end points. However,

the confidence intervals become unstable over the time and wide, for small bandwidth
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Hz = n0.4. As the bandwidth increases, the paths of the estimates β̂t become more

and more smooth, and the confidence bands for βt become narrower. In addition, we

also find that confidence bands for the time-varying parameter βt are wider than for a

fixed parameter α.

(a) Hz = n0.4 (b) Hz = n0.5 (c) Hz = n0.6

Figure 1: Robust 95% confidence bands for time-varying parameters β1t, β2t in Model
3.1: n = 1500, bandwidth H = n0.6, Hz = nh, h = 0.4, 0.5, 0.6. Single replication.

(a) Hz = n0.4 (b) Hz = n0.5 (c) Hz = n0.6

Figure 2: Coverage rates (in %) of robust 95% confidence intervals for time-varying
parameters β1t, β2t in Model 3.1: n = 1500, bandwidth H = n0.6, Hz = nh, h =
0.4, 0.5, 0.6.
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Figure 2 displays the empirical coverage rate (in %) of 95% confidence intervals for

time-varying parameter βt in Model 3.1. It allows the evaluation of the validity of the

asymptotic normal approximation for components of the parameter βt in the point-wise

estimation of βt by β̂t for sample size n = 1500. The bandwidth H = n0.6 is fixed.

For example, it shows that in panel (b), the coverage rates are close to the nominal

95%. Estimation with Hz = n0.5 achieves slightly better coverage rate than with

Hz = n0.4, and we see more coverage distortions when Hz = n0.6 which is consistent

with our previous finding that the confidence intervals become narrower in estimation

with larger bandwidth.

The bias of the PTVR estimator β̂t is close to zero, and the RMSE becomes smaller

as Hz increases. (These results are available upon request).

The second Model 3.2 focuses on the stochastic setting. Again, we pre-select the

bandwidth parameter H = n0.6, in estimation of the fixed parameter α. Table 2 reports

estimation outcomes for the fixed parameter α which confirm good performance of the

PTVR estimator α̂ and excellent coverage rate for 95% confidence intervals.

Figure 3 displays PTVR estimation results for the time-varying parameter βt for a

single sample from Model 3.2 for bandwidth parameters Hz = n0.4, n0.5, n0.6. The 95%

confidence intervals cover the path of the true parameter βt for most of the times, and

the estimator β̂t tracks the path of βt.

(a) Hz = n0.4 (b) Hz = n0.5 (c) Hz = n0.6

Figure 3: Robust 95% confidence bands for time-varying parameters β1t, β2t in Model
3.2: n = 1500, bandwidth H = n0.6, Hz = nh, h = 0.4, 0.5, 0.6. Single replication.
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(a) Hz = n0.4 (b) Hz = n0.5 (c) Hz = n0.6

Figure 4: Coverage rates (in %) of robust 95% confidence intervals for time-varying
parameters β1t, β2t in Model 3.2: n = 1500, bandwidth H = n0.6, Hz = nh, h =
0.4, 0.5, 0.6.

Figure 4 displays empirical coverage rate of 95% confidence intervals in PTVR estima-

tion of the time-varying parameter βt in Model 3.2. With bandwidth Hz = n0.5, the

coverage rate is very close to the nominal 95%. Figure 5 shows that the RMSE is small

and becomes smaller when bandwidth increases. However, the RMSE can rise when

there is a lot of variability in βt.

(a) β1t (b) β2t

Figure 5: RMSE for time-varying parameters β1t, β2t in Model 3.2: n = 1500, band-
width H = n0.6, Hz = nh, h = 0.4, 0.5, 0.6.
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3.2 Forecasting using PTVR model

In this section we consider a forecasting exercise using four competing methods, in-

cluding a PTVR model. We generate a sample y1, ..., yn of n = 1500 observations from

the PTVR model given by

yt = αxt + βtzt + ut, t = 1, · · · , n, (41)

with fixed parameter α = 0.5, time-varying parameter βt = (1/2) sin (2πt/n) + 1, and

i.i.d. N (0, 1) noise ut. The regressors xt = 0.5xt−1 + ηxt and zt = 0.7zt−1 + ηzt are

stationary AR(1) processes generated by uncorrelated noises ηxt = v1t + v3t, ηzt =

v2,t + v3,t which are cross-correlated, where {v1t}, {v2t}, {v3t} and {ut} are mutually

independent i.i.d. N (0, 1) noises.

To compute the 1-step ahead forecast ŷt|t−1 of yt, we use the fitted PTVR model

ŷt|t−1 = α̂ xt−1 + β̂t−1zt−1,

where parameters α, βt−1 are estimated using y1, ..., yt−1. We compare this forecast

with forecasts ŷt|t−1 obtained using a method where all parameters are estimated as

time varying (FTVR), the OLS method where all parameters are estimated as fixed,

and an AR(1) forecast.

To evaluate the quality of the forecast, for each method we conduct in-sample

forecasting of yt by ŷt|t−1 for t = t0, ..., n and evaluate mean square forecast error

(MSFE):

MSFE =
1

n− t0

n∑
t=t0+1

(yt − ŷt|t−1)2.

In our simulation, t0 = 750. We will use MSFE to determine the best forecast method

and bandwidth H that minimises forecast error. For each forecast method, we compute

also the MSFE ratio =MSFE/MSFEPTV R.

Table 3 reports MSFE and MSFE ratio results for all four forecasting methods and

bandwidths H = Hz = n0.4, n0.5, n0.6, n0.7. Regardless of bandwidth, the PTVR and

FTVR methods produce a smaller forecast error than OLS and AR(1), and achieve the

smallest MSFE at H ∼ n0.5, n0.6 which is close to 1, or the variance of the regression

noise ut, which suggests high quality for the forecast. The MSFE ratio for the FTVR

method is close to 1, which implies that PVTR and FTVR methods are comparable.

They produce significantly better forecasts than the remaining two methods, OLS

(ratio > 1.5) and AR(1) (ratio > 3).
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Table 3: MSFE and MSFE ratio

Bandwidth PTVR FTVR OLS AR(1)

H = n0.4
MSFE 1.101 1.154 1.788 3.454

MSFE (ratio) 1 1.048 1.642 3.137

H = n0.5
MSFE 1.078 1.108 1.788 3.454

MSFE (ratio) 1 1.028 1.659 3.204

H = n0.6
MSFE 1.081 1.097 1.788 3.454

MSFE (ratio) 1 1.015 1.654 3.195

H = n0.7
MSFE 1.133 1.140 1.788 3.454

MSFE (ratio) 1 1.006 1.578 3.049

To further evaluate the optimal bandwidth H for the PTVR method, we plot the

MSFE for a grid of bandwidths H = n0.05, n0.1, ...., n0.95, n. Figure 6 shows that the

PTVR forecast achieves the smallest MSFE at H = n0.55.

Figure 6: MSFE for PTVR method, H = nh, h on the horizontal axis.

4 Empirical illustration

In this section, we assess the performance of the PTVR forecast when applied to a set

of U.S. macro-economic variables. Our purpose is not to construct the best forecast

method for this particular data set, but to examine the usefulness of the partially

time-varying regression approach in an empirical forecasting context. The dataset

is composed of 8 quarterly time series spanning from 1949Q1 to 2018Q4. Data are

obtained from the Federal Reserve Economic Database of St. Louis Federal Reserve

Bank. All variables are transformed following standard practice (see Stock and Watson
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(2012)) and are described in Table 4. In this experiment, we use the PTVR approach

for one-quarter-ahead forecasts of Real Gross Domestic Product (GDPC1).

To evaluate the quality of the PTVR forecasts, we start forecasting at time t0 = 100

and continue until the entire sample is used.

Table 4: Data description

Variable Description Transformation form
GDPC1 Real Gross Domestic Product ∆ log xt
GPDIC1 Real Gross Private Domestic Investment ∆ log xt
PCEC96 Real Personal Consumption Expenditures ∆ log xt
PAYEMS All Employees, Total Nonfarm ∆ log xt

AWHMAN
Average Weekly Hours of Production and
Nonsupervisory Employees, Manufacturing ∆xt

UNRATE Unemployment Rate ∆2xt
CPIAUCSL Consumer Price Index for All Urban Consumers ∆2 log xt
INDPRO Industrial Production ∆ log xt

Figure 7 shows that the GDPC1 series we want to forecast exhibits different patterns of

fluctuation in different time periods. We first test for the presence of serial correlation

in yt (GDPC1) using standard and robust tests, see Giraitis, Li, Phillips (2024). Figure

8 confirms the presence of significant autocorrelation in GDPC1.

Figure 7: Plot of series GDPC1 (yt)
(1949Q1-2018Q4)

Figure 8: Correlogram for GDPC1 (yt).
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Figure 9: FTVR estimates β̂t of regression parameters, Hz = n0.7.

Next, we use our partially time-varying regression model, PTVR, to regress the variable

of interest GDPC1, yt, on 8 regressors, which include a time-varying intercept, lagged

dependent variable yt−1 and the remaining 7 variables from the Table 4 all lagged by

one period.

In order to divide regression parameters into fixed and time-varying sets, we first fit to

yt the FTVR regression model with regressors (all one period lagged) which estimates

all parameters as time-varying. Since the sample size n = 279 is small, we use a

bandwidth value of Hz = n0.7. In Figure 9, lines depict the paths of the estimates of

parameters of all regressors under consideration. We notice that the intercept, and the

coefficients at regressors GDPC1, GPDIC1, and UNRATE are almost constant. So, in

our PTVR regression we will treat these parameters as constant.

Subsequently, we fit to yt a PTVR regression model where the intercept and the co-

efficients of GDPC1, GPDIC1, UNRATE (one period lagged) are constant, and the

coefficients of the remaining regressors (one period lagged) are time-varying. Here

we use the same bandwidth for estimation of fixed and time-varying parameter, i.e.

H = Hz.

Figure 10 presents the plot of residuals ût of PTVR regression. It shows that in

the first half of the sample, residuals have larger volatility than in the second one,

i.e. the variance of residuals is not constant. Figure 11 reports testing results for

correlation in residuals for this period. We find significant autocorrelation at some lags

at 5% significance level, and no correlation at 1% significance level. Comparing to the

correlogram of yt in Figure 8, correllation in residuals is significantly reduced and the

noise ut in PTVR regression seems uncorrelated.
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To evaluate the quality of the forecasts, similarly to Section 3.2, for each forecasting

method, PTVR, FTVR, OLS and AR(1), we conduct in-sample forecasting over period

t = 100, ..., 279 and compute MSFE and MSFE ratio. (Here t0 = 100, n = 279). The

results are shown in Table 5.

Figure 10: Plot of PTVR residuals ût,
H = n0.7

Figure 11: Correlogram of ût, t =
101, · · · , 279, H = n0.7.

Figure 12 shows the plot of the MSFEs of the PTVR forecasts using a denser grid of

bandwidths. It is clear that the optimal bandwidth is around H = n0.8.

Overall, PTVR and FTVR methods produce smaller forecast errors compared with

OLS and AR(1), and PTVR performs somewhat better than FTVR. As the bandwidth

increases, the forecast MSE of PTVR and FTVR methods achieve their minimum

around H = n0.8. Hence, H = n0.8 can be a good bandwidth choice in this empirical

exercise and for these sample sizes.

Table 5: MSFE and MSFE ratio

Bandwidth PTVR FTVR OLS AR(1)

H = n0.5
MSFE 0.178 0.198 0.143 0.198

MSFE (ratio) 1 1.112 0.803 1.112

H = n0.6
MSFE 0.151 0.165 0.143 0.198

MSFE (ratio) 1 1.093 0.947 1.311

H = n0.7
MSFE 0.140 0.142 0.143 0.198

MSFE (ratio) 1 1.014 1.021 1.414

H = n0.8
MSFE 0.137 0.134 0.143 0.198

MSFE (ratio) 1 0.978 1.044 1.445

H = n0.9
MSFE 0.139 0.135 0.143 0.198

MSFE (ratio) 1 0.971 1.029 1.425
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Figure 12: MSFE of PTVR forecast for
H = nh.

Figure 13: PTVR forecasts, H = n0.8

Figure 13 displays the plots of the last 50 true values of yt (GDPC1) and predicted

values yt|t−1 forecasted using the PTVR method. The predicted values by PTVR (blue

solid line) and the true values (black solid line) are close and almost coincide.

5 Conclusion

In this paper we develop estimation and inference theory for a new general partially

time-varying regression model. The setting of the model permits for general heterogene-

ity in regressors and noise and structural change of time-varying regression coefficients

over time. The asymptotic estimation theory for this model has a number of novelties.

In particular, the fixed parameter can be estimated with parametric rate and standard

errors can be easily computed. Unlike the rest of the literature, we allow stochastic

scale and parameter processes. Our assumptions on scales, parameters, regressors and

noise are considerably milder that in previous work. The Monte Carlo study confirms

the excellent performance of parameter estimation and inference in finite samples and

in forecasting on simulated data. We present an empirical illustration, where we ap-

ply PTVR modelling to forecasting, leads also to promising results. The theoretical

and empirical findings of this paper demonstrate the clear potential of regression mod-

els that combine fixed and time-varying parameters. Future work can be focused on

methods that determine what subsets of regressors should have fixed or time-varying

parameters.
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This Supplement provides proofs of the results given in the text of the main paper. It

is organised as follows: Section 6 provide proofs of the main theorems. Section 7 contains

auxiliary technical lemmas used in the proofs. Section 8 provides some additional Monte

Carlo simulations which are not covered by the main paper.

Formula numbering in this supplement includes the section number, e.g. (6.1), and

references to lemmas are signified as “Lemma 6.#”, e.g. Lemma 6.1. Theorem references to

the main paper include section number and are signified, e.g. as Theorem 2.1, while equation

references do not include section number, e.g. (1), (2).

In the proofs, C stands for a generic positive constant which may assume different values

in different contexts.

6 Appendix. Proofs

6.1 Proofs of Lemma 2.1 and Theorem 2.1 and 2.2

In this section we provide proofs of Lemma 2.1, Theorem 2.1 and Corollary 2.1, and Lemma

2.2 for the estimator α̂ of the fixed parameter α, and of Theorem 2.2 and Corollary 2.2 for

the estimator β̂t of the time-varying parameter βt.

Proof of Lemma 2.1. We will find the minimizer α̂ by solving the equation for the gradient,

∇L(α)|α=α̂ = 0.

Notice that β̂t,α = β̂zy,t − β̂zx,tα. ,

yt − x′tα− z′tβ̂t,α = (yt − z′tβ̂zy,t)− (x′t − z′tβ̂zx,t)α, (6.1)
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L(α) =

n∑
t=1

(
(yt − z′tβ̂zy,t)− (x′t − z′tβ̂zx,t)α

)2
.

Hence,

∇L(α) = −2

n∑
t=1

(
(yt − z′tβ̂zy,t)− (x′t − z′tβ̂zx,t)α

)
(x′t − z′tβ̂zx,t)′

= −2
n∑
t=1

(xt − β̂′zx,tzt)(yt − z′tβ̂zy,t) + 2
n∑
t=1

(xt − β̂′zx,tzt)(xt − β̂′zx,tzt)′α,

which implies (5). The claim (6) follows setting α = α̂ in βt,α, β̂t = βt,α̂. �

Proof of Theorem 2.1. Recall notation,

βzx,t = q−1zz,tqzx,t, qzz,t = E[ztz
′
t|F∗n], qzx,t = E[ztx

′
t|F∗n], (6.2)

β̂zx,t = S−1zz,tSzx,t,

β̂zy,t = S−1zz,tSzy,t,

Szz,t =

n∑
j=1

bn,tjzjz
′
j , Szx,t =

n∑
j=1

bn,tjzjx
′
j , (6.3)

Szy,t =
n∑
j=1

bn,tjzjyj , Szζ,t =
n∑
j=1

bn,tjzjζj ,

where F∗n = σ
(
ht, gxt, gzt, t = 1, ..., n

)
is the information set generated by the scales.

Introduce the regression model

ζj = β′jzj + uj (6.4)

with a dependent variable ζj and time-varying parameter βj . Denote

β̃t = S−1zz,tSzζ,t (6.5)

the time-varying OLS estimator of parameter βt in model (6.4).

Set

ξ̂j = yj − z′j β̂zy,j , (6.6)

vj = xj − β′zx,jzj ,

v̂j = xj − β̂′zx,jzj .

Notice that we can write yj = α′xj + β′jzj + uj in (1) as

yj = x′jα+ ζj . (6.7)
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Therefore,

β̂zy,t = S−1zz,tSzy,t = S−1zz,tSzx,tα+ Ŝ−1zz,tSzζ,t

= β̂zx,tα+ β̃t.

Then

ξ̂j = yj − z′j β̂zy,j = {x′jα+ z′jβt + uj} − {z′j β̂zx,jα+ β̃j}

= (xj − β̂′zx,jzj)′α+ uj + z′j(βj − β̃j)

= v̂′jα+ uj + z′j(βj − β̃j).

So, we can write the estimator α̂, given in (5), as

α̂ = S−1v̂v̂ Sv̂ξ̂ = α+ S−1v̂v̂ Sv̂u + S−1v̂v̂ Rn, Rn =

n∑
j=1

v̂jz
′
j(βj − β̃j)

= α+ S−1vv Svu + {S−1v̂v̂ Sv̂u − S
−1
vv Svu}+ S−1v̂v̂ Rn, (6.8)

where

Sv̂v̂ =
n∑
t=1

v̂tv̂
′
t, Sv̂u =

n∑
t=1

v̂tut, Svv =
n∑
t=1

vtv
′
t, (6.9)

Svu =

n∑
t=1

vtut, S
v̂ξ̂

=

n∑
t=1

v̂tξ̂t.

In (6.89) of Lemma 6.5 we show that

S−1v̂v̂ Sv̂u − S
−1
vv Svu = op(n

−1/2),

and in Lemma 6.6 it is shown that S−1v̂v̂ Rn = op(n
−1/2). Then,

α̂− α = S−1vv Svu + op(n
−1/2). (6.10)

Observe that the OLS estimator α̃ of parameter α in OLS estimation of fixed parameter in

the regression model

y∗j = α′vj + uj (6.11)

has property

α̃− α = S−1vv Svy∗ − α = S−1vv Svu (6.12)

where Svy∗ =
∑n

t=1 vty
∗
t .
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The regressors vj in (6.11) have the following properties, see (6.15). Denote

νt = ηxt − E[ηxtη
′
zt](E[ηztη

′
zt])
−1ηzt. (6.13)

By (8), we can write

xt = Ixtηxt, Ixt = diag(gx1,t, ..., gxq,t), (6.14)

zt = Iztηzt, Izt = diag(gz1,t, ..., gzp,t),

where {ηxk,t}, {ηzj,t} are stationary sequences which may have non-zero mean. Hence,

vt = xt − β′zx,tzt = xt − E[xtz
′
t|F∗n](E[ztz

′
t|F∗n])−1zt

= Ixtηxt − IxtE[ηxtη
′
zt]IztI

−1
zt (E[ηztη

′
zt])
−1I−1zt Iztηzt

= Ixt
{
ηxt − E[ηxtη

′
zt](E[ηztη

′
zt])
−1ηzt

}
= Ixtνt,

vtv
′
t = Ixtνtν

′
tIxt. (6.15)

Under assumption of theorem, νt is a covariance stationary sequence, see Remark 2.1, and

the scale factor Ixt is independent of {νt}. It is easy to see that regressors vt has similar

structure as xj and satisfy assumptions of the corresponding regression model (1) considered

in Giraitis, Kapetanios, Li (2024). Theorem 2.1 together with Lemma 2.1 and Corollary 2.1

of that paper imply (20) and
√
ωkk �p n−1/2.

This completes the proof of the Theorem 2.1. �

Proof of Corollary 2.1. We will show that

n(Ω̂α,n − Ωα,n) = op(1) (6.16)

which implies n(ω̂kk − ωkk) = op(1). By (20), ωkk �p n−1. Therefore,

ω̂kk
ωkk

= 1 +
ω̂kk − ωkk

ωkk
= 1 +

n(ω̂kk − ωkk)
nωkk

= 1 + op(1).

This, together with (20) of Theorem 2.1 implies

α̂k − αk√
ω̂kk

=

√
ωkk√
ω̂kk

α̂k − αk√
ωkk

→d N (0, 1)

which proves the claim (22) of the corollary.

It remains to prove (6.16). Recall that

Ωα,n = (E[Svv|F∗n])−1E[Svvuu|F∗n](E[Svv|F∗n])−1 = (ωjk),

Ω̂α,n = S−1v̂v̂ Sv̂v̂ûûS
−1
v̂v̂ = (ω̂jk), ût = yt − α̂′xt − β̂′tzt.
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By (6.56) and (6.55) of Lemma 6.3,

nS−1v̂v̂ = n(E[Svv|F∗n])−1 + op(1), n(E[Svv|F∗n])−1 = Op(1).

By (6.61) and (6.60) of Lemma 6.3,

n−1Sv̂v̂ûû = n−1E[Svvuu|F∗n] + op(1), n−1E[Svvuu|F∗n] = Op(1).

Then,

nΩ̂α,n = {nS−1v̂v̂ }{n
−1Sv̂v̂ûû}{nS−1v̂v̂ }

= {n(E[Svv|F∗n])−1 + op(1)}{n−1E[Svvuu|F∗n] + op(1)}{(E[Svv|F∗n])−1 + op(1)}

= nΩα,n + op(1)

which proves (6.16). This completes the proof of the corollary. �

Proof of Theorem 2.2. By (1), yj = x′jα+ z′jβj + uj . Denote by

ζj = z′jβj + uj (6.17)

the regression model with a time-varying parameter. We can write

yj − α̂′xj = {z′jβj + uj}+ x′j(α− α̂)

= ζj + x′j(α− α̂).

Then the estimator β̂t in (6), with weights bn,tj computed using bandwidth Hz, can be written

as

β̂t =
( n∑
j=1

bn,tjzjz
′
j

)−1( n∑
j=1

bn,tjzj
(
yj − α̂′xj

))
=

( n∑
j=1

bn,tjzjz
′
j

)−1( n∑
j=1

bn,tjzj
(
ζj + x′j(α− α̂)

))
= S−1zz,tSzζ,t + S−1zz,tSzx,t(α− α̂)

= β̃t + S−1zz,tSzx,t(α− α̂), β̃t = S−1zz,tSzζ,t. (6.18)

Hence,

β̂t − βt = β̃t − βt + S−1zz,tSzx,t(α− α̂). (6.19)

Bound

||S−1zz,tSzx,t(α− α̂)|| ≤ ||KtS
−1
zz,t|| ||K

−1
t Szx,t|| ||α− α̂||, Kt =

n∑
j=1

bn,tj . (6.20)
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By Theorem 2.1, ||α − α̂|| = Op(n
−1/2). In (6.28) of Lemma 6.1 below it is shown that

||KtS
−1
zz,t|| = Op(1) and in (6.27) we show that ||K−1t Szx,t|| = Op(1). Hence, S−1zz,tSzx,t(α−α̂) =

Op(n
−1/2) which together with (6.19), yields

β̂t − βt = β̃t − βt +Op(n
−1/2). (6.21)

Notice that Hz = o(n) implies n−1/2 = o(H
−1/2
z ).

Observe that the regression model ζj = z′jβj+uj , (6.17), with a time-varying parameter βj

is a special case of the corresponding regression model (18) considered in Giraitis, Kapetanios,

Li (2024) and β̃t in (6.18) is a kernel estimator of time-varying parameter βt which asymptotic

properties were established in that paper. Our model (6.4) satisfies assumptions of Theorem

3.1 in Giraitis, Kapetanios, Li (2024) which implies the claims (29) and (30) of our Theorem

2.2.

This completes the proof of the theorem. �

Proof of Corollary 2.2. The proof follows the same pattern as in the proof of Corollary

2.1. For completeness, we include a detailed proof. It suffices to show that

Hz(Ω̂β,t − Ωβ,t) = op(1). (6.22)

Then, Hz(ω̂kk,t − ωkk,t) = op(1) which together with (30), ωkk �p H−1z , implies

ω̂kk,t
ωkk,t

= 1 +
ω̂kk,t − ωkk,t

ωkk,t
= 1 +

Hz(ω̂kk,t − ωkk,t)
Hzωkk,t

= 1 + op(1).

Together with (30) of Theorem 2.2, this verifies the claim (32) of corollary:

β̂kt − βkt√
ω̂kk,t

=

√
ωkk,t√
ω̂kk,t

β̂kt − βkt√
ωkk,t

→d N (0, 1).

Next we verify (6.22). Recall that

Ωβ,t = (E[Szz,t|F∗n])−1E[Szzuu,t|F∗n](E[Szz,t|F∗n])−1 = (ωjk,t),

Ω̂β,t = S−1zz,tSzzûû,tS
−1
zz,t = (ω̂jk,t), ût = yt − α̂′xt − β̂′tzt.

Let Kt =
∑n

j=1 bn,tj where bn,tj are defined using bandwidth Hz. Then, by (6.40), Kt � Hz.

By (6.29) of Lemma 6.1,

KtS
−1
zz,t = Kt(E[Szz,t|F∗n])−1 + op(1).

By (6.63) and (6.62) of Lemma 6.3,

K−1t Szzûû,t = K−1t E[Szzuu,t|F∗n] + op(1), K−1t E[Szzuu,t|F∗n] = Op(1).
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Then,

Kt Ω̂β,t = {KtS
−1
zz,t}{K

−1
t Szzûû,t}{KtS

−1
zz,t}

= {Kt(E[Szz,t|F∗n])−1 + op(1)}{K−1t E[Szzuu,t|F∗n] + op(1)}{(E[Szz,t|F∗n])−1 + op(1)}

= Kt Ωβ,t + op(1).

This proves (6.22) and completes the proof of the corollary. �

Proof of Lemma 2.2. We prove the first claim in (19). (The proof of the secon claim is

similar.)

Clearly, it suffices to prove (19) for

wj = ηz1,jηz1,j =
∞∑

i1,i2=0

az1,i1az1,i2ξz1,j−i1ξz1,j−i2 .

Denote

cj,i1i2 = az1,i1az1,i2 , ζj,i1i2 = ξz1,j−i1ξz1,j−i2 − E[ξz1,j−i1ξz1,j−i2 ].

Then, we can write

wj − E[wj ] =
∞∑

i1,i2=0

cj,i1i2ζj,i1i2 .

Set m = b log n where b is such that b(log ρ)/2 ≤ −8. Then ρm/2 = exp(b(log ρ) log n) ≤
exp(−8 log n) ≤ n−8. Write

wj − E[wj ] =

m/2∑
i1,i2=0

cj,i1i2ζj,i1i2 +
∞∑

i1,i2=0:max(i1,i2)>m/2

cj,i1i2ζj,i1i2

= r+mt,j + rmt,j .

Under assumptions of lemma, for j ≥ m and i1, i − 2 ≤ m/2, E[ξz1,j−i1ξz1,j−i2 |Ft] =

E[ξz1,j−i1ξz1,j−i2 ] and hence, E[ζj,i1i2 |Ft] = 0 and E[r+mt,j |Ft = 0.

On the other hand, Eζ4j,i1i2 ≤ C where C <∞ does not depend on j, i1, i2. Hence, it is easy

to see that,

Er4mt,j ≤ C

∞∑
i1,...,i8=0:i1>m/2

|cj,i1i2cj,i3i4cj,i5i6cj,i7i8 |

≤ C

∞∑
i=m/2+1

|az1,i|
( ∞∑
i=0

|az1,i|
)7 ≤ C ∞∑

i=m/2+1

ρi ≤ Cρm/2 ≤ Cn−8.

This proves the first claim in (19): (Er4mt,j)
1/4 ≤ Cn−2. �
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6.2 Auxiliary Lemmas

This section contains auxiliary lemmas used in the proofs of Theorem 2.1 and 2.2.

Recall notation Kt given in (6.20). Denote

Qzz,t = K−1t Szz,t, Qzx,t = K−1t Szx,t, (6.23)

qzz,t = E[ztz
′
t|F∗n], qzx,t = E[ztx

′
t|F∗n].

Lemma 6.1. Suppose that the assumptions of Theorem 2.1 are satisfied. Then for bandwidth

H such that H = o(n), H →∞, the following holds:

||q−1zz,t|| ≤ C, E||βzx,t||8 ≤ C, E||qzx,t||4 ≤ C, (6.24)

E||Qzz,t − qzz,t||4 ≤ C
(
H−2m2 + (H/n)4γ1

)
, (6.25)

E||Qzx,t − qzx,t||4 ≤ C
(
H−2m2 + (H/n)4γ1

)
, (6.26)

E||Qzx,t||4 ≤ C, (6.27)

||Q−1zz,t|| = Op(1), for t = tn ∈ {1, ..., n}, (6.28)

Q−1zz,t = E[Qzz,t|F∗n]−1 + op(1). (6.29)

where C <∞ does not depend on t, n, and m is the same as in Assumption 2.5 (iii).

In addition, if H satisfies assumption (14), then

max
t=1,...,n

||Qzz,t − qzz,t|| = op(1), max
t=1,...,n

||Qzx,t − qzx,t|| = op(1), (6.30)

max
t=1,...,n

||Q−1zz,t|| = Op(1). (6.31)

Proof of Lemma 6.1.

Proof of (6.24). Recall (6.14). By Assumption 2.2(ii), E[ηztη
′
zt] = E[ηz1η

′
z1] = Σzz is a

positive definite matrix, so that ||Σ−1zz || <∞. By definition of F∗n,

qzz,t = E[ztz
′
t|F∗n] = IztE[ηztη

′
zt]Izt = IztΣzzIzt, (6.32)

qzx,t = E[ztx
′
t|F∗n] = IztE[ηztη

′
xt]Ixt = IztE[ηz1η

′
x1]Ixt.

Observe that I−1zt = diag(g−1z1,t, ..., g
−1
zp,t) and by Assumption 2.3, gzj,t ≥ c0 > 0 for j = 1, ..., p

and all t. Therefore,

||I−1zt ||2 =

p∑
j=1

g−2zj,t ≤ c
−2
0 p.

Hence,

q−1zz,t = I−1xt Σ−1zz I
−1
xt ,
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||q−1zz,t|| ≤ ||I−1zt || ||Σ−1zz || ||I
−1
zt || ≤ c

−2
0 p||Σ−1zz || ≤ c <∞

where c does not depend on t, n which proves the first claim in (6.24).

On the other hand, βzx,t = q−1zz,tqzx,t. Therefore, by (6.32),

βzx,t = {IztE[ηztη
′
zt]Izt}−1{IztE[ηztη

′
xt]Ixt} = I−1zt E[ηztη

′
zt]
−1E[ηztη

′
xt]Ixt,

||βzx,t|| ≤ ||I−1zt || ||Σ
−1
zz,t|| ||E[ηztη

′
xt]|| ||Ixt|| ≤ C||Ixt||,

where C <∞ does not depend on t. Thus,

E||βzx,t||8 ≤ CE||Ixt||8 ≤ C,

E||qzx,t||4 = E||IztE[ηz1η
′
x1]Ixt||4

≤ E[||Izt||4||Ixt||4] ||E[ηz1η
′
x1]

4|| ≤ C(E||Izt||8 + E||Ixt||8)(E||ηz1||8 + E||ηx1||8) ≤ C

by Assumption 2.3(i) where C < ∞ does not depend on t, n. This proves the second and

third claim in (6.24).

Proof of (6.25). (Proof of (6.26) is similar). Write

zjz
′
j − E[ztz

′
t|F∗n] = {zjz′j − E[zjz

′
j |F∗n]}+ {E[zjz

′
j |F∗n]− E[ztz

′
t|F∗n]},

= {Izj(ηzjη′zj − E[ηzjη
′
zj ])Izj}+ {IzjE[ηz1η

′
z1]Izj − IztE[ηz1η

′
z1]Izt}.

By Assumption 2.2(i), {ηztη′zt} is a stationary time series with finite 4-th moment. Therefore,

E[ηzjη
′
zj ] = E[ηz1η

′
z1] for any j ≥ 1. Hence,

Qzz,t − qzz,t = Q∗zz,t +R∗zz,t, (6.33)

Q∗zz,t = K−1t

n∑
j=1

bn,tjIzj(ηzjη
′
zj − E[ηzjη

′
zj ])Izj = {q`m,t},

R∗zz,t = K−1t

n∑
j=1

bn,tj

(
IzjE[ηz1η

′
z1]Izj − IztE[ηz1η

′
z1]Izt

)
= {r`m,t}.

Then,

||Qzz,t − qzz,t||2 ≤ ||Q∗zz,t||2 + ||R∗zz,t||2, (6.34)

||Qzz,t − qzz,t||4 ≤ 2||Q∗zz,t||4 + 2||R∗zz,t||4,

||Q∗zz,t||4 =
( p∑
`,m=1

q2`m,t
)2 ≤ p2 p∑

`,m=1

q4`m,t,

||R∗zz,t||4 =
( p∑
`,m=1

r2`m,t
)2 ≤ p2 p∑

`,m=1

r4`m,t.
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We will show that

Eq4`k,t ≤ CH−2m2, (6.35)

Er4`k,t ≤ C(H/n)4γ1 , (6.36)

where C does not depend on t, n. Clearly, together with (6.34) this implies (6.25):

E||Q∗zz,t||4 ≤ CH−2m2, E||R∗zz,t||4 ≤ C(H/n)4γ1 , (6.37)

E||Qzz,t − qzz,t||4 ≤ C(H−2m2 + (H/n)4γ1).

Notice that

q`m,t = K−1t

n∑
j=1

bn,tjgz`,jgzm,j(ηz`,jηzm,j − E[ηz`,jηzm,j ]),

r`m,t = K−1t

n∑
j=1

bn,tj
(
gz`,jgzm,j − gz`,tgzm,t

)
E[ηz`,1ηzm,1].

Proof of (6.35). Denote

fj = gz`,jgzm,j , ωj = ηz`,jηzm,j − E[ηz`,jηzm,j ]. (6.38)

By Assumptions 2.2(i), {ωj} is a zero mean stationary sequence which has 4 finite moments

and satisfies Assumption 2.5(iii). Moreover, by Assumption 2.3(ii), maxj Ef
4
j ≤ C and the

sequences {fj} and {ωj} are mutually independent. Thus,

Ef4j ω
4
j = Ef4j Eω

4
j ≤ C.

Hence by (7.4) of Lemma 7.2,

Eq4`m,t ≤ E
(
K−1t

n∑
j=1

bn,tjfjωj
)4 ≤ (K−1t n∑

j=1

bn,tj
(
E[f4j ω

4
j ]
)1/4)4

(6.39)

≤ C
( n∑
j=1

K−1t bn,tj
)2(

max
t,j=1,...,n

K−1t bn,tj
)2
m2 ≤ C( max

t=1,...,n
K−1t )2m2,

because K−1
∑n

j=1 bn,tj = 1 and bn,tj ≤ C.

Observe that under assumption (13), it holds

max
t=1,...,n

K−1t ≤ CH−1, max
t=1,...,n

Kt ≤ CH, (6.40)

where C <∞ does not depend on n which together with (6.39) implies (6.35).
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Proof of (6.36). Bound,

|fj − ft| = |gz`,jgzm,j − gz`,tgzm,t|

≤ |(gz`,j − gz`,t)gzm,j |+ |gz`,t(gzm,j − gzm,t)|.

Under Assumption 2.3 on the scale factors gz`,t, Eg
8
z`,t ≤ C, and

E|gz`,j − gz`,t|8 ≤ C
(
|j − t|/n

)8γ1 ,
E(|gz`,j − gz`,t|gzm,j)4 ≤ (E|gz`,j − gz`,t|8)1/2(Eg8zm,j)1/2 ≤ C

(
|j − t|/n

)4γ1 ,
where C <∞ does not depend on t, j, n. This implies

E|fj − ft|4 ≤ C
(
|j − t|/n

)4γ1 .
Since |E[ηz`,1ηzm,1]| <∞, we can bound

E|r`m,t|4 ≤ CE
(
H−1

n∑
j=1

bn,tj |fj − ft|
)4

≤ C
(
H−1

n∑
j=1

bn,tj{E|fj − ft|4}1/4
)4 ≤ C{H−1 n∑

j=1

bn,tj
(
|t− j|/n

)γ1}4
≤ C(H/n)4γ1{H−1

n∑
j=1

bn,tj
(
|t− j|/H

)γ1}4 ≤ C(H/n)4γ1

since under assumption (13), kernel weights bn,tj have property

H−1
n∑
j=1

bn,tj

( |j − t|
H

)γ1
≤ C, (6.41)

where C <∞ does not depend on t,H, n. This competes the proof of (6.36).

Proof of (6.27). By (6.26) and (6.24),

E||Qzx,t||4 ≤ 4E||Qzx,t − qzx,t||4 + 4E||qzx,t||4 ≤ C

which proves (6.27).

Proof of (6.28). We have

Q−1zz,t − q
−1
zz,t = −Q−1zz,t(Qzz,t − qzz,t)q

−1
zz,t,

||Q−1zz,t − q
−1
zz,t|| ≤ ||Q−1zz,t|| ||Qzz,t − qzz,t|| ||q

−1
zz,t||. (6.42)
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Therefore, we can bound

||Q−1zz,t|| ≤ ||q−1zz,t||+ ||Q
−1
zz,t − q

−1
zz,t|| (6.43)

≤ ||q−1zz,t||+ ||Q
−1
zz,t|| ||Qzz,t − qzz,t|| ||q

−1
zz,t||.

By (6.24) and (6.25), ||q−1zz,t|| ≤ C and ||Qzz,t − qzz,t|| = op(1). Hence,

||Q−1zz,t|| ≤ ||q−1zz,t||(1− ||Qzz,t − qzz,t||)−1 = O(1)(1− op(1))−1 = Op(1) (6.44)

which proves (6.28).

Proof of (6.29). Write

Q−1zz,t − E[Qzz,t|F∗n]−1 = {Q−1zz,t − q
−1
zz,t}+ {q−1zz,t − E[Qzz,t|F∗n]−1}.

We will show that

Q−1zz,t − q
−1
zz,t = op(1), (6.45)

q−1zz,t − E[Qzz,t|F∗n]−1 = op(1), (6.46)

which implies (6.29): Q−1zz,t − E[Qzz,t|F∗n]−1 = op(1). To prove (6.45), notice that by (6.42),

||Q−1zz,t − q
−1
zz,t|| ≤ ||Q−1zz,t|| ||Qzz,t − qzz,t|| ||q

−1
zz,t|| = op(1)

since by (6.24), (6.25) and (6.28), ||q−1zz,t|| ≤ C, ||Qzz,t − qzz,t|| = op(1) and ||Q−1zz,t|| = Op(1),

which proves (6.45).

To prove (6.46), write

E[Qzz,t|F∗n] = qzz,t + {E[Qzz,t|F∗n]− qzz,t}

= qzz,t
(
1 + q−1zz,t{E[Qzz,t|F∗n]− qzz,t}

)
= qzz,t

(
1 + op(1)

)
since

||q−1zz,t{E[Qzz,t|F∗n]− qzz,t}|| ≤ ||q−1zz,t|| ||E[Qzz,t|F∗n]− qzz,t|| = op(1)

because ||q−1zz,t|| ≤ C by (6.24), and by (6.33) and (6.37),

E[Qzz,t|F∗n]− qzz,t = K−1t

n∑
j=1

bn,tj
(
IzjE[ηz1η

′
z1]Izj − IztE[ηz1η

′
z1]Izt

)
= R∗zz,t = Op(H/n)2γ1 = op(1).

This proves (6.46) and completes the proof of (6.29).

Proof of (6.30) first claim. (Proof of second claim is similar.) Denote in = maxt=1,...,n ||Qzz,t−

12



qzz,t||. It suffices to show that for any ε > 0,

P (in ≥ ε)→ 0, n→∞. (6.47)

Observe that

P (in ≥ ε) ≤ E
[ n∑
j=1

I
(
||Qzz,j − qzz,j || ≥ ε

)
] ≤ ε−4

n∑
j=1

E||Qzz,j − qzz,j ||4. (6.48)

By (6.26) of Lemma 6.1,

E||Qzz,t − qzz,t||4 ≤ C
(
H−2m2 + (H/n)4γ1

)
= o(n−1),

where C does not depend on t, n. The last equality holds because by assumption m =

O(log n), γ1 > 3/4 and na ≤ H = O(n2/3) for some a > 1/2 by assumption (14). This proves

(6.30):
n∑
j=1

E||Qzz,j − qzz,j ||4 ≤ C
(
H−2m2 + (H/n)4γ1

)
n = o(1).

Recall that by (6.33), Qzz,j − qzz,j = Q∗zz,t + R∗zz,t and Q∗zz,t and R∗zz,t have property (6.37).

Thus, by the same argument as in the proof (6.47) it follows that

max
t=1,...,n

||Q∗zz,t|| = op(1), max
t=1,...,n

||R∗zz,t|| = op(1). (6.49)

We will use this property in the proofs below.

Proof of (6.31). By (6.43),

||Q−1zz,t|| ≤ qn,1 + ||Q−1zz,t|| qn2,

qn,1 = max
t=1,...,n

||q−1zz,t||, qn,2 = max
t=1,...,n

{||Qzz,t − qzz,t|| ||q−1zz,t||}.

By (6.24) and (6.30), qn,1 = O(1) and qn,2 = op(1). Hence we obtain that

max
t=1,...,n

||Q−1zz,t|| ≤ qn,1(1− qn,2)−1 = O(1)(1− op(1))−1 = Op(1).

This proves (6.31) and completes the proof of the lemma. �

Let βzx,t and β̂zx,t be as in (6.2).

Lemma 6.2. Suppose that assumptions of Theorem 2.1 are satisfied. Then,

||β̂zx,t − βzx,t|| ≤ Cn{||Qzz,t − qzz,t|| ||βzx,t||+ ||Qzx,t − qzx,t||}, (6.50)

||β̂zx,t − βzx,t|| ≤ cn(||βzx,t||+ 1), t = 1, ..., n (6.51)
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where Cn = Op(1), cn = op(1) and Cn, cn do not depend on t.

Moreover, the following equality holds:

β̂zx,t − βzx,t = Q−1zz,t(Qzx,t − qzx,t) +Q−1zz,t(qzz,t −Qzz,t)βzx,t. (6.52)

Proof of Lemma 6.2. Using (6.23), we can write

β̂zx,t = S−1zz,tSzx,t = Q−1zz,tQzx,t, βzx,t = (E[ztzt|F∗n])−1E[ztx
′
t|F∗n] = q−1zz,tqzx,t.

So, we obtain

β̂zx,t − βzx,t = Q−1zz,tQzx,t − q
−1
zz,tqzx,t (6.53)

= Q−1zz,t(Qzx,t − qzx,t) + (Q−1zz,t − q
−1
zz,t)qzx,t

= Q−1zz,t(Qzx,t − qzx,t) +Q−1zz,t(qzz,t −Qzz,t)q
−1
zz,tqzx,t

= Q−1zz,t(Qzx,t − qzx,t) +Q−1zz,t(qzz,t −Qzz,t)βzx,t

which implies (6.52). Recall that we denote by Cn = Op(1) a generic random variable which

may change from line to line and does not depend on t. Then, by (6.24) and (6.31) of Lemma

6.1,

max
t=1,...,n

||q−1zz,t|| ≤ Cn, max
t=1,...,n

||Q−1zz,t|| ≤ Cn.

Thus, by (6.53),

||β̂zx,t − βzx,t|| ≤ ||Q−1zz,t|| ||Qzx,t − qzx,t||+ ||Q
−1
zz,t|| ||qzz,t −Qzz,t|| ||βzx,t||

≤ Cn{||Qzx,t − qzx,t||+ ||Qzz,t − qzz,t|| ||βzx,t||}.

This implies (6.50) with Cn = Op(1).

Next, by (6.26) and (6.25) of Lemma 6.1.

max
t=1,...,n

||Qzz,t − qzz,t|| = op(1), max
t=1,...,n

||Qzx,t − qzx,t|| = op(1)

which implies (6.51):

||β̂zx,t − βzx,t|| ≤ cn(||βzx,t||+ 1).

This completes the proof of the lemma. �

Recall notation vt, v̂t given in (6.6). Denote

Svv =
n∑
t=1

vtv
′
t, Sv̂v̂ =

n∑
t=1

v̂tv̂
′
t, Svvuu =

n∑
t=1

vtv
′
tu

2
t , Sv̂v̂ûû =

n∑
t=1

v̂tv̂
′
tû

2
t , (6.54)

Vvv = n−1Svv, Vv̂v̂ = n−1Sv̂v̂, Vv̂v̂ = n−1Sv̂v̂ Vvvuu = n−1Svvuu, Vv̂v̂ûû = n−1Sv̂v̂ûû,
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Szzuu,t =

n∑
j=1

b2n,tjzjz
′
ju

2
j , Szzûû,t =

n∑
j=1

b2n,tjzjz
′
j û

2
j .

Lemma 6.3. Under the assumptions of Theorem 2.1,

||V −1vv || = Op(1), (6.55)

||Vv̂v̂ − Vvv|| = op
(
1
)
, (6.56)

||V −1v̂v̂ || = Op(1), (6.57)

||V −1v̂v̂ − V
−1
vv || = op

(
1
)
, (6.58)

||Vvu|| = Op
(
n−1/2

)
. (6.59)

Under the assumptions of Corollary 2.1,

||E[Vvvuu|F∗n]|| = Op
(
1
)
, (6.60)

||Vv̂v̂ûû − E[Vvvuu|F∗n]|| = op
(
1
)
. (6.61)

Under the assumptions of Corollary 2.2,

||K−1t E[Szzuu,t|F∗n]|| = Op
(
1
)
, (6.62)

||K−1t {Szzûû,t − E[Szzuu,t|F∗n]}|| = op
(
1
)
. (6.63)

Proof of Lemma 6.3.

Proof of (6.55). Recall (6.15). Then,

Vvv = n−1
n∑
t=1

vtv
′
t = n−1

n∑
t=1

Ixtνtν
′
tIxt

= n−1
n∑
t=1

IxtE[νtν
′
t]Ixt + n−1

n∑
t=1

Ixt{νtν ′t − E[νtν
′
t]}Ixt

= V ∗vv +R∗vv.

We will show below that

V ∗−1vv = Op(1), (6.64)

||R∗vv|| = op(1). (6.65)

Then, using (6.64) and (6.65), similarly as in (6.43) and (6.44) we obtain:

||V −1vv || ≤ ||V ∗−1vv ||+ ||V −1vv − V ∗−1vv ||

≤ ||V ∗−1vv ||+ ||V ∗−1vv (V ∗vv − Vvv)V −1vv ||

≤ ||V ∗−1vv ||+ ||V ∗−1vv || ||R∗vv|| ||V −1vv ||
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which implies (6.55):

||V −1vv || ≤
||V ∗−1vv ||

1− ||R∗vv|| ||V ∗−1vv ||
=

Op(1)

1− op(1)
= Op(1).

Proof of (6.64). By Assumption 2.5, νt is a short memory stationary sequence, and Σνν =

E[νtν
′
t] = E[ν1ν

′
1] is a positive definite matrix. Then, there exists b0 > 0 such that for any

a = (a1, ..., aq)
′, ||a||2 = 1,

a′Σννa ≥ b0.

Moreover, by Assumption 2.3(i), gxk,t ≥ c0 > 0 for some c0 > 0. Hence,

||Ixta||2 =

p∑
k=1

g2xk,ta
2
k ≥ c20

p∑
t=1

a2k = c20||a||2 = c20.

So,

a′V ∗vva = a′n−1
n∑
t=1

IxtΣννIxta

≤ n−1
n∑
t=1

(Ixta)′Σνν(Ixta) ≥ n−1
n∑
t=1

||Ixta||2b0

≥ n−1
n∑
t=1

c0b0 = c0b0 = b > 0.

This implies that the largest eigenvalue of V ∗−1vv ≤ b−1 does not exceed 1/b and proves (6.64).

Proof of (6.65). Observe that the elements of

R∗vv = n−1
n∑
t=1

Ixt{νtν ′t − E[νtν
′
t]}Ixt = {sn,`k}

are of the form

sn,`k = n−1
n∑
t=1

gx`,tgxk,t{νx`,tνxk,t − E[νx`,tνxk,t]}.

Under Assumption 2.2, ωt = νx`,tνxk,t−E[νx`,tνxk,t] is a covariance stationary short memory

sequence with zero mean, sequence {βt = gx`,tgxk,t} is independent of {ωt} and Eβ2t ≤
Eg4x`,t + Eg4xk,t ≤ C where C <∞ does not depend on t, k, `. Hence, by Lemma 7.1(i),

Es2n,`k ≤ Cn−2
n∑
t=1

Eβ2t ≤ Cn−1 = o(1)

which implies sn,`k = op(1) and proves (6.65).
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Proof of (6.56). We have

v̂tv̂
′
t − vtv′t = (v̂t − vt)(v̂t − vt)′ + (v̂t − vt)v′t − vt(v̂t − vt)′,

where v̂t − vt = (βzx,t − β̂zx,t)′zt. Then,

||v̂tv̂′t − vtv′t|| ≤ ||v̂t − vt||2 + 2||v̂t − vt|| ||vt||

≤ ||βzx,t − β̂zx,t||2||zt||2 + 2||βzx,t − β̂zx,t|| ||zt|| ||vt||.

Using the bound (6.51) for ||βzx,t − β̂zx,t||, we obtain

||v̂tv̂′t − vtv′t|| ≤ c2n(||βzx,t||+ 1)2||zt||2 + cn(||βzx,t||+ 1)||zt|| ||vt||

≤ 2(c2n + cn)(||βzx,t||+ 1)2
(
||zt||2 + ||vt||2

)
≤ 2(c2n + cn)

(
(||βzx,t||+ 1)4 + ||zt||4 + ||vt||2

)
, (6.66)

where cn = op(1). Therefore,

||Vv̂v̂ − Vvv|| ≤ n−1
n∑
t=1

||v̂tv̂′t − vtv′t|| ≤ (c2n + cn)rn,

rn = n−1
n∑
t=1

{(||βzx,t||+ 1)4 + ||zt||4 + ||vt||2}. (6.67)

By (6.24), E||βzx,t||4 ≤ C, by (10), E||zt||4 ≤ C, and by (6.15), E||vt||2 ≤ E||Ixtνtν ′tIxt||2 ≤
E||Ixt||2E||νt||2 ≤ C, where C does not depend on t, n. Therefore,

Ern = n−1
n∑
t=1

E
(
(||βzx,t||+ 1)4 + ||zt||4 + ||vt||2

)
≤ C

which implies rn = O(1) and proves the required claim: ||Vv̂v̂ − Vvv|| ≤ op(1).

Proof of (6.57). Similarly as in the proof of (6.55), we obtain

||V −1v̂v̂ || ≤ ||V −1vv ||+ ||V −1v̂v̂ − V
−1
vv ||

≤ ||V −1vv ||+ ||V −1v̂v̂ || ||Vv̂v̂ − Vvv|| ||V
−1
vv ||.

Using (6.55) and (6.56), this implies (6.57):

||V −1v̂v̂ || ≤
||V −1vv ||

1− ||Vv̂v̂ − Vvv|| ||V −1vv ||
=

Op(1)

1− op(1)
= Op(1).

Proof of (6.58). Bound,

||V −1v̂v̂ − V
−1
vv || = ||V −1vv (Vv̂v̂ − Vvv)V −1v̂v̂ ||
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≤ ||V −1vv || ||Vv̂v̂ − Vvv|| ||V −1v̂v̂ ||.

Together with (6.57), (6.56) and (6.55), this implies (6.58):

||V −1v̂v̂ − V
−1
vv || = Op(1)op(1)Op(1) = op(1)

Proof of (6.59). By (6.15), vt = Ixtνt. Hence

Vvu = n−1
n∑
t=1

vtut = n−1
n∑
t=1

{htIxt}{νtεt} = (vn1, ..., vnq)
′

where

vn` = n−1
n∑
t=1

{htgx`,t}{ν`tεt}.

Under assumptions of lemma, htgx`,t and ν`tεt are mutually independent variables, {ν`,tεt} is

a martingale difference sequence and E[h2t g
2
x`,t] ≤ E[h4t ] + E[g4x`,t] ≤ C, E[ν2`tε

2
t ] ≤ C where

C <∞ does not depend on t. Hence,

Ev2n` = n−2
n∑
t=1

E(h2t g
2
x`,t)E(ν2`tε

2
t ) ≤ Cn−1

which implies that ||Vvu|| = Op(n
−1/2).

Proof of (6.60). Under the assumptions of the lemma,

||vtv′tu2t || ≤ ||vt||2u2t ,

E||vtv′tu2t || ≤ E||vt||4 + Eu4t ≤ C

where C <∞ does not depend on t. Hence,

E||E[vtv
′
tu

2
t |F∗n]|| ≤ E

[
E[||vtv′tu2t ||

∣∣F∗n]
]

= E[||vtv′tu2t || ≤ C.

Then,

E||E[Vvvuu|F∗n]|| ≤ n−1
n∑
t=1

E||E[vtv
′
tu

2
t |F∗n]|| ≤ Cn−1

n∑
t=1

1 ≤ C

which implies (6.60).

Proof of (6.61). We have

||Vv̂v̂ûû − E[Vvvuu|F∗n]|| ≤ ||Vvvuu − E[Vvvuu|F∗n]||+ ||Vv̂v̂ûû − Vvvuu||.
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We will show that

||Vvvuu − E[Vvvuu|F∗n]|| = op(1), (6.68)

||Vv̂v̂ûû − Vvvuu|| = op(1), (6.69)

which implies (6.61): ||Vv̂v̂ûû − E[Vvvuu|F∗n]|| = op(1).

Proof of (6.68). By (6.15), vtv
′
t = Ixtνtν

′
tIxt. Hence,

vtv
′
tu

2
t = Ixtνtν

′
tε

2
t Ixth

2
t , E[vtv

′
tu

2
t |F∗n] = IxtE[νtν

′
tε

2
t ]Ixth

2
t ,

vtv
′
tu

2
t − E[vtv

′
tu

2
t |F∗n] = Ixt(νtν

′
tε

2
t − E[νtν

′
tε

2
t ])Ixth

2
t .

Therefore, we can write

Vvvuu − E[Vvvuu|F∗n] = n−1
n∑
t=1

AtWtBt

At = Ixt, Wt = νtν
′
tε

2
t − E[νtν

′
tε

2
t ], Bt = Ixth

2
t .

Under Assumption 2.2(iii), see also Remark 2.1, of Theorem 2.1, the elements of Wt are

covariance stationary SM sequences, and the elements of At and Bt are independent of the

elements of Wt. Hence, by (7.2) of Lemma 7.1,

E||Vvvuu − E[Vvvuu|F∗n]||2 = E||n−1
n∑
t=1

AtWtBt||2 ≤ Cn−2
n∑
t=1

E
[
||At||2||Bt||2

]
.

Observe that under assumptions of lemma,

E
[
||At||2||Bt||2

]
≤ E[||Ixt||4h4t ] ≤ E[||Ixt||8] + E[h8t ] ≤ C (6.70)

where C <∞ does not depend on t, n. Therefore,

E||Vvvuu − E[Vvvuu|F∗n]||2 ≤ n−2
n∑
t=1

1 ≤ Cn−1 = o(1)

which implies (6.68).

Proof of (6.69). We have

||Vvvuu − Vv̂v̂ûû|| ≤ n−1
n∑
t=1

||v̂tv̂′tû2t − vtv′tu2t ||. (6.71)

Bound

||v̂tv̂′tû2t − vtv′tu2t || ≤ ||(v̂tv̂′t − vtv′t)u2t ||+ ||vtv′t(û2t − u2t )||
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≤ ||v̂tv̂′t − vtv′t||u2t + ||vt||2|û2t − u2t |.

Thus,

||Vvvuu − Vv̂v̂ûû|| ≤ n−1
n∑
t=1

||v̂tv̂′t − vtv′t||u2t + n−1
n∑
t=1

||vt||2|û2t − u2t |

= qn1 + qn2.

It suffices to show that

qn1 = op(1), qn2 = op(1). (6.72)

To evaluate qn1, recall that by (6.66),

||v̂tv̂′t − vtv′t|| ≤ cn(||βzx,t||+ 1)2
(
||zt||2 + ||vt||2

)
, cn = op(1).

Hence

qn1 ≤ cnq∗n1, q∗n1 = n−1
n∑
t=1

(||βzx,t||+ 1)2
(
||zt||2 + ||vt||2

)
u2t .

Notice that under the assumptions of the lemma, by (6.24) and (10),

E[{(||βzx,t||+ 1)2
(
||zt||2 + ||vt||2

)
}u2t ]

≤ E(||βzx,t||+ 1)4 + E
[(
||zt||2 + ||vt||2

)2
u4t
]

≤ E(||βzx,t||+ 1)4 + E
(
||zt||2 + ||vt||2

)4
+ E[u8t ] ≤ C

where C <∞ does not depend on t, n. Hence Eq∗n1 ≤ C which implies q∗n1 = Op(1). Thus,

qn1 ≤ cnq∗n1 = op(1)Op(1) = op(1).

Next we evaluate qn2. Notice that

û2t − u2t = (ût − ut)2 + 2(ût − ut)ut.

We have,

ût − ut = (α− α̂)′xt + (βt − β̂t)′zt,

|ût − ut| ≤ ||xt|| ||α− α̂||+ ||zt|| ||βt − β̂t||, (6.73)

(ût − ut)2 ≤ 2||xt||2 ||α− α̂||2 + 2||(βt − β̂t)′zt||2.

We will denote by Cn and cn the random variables Cn = Op(1) and cn = op(1) which do not
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depend on t. By Theorem 2.1, ||α− α̂|| = Op(n
−1/2) = cn. Recall notation

Qzz,t = K−1t Szz,t, Qzu,t = K−1t Szu,t, Qzzβ,t = K−1t

n∑
j=1

bn,tjzjz
′
j(βj − βt).

Recall that by (6.4), ζj = z′jβj + uj and thus,

Szζ,t =
n∑
j=1

bn,tjzjζj =
n∑
j=1

bn,tjzjz
′
jβj +

n∑
j=1

bn,tjzjuj

=
n∑
j=1

bn,tjzjz
′
j(βj − βt) + Szz,tβt +

n∑
j=1

bn,tjzjuj ,

S−1zz,tSzζ,t − βt = Q−1zz,t{Qzzβ,t +Qzu,t}.

Therefore, by (6.18),

β̂t − βt = {S−1zz,tSzζ,t − βt}+ S−1zz,tSzx,t(α− α̂)

= Q−1zz,t{Qzzβ,t +Qzu,t}+Q−1zz,tQzx,t(α− α̂),

||β̂t − βt|| ≤ ||Q−1zz,t||{||Qzzβ,t|| ||+ ||Qzu,t||+ ||Qzx,t|| ||α− α̂||}

≤ Cn{||Qzzβ,t||+ ||Qzu,t||}+ cn ||Qzx,t||, (6.74)

since by (6.28), maxt=1,...,n ||Q−1zz,t|| ≤ Cn = Op(1). Hence,

||β̂t − βt||2 ≤ Cn{||Qzzβ,t||2 + ||Qzu,t||2}+ cn ||Qzx,t||2. (6.75)

Hence, using (6.74), (6.75) and (6.73), we obtain the following bounds:

|ût − ut| ≤ cn||xt||+ ||zt|| ||βt − β̂t||

≤ cn(||xt||+ ||zt|| ||Qzx,t||) + Cn||zt|| {||Qzzβ,t||+ ||Qzu,t||},

|ût − ut|2 = cn(||xt||2 + ||zt||2||Qzx,t||2) + Cn||zt||2 {||Qzzβ,t||2 + ||Qzu,t||2}.

Hence, we can bound

qn2 = n−1
n∑
t=1

||vt||2|û2t − u2t |

≤ n−1
n∑
t=1

||vt||2
(
(ût − ut)2 + 2|ût − ut| |ut|

)
≤ cnqn2,1 + Cnqn2,2 + Cnqn2,3, (6.76)
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where

qn2,1 = n−1
n∑
t=1

||vt||2{||xt||2 + ||zt||2||Qzx,t||2 + u2t },

qn2,2 = n−1
n∑
t=1

||vt||2||zt||2{||Qzzβ,t||2 + ||Qzu,t||2},

qn2,3 = n−1
n∑
t=1

||vt||2 ||zt|| |ut|{||Qzzβ,t||+ ||Qzu,t||},

and cn = op(1), Cn = Op(1). We will show that

qn2,1 = Op(1), qn2,2 = op(1), qn2,3 = op(1), (6.77)

which together with (6.76) implies qn2 = op(1) and proves (6.72).

(1) First, we bound qn2,1. Observe that

||vt||2||zt||2||Qzx,t||2 ≤ ||vt||4||zt||4 + ||Qzx,t||4 ≤ ||vt||8 + ||zt||8 + ||Qzx,t||4.

Then, under assumptions of lemma and by (6.27),

E[||vt||2{||xt||2 + ||zt||2 ||Qzx,t||2 + u2t }] (6.78)

≤ 3E[||vt||4 + ||xt||4 + ||vt||8 + ||zt||8 + ||Qzx,t||4 + u4t ] ≤ C

where C <∞ does not depend on t, n. Hence, Eqn2,1 ≤ C, and qn2,1 = Op(1).

(2) Next we bound qn2,2. Denote in = maxt=1,...,n ||zt||2. Then,

||Qzzβ,t|| ≤ K−1t

n∑
j=1

bn,tj ||zjz′j(βj − βt)|| ≤ K−1t
n∑
j=1

bn,tj ||zj ||2||βj − βt||

≤ inQβ,t, Qβ,t = K−1t

n∑
j=1

bn,tj ||βj − βt||. (6.79)

Then,

qn2,2 ≤ n−1
n∑
t=1

||vt||2||zt||2
{
||Qzzβ,t||2 + ||Qzu,t||2

}
≤ i2n{n−1

n∑
t=1

||vt||2||zt||2||Qβ,t||2}+ {n−1
n∑
t=1

||vt||2||zt||2||Qzu,t||2} (6.80)

= i2njn1 + jn2. (6.81)
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Observe that

E
[
||vt||2||zt||2||Qβ,t||2

]
≤ (E

[
||vt||4||zt||4])1/2(E||Qβ,t||4)1/2 ≤ C(E||Qβ,t||4)1/2,

E
[
||vt||2||zt||2||Qzu,t||2

]
≤ (E

[
||vt||4||zt||4])1/2(E||Qzu,t|||4)1/2 ≤ C(E||Qzu,t||4)1/2

since under the assumptions of the Corollary 2.1, E
[
||vt||4||zt||4] ≤ E||vt||8 + E||zt||8 ≤ C

where C <∞ does not depend on t. Moreover, by (6.116) and (6.120),

E||Qβ,t||4 ≤ C(H/n)4γ2 , E||Qzu,t||4 ≤ CH−1.

By assumption of corollary, H = O(n2/3), and by Assumption 2.4, γ2 ≥ 3/4 + δ for some

δ > 0. Hence (H/n)4γ2 ≤ C(n−1/3)3+4δ ≤ Cn−1−δ. Therefore,

Ejn1 ≤ n−1
n∑
t=1

E[||vt||2||zt||2||Qβ,t||2] ≤ C(H/n)2γ2 ≤ Cn−1/2−δ/2, (6.82)

Ejn2 ≤ n−1
n∑
t=1

E[||vt||2||zt||2||Qzu,t||2] ≤ Cn−1
n∑
t=1

H−1 = CH−1 = o(1).

Under assumptions of lemma, the variable ξt = ||zt||2 has 4-th finite moments: Eξ4t =

E||zt||8 ≤ C where C <∞ does not depend on t. Hence, by Lemma 6.4, in = Op(n
1/4+a) for

any a > 0. Suppose that a < δ/4. Then,

qn2,2 ≤ i2njn1 + jn2 = Op(n
1/2+2a)Op(n

−1/2−δ/2) + op(1) = op(1). (6.83)

(3) Finally, to bound qn2,3, notice that by (6.115) and (6.119),

E[||Qzzβ,t||2] ≤ C(H/n)2γ2 = o(1), E[||Qzu,t||2] ≤ CH−1 = o(1).

Therefore,

E[||vt||2 ||zt|| |ut|{||Qzzβ,t||+ ||Qzu,t||}]

≤ (E[||vt||4 ||zt||2 |ut|2])1/2{(E||Qzzβ,t||2)1/2 + (E||Qzu,t||2)1/2}

≤ C((H/n)γ2 +H−1/2) = o(1) (6.84)

which implies that Eqn2,3 = o(1) and qn2,3 = op(1). This completes the proof of (6.61).

Proof of (6.62). We have

E[zjz
′
ju

2
j |F∗n] = E[Izjηzjη

′
zjIzjh

2
jε

2
j |F∗n] = E[IzjE[ηzjη

′
zjε

2
j ]Izjh

2
j ],

||E[zjz
′
ju

2
j |F∗n]|| ≤ E[{||Izj ||2h2j}{||ηzj ||2ε2j}] ≤ E[||Izj ||2h2j ]E[||ηzj ||2ε2j ]

≤ {E||Izj ||4 + Eh4j}{E||ηzj ||4 + Eε4j} ≤ C
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where C <∞ does not depend on j, see Assumptions 2.2 and 2.3. Thus,

K−1t E[Szzuu,t|F∗n] ≤ K−1t

n∑
j=1

bn,tjE
[
E[zjz

′
ju

2
j |F∗n]

]
≤ CK−1t

∑n
j=1 b

2
n,tj ≤ CK

−1
t

∑n
j=1 bn,tj = C,

which implies the required claim: K−1t E[Szzuu|F∗n] = Op(1).

Proof of (6.63). Bound

||Szzûû,t − E[Szzuu,t|F∗n]|| ≤ ||Szzuu,t − E[Szzuu,t|F∗n]||+ ||Szzûû,t − Szzuu||.

Similarly, as for deriving the bound (6.68) in the proof of (6.61), it suffices to show that

||K−1t (Szzuu,t − E[Szzuu,t|F∗n])|| = op(1), (6.85)

||K−1t (Szzûû,t − Szzuu,t)|| = op(1), (6.86)

which implies (6.63): ||K−1t (Szzûû,t − E[Szzuu,t|F∗n])|| = op(1).

Proof of (6.85). We have

zjz
′
ju

2
j = Izjηzjη

′
zjε

2
jIzjh

2
j , zjz

′
ju

2
j − E[zjz

′
ju

2
j |F∗n] = Izj

(
ηzjη

′
zjε

2
j − E[ηzjη

′
zjε

2
j ]
)
Izjh

2
j .

Hence, we can write

K−1t (Szzuu,t − E[Szzuu,t|F∗n]) = K−1t

n∑
j=1

b2n,tjAjWjBj ,

Aj = Izj , Wj = ηzjη
′
zjε

2
j − E[ηzjη

′
zjε

2
j ], Bj = Izjh

2
j .

By Assumption 2.5(i), the elements of Wj are covariance stationary SM sequences, and the

elements of Aj and Bj are independent of the elements of Wj . Hence, by (7.2) of Lemma 7.1,

E||K−1t (Szzuu,t − E[Szzuu,t|F∗n]||2 = E||K−1t
n∑
j=1

b2n,tjAjWjBj ||2

≤ CK−2t

n∑
j=1

b4n,tjE
[
||Aj ||2||Bj ||2

]
.

Under the assumptions of the lemma, similarly as in (6.70) it holds, E
[
||Aj ||2||Bj ||2

]
≤ C,

where C <∞ does not depend on j, n. This implies

E||K−1t (Szzuu,t − E[Szzuu,t|F∗n])||2 ≤ CK−2t

n∑
j=1

b4n,tj ≤ CK−1t ≤ CH−1 = o(1),
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since bn,tj ≤ C, K−1t
∑n

t=1 bn,tj = 1 and Kt ≤ CH−1 by (6.40). This implies (6.85).

Proof of (6.86). We have

Szzûû,t − Szzuu,t =

n∑
t=1

b2n,tjzjz
′
j(û

2
j − u2j ),

||Szzûû,t − Szzuu,t|| ≤
n∑
t=1

b2n,tj ||zj ||2|û2j − u2j |.

Notice that bn,tj ≤ C. Then, similarly to (6.76), we obtain

jn = K−1t ||Szzûû,t − Szzuu,t||

≤ K−1t

n∑
j=1

bn,tj ||zj ||2|û2j − u2j | ≤ cnqn2,1,t + Cnqn2,2,t + Cnqn2,3,t

where cn = op(1), Cn = Op(1) and

qn2,1,t = K−1t

n∑
j=1

bn,tj ||zj ||2{||xj ||2 + ||zj ||2||Qzx,j ||2 + u2j},

qn2,2,t = K−1t

n∑
j=1

bn,tj ||zj ||4{||Qzzβ,j ||2 + ||Qzu,j ||2},

qn2,3,t = K−1t

n∑
j=1

bn,tj ||zj ||3 |uj |{||Qzzβ,j ||+ ||Qzu,j ||}.

It remains to show that

qn2,1,t = Op(1), qn2,2,t = op(1), qn2,3,t = op(1), (6.87)

which implies the required claim, jn = op(1).

To evaluate qn2,1,t notice that similarly as in (6.78), E[||zj ||2{||xj ||2+||zj ||2||Qzx,j ||2+u2j}] ≤ C
where C <∞ does not depend on t, n. Hence,

Eqn2,1,t ≤ CK−1t
n∑
j=1

bn,tj = C

which implies qn2,1,t = Op(1).

To bound qn2,2,t, notice that similarly to (6.81), we can write

qn2,2,t ≤ K−1t

n∑
j=1

bn,tj ||zj ||4
{
||Qzzβ,j ||2 + ||Qzu,j ||2

}
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≤ i2n{K−1t
n∑
j=1

bn,tj ||zj ||4||Qβ,j ||2}+ {K−1t
n∑
j=1

bn,tj ||zj ||4||Qzu,j ||2}

= i2njn1,t + jn2,t

where in is the same as in (6.79). Since K−1t
∑n

j=1 bn,tj = 1, the same argument as in

the proof of (6.82) implies that Ejn1,t, Ejn2,t and satisfy the same bounds (6.82) as Ejn1,

Ejn2. Therefore qn2,2,t satisfies the same bound (6.87) as qn2,2 which implies qn2,2,t = op(1).

Observe that under assumptions of Corollary 2.2, the bandwidth Hz has property Hz =

O(n2/3) used in the proof of qn2,2 = op(1) above. The latter follows from the assumption

Hz = o(n2γ2/(2γ2+1)) imposed on bandwidth Hz in Corollary 2.2 and assumption γ2 ∈ (3/4, 1].

To bound qn2,3,t, notice that E[||zj ||3 |uj{||Qzzβ,j || + ||Qzu,j ||}] = o(1) satisfies the same

bound as E[||vt||2 ||zt|| |ut|{||Qzzβ,t||+ ||Qzu,t||}] in (6.84). This implies that

qn2,3,t ≤ K−1t
n∑
j=1

bn,tjE[||zj ||3 |uj{||Qzzβ,j ||+ ||Qzu,j ||}] ≤ o(1)K−1t

n∑
j=1

bn,tj = o(1).

Hence, qn2,3,t = op(1) which completes the proof of (6.87), (6.86) and the lemma. �

Lemma 6.4. Suppose that for some integer k ≥ 2, the random variables ξt ≥ 0 have the

property Eξkt ≤ C where C <∞ does not depend on t. Then, for any a > 0,

in = max
t=1,...,n

ξt = o(n1/k+a). (6.88)

Proof of Lemma 6.4. For any ε > 0,

P (in ≥ εn1/k+a) ≤ E
[ n∑
t=1

I
(
ξt ≥ εn1/k+a

)
] ≤ ε−kn−1−ka

n∑
t=1

Eξkt ≤ Cε−kn−ka = o(1)

which proves (6.88). �

6.3 Lemmas 6.5 and 6.6

Lemma 6.5. Under assumption of Theorem 2.1,

S−1v̂v̂ Sv̂u − S
−1
vv Svu = op

(
n−1/2

)
. (6.89)

Proof of Lemma 6.5. Denote Vv̂u = n−1Sv̂u. We have

S−1v̂v̂ Sv̂u − S
−1
vv Svu = V −1v̂v̂ Vv̂u − V

−1
vv Vvu

= V −1v̂v̂ (Vv̂u − Vvu) + (V −1v̂v̂ − V
−1
vv )Vvu.
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By (6.57), V −1v̂v̂ = Op(1), and by (6.58), V −1v̂v̂ − V
−1
vv = op(1), while in (6.59) it is shown that

Vvu = Op(n
−1/2). We will prove that

Vv̂u − Vvu = op(n
−1/2), (6.90)

which implies (6.89):

V −1v̂v̂ Vv̂u − V
−1
vv Vvu = Op(1)op(n

−1/2) + op(1)Op(n
−1/2) = op(n

−1/2).

Proof (6.90). By (6.6), we have

v̂t − vt = (βzx,t − β̂zx,t)′zt = z′t(βzx,t − β̂zx,t),

Vv̂u − Vvu = n−1
n∑
t=1

(v̂t − vt)ut = −n−1
n∑
t=1

z′t(β̂zx,t − βzz,t)ut. (6.91)

By (6.52),

β̂zx,t − βzx,t = Q−1zz,t(Qzx,t − qzx,t) +Q−1zz,t(qzz,t −Qzz,t)βzx,t

= {Q−1zz,t − q
−1
zz,t}

(
(Qzx,t − qzx,t) + (qzz,t −Qzz,t)βzx,t

)
+q−1zz,t(qzz,t −Qzz,t)βzx,t + q−1zz,t(Qzx,t − qzx,t)

= p1t + p2t + p3t,

where

p1t = {Q−1zz,t − q
−1
zz,t}

(
(Qzx,t − qzx,t) + (qzz,t −Qzz,t)βzx,t

)
,

p2t = q−1zz,t(qzz,t −Qzz,t)βzx,t,

p3t = q−1zz,t(Qzx,t − qzx,t).

Therefore, by (6.91),

Vv̂u − Vvu = n−1
n∑
t=1

(v̂t − vt)ut = Rn1 +Rn2 +Rn3, (6.92)

where

Rnk = −n−1
n∑
t=1

z′tpktut, k = 1, 2, 3. (6.93)

To prove (6.90), it remains to show that for k = 1, 2, 3,

Rnk = op(n
−1/2). (6.94)
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Let k = 1. Bound,

||p1t|| ≤ ||Q−1zz,t − q
−1
zz,t||{||Qzx,t − qzx,t||+ ||Qzz,t − qzz,t|| ||βzx,t||} (6.95)

≤ ||Q−1zz,t|| ||Qzz,t − qzz,t|| ||q
−1
zz,t||{||Qzx,t − qzx,t||+ ||Qzz,t − qzz,t|| ||βzx,t||}.

By (6.24) and (6.31), maxt=1,...,n ||q−1zz,t|| ||Q
−1
zz,t|| ≤ Cn = Op(1). Hence,

||p1t|| ≤ Cn||Qzz,t − qzz,t||{||Qzx,t − qzx,t||+ ||Qzz,t − qzz,t|| ||βzx,t||} (6.96)

≤ Cn{||Qzz,t − qzz,t||2 + ||Qzx,t − qzx,t||2}(1 + ||βzx,t||).

Therefore,

||Rn1|| ≤ Op(1)rn,

rn = n−1
n∑
t=1

{
||Qzz,t − qzz,t||2 + ||Qzx,t − qzx,t||2

}
(||βzx,t||+ 1)||zt|| |ut|.

We will show that

Ern = o(n−1/2), (6.97)

which implies the required claim Rn1 = op(n
−1/2). By Hölder inequality,

E
[(
||Qzz,t − qzz,t||2 + ||Qzx,t − qzx,t||2

)
(||βzx,t||+ 1)||zt|| |ut|

]
≤
{

(E
[
||Qzz,t − qzz,t||4

]
)1/2 + (E

[
||Qzx,t − qzx,t||4

]
)1/2

}
(E
[
(||βzx,t||+ 1)2||zt||2u2t ])1/2.

By the assumptions of the lemma and (6.24),

E
[
(||βzx,t||+ 1)2||zt||2u2t ] ≤ E(||βzx,t||+ 1)6 + E||zt||6 + Eu6t ≤ C

where C <∞ does not depend on t, whereas by (6.25) and (6.26),

E
[
||Qzz,t − qzz,t||4

]
≤ C

(
H−2m2 + (H/n)4γ1

)
,

E
[
||Qzx,t − qzx,t||4

]
≤ C

(
H−2m2 + (H/n)4γ1

)
.

Therefore,

Ern ≤ Cn−1
n∑
t=1

(
H−2m2 + (H/n)4γ1

)1/2
= C

(
H−2m2 + (H/n)4γ1

)1/2
= o(n−1/2),

because by assumption, m = O(log n) and γ1 > 3/4, and by (14), na ≤ H = O(n2/3) for

some a > 1/2 which implies H−2m2 = o(n−1), (H/n)4γ1 = o(n−1).

Let k = 2. (Proof for k = 3 is similar as for k = 2 and therefore it is omitted).
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By (6.33), Qzz,t − qzz,t = Q∗zz,t + R∗zz,t. Recall that ut = htεt where {εt} is a stationary

martingale difference sequence. Hence, {εt} is a stationary short memory sequence with zero

mean. Write

Rn2 = −n−1
n∑
t=1

z′tq
−1
zz,tR

∗
zz,tβzx,tut + n−1

n∑
t=1

z′tq
−1
zz,tQ

∗
zz,tβzx,tut (6.98)

= −n−1
n∑
t=1

{η′ztεt}{Iztq−1zz,t}R∗zz,t{βzx,tht} − n−1
n∑
t=1

{η′ztεt}{Iztq−1zz,t}{Q∗zz,t}{βzx,tht}

= −(Rn2,1 +Rn2,2).

We will show that

Rn2,i = op(n
−1/2), i = 1, 2. (6.99)

To evaluate Rn2,1, recall that under assumptions of Theorem 2.1, the variables

{q−1zz,t, R∗zz,t, βzx,t, Izt, ht} are independent of {η′ztεt}. Hence, by Lemma 7.1(ii),

E||Rn2,1||2 ≤ Cn−2
n∑
t=1

E
[
||Iztq−1zz,t||2 ||R∗zz,t||2||htβzx,t||2

]
.

Under the assumptions of the lemma,

Iztq
−1
zz,t = Izt{I−1zt Σ−1zz I

−1
zt } = Σ−1zz I

−1
zt ,

||Iztq−1zz,t|| ≤ ||Σ−1zz || ||I−1zt || ≤ C (6.100)

since by Assumption 2.2(ii), Σzz is invertable, and by Assumption 2.3, gzk,t ≥ c0 > 0. By

(6.100), ||Iztq−1zz,t|| ≤ C where C < ∞ does not depend on t. By (6.24), E||βzx,t||8 ≤ C, and

by assumptions of lemma Eh8t ≤ C. Hence,

E
[
||Iztq−1zz,t||2 ||R∗zz,t||2h2t ||βzx,t||2

]
≤ C(E||R∗zz,t||4)1/2(E[h4t ||βzx,t||4])1/2

≤ C(E||R∗zz,t||4)1/2 ≤ C(H/n)2γ1

because by (6.37), E||R∗zz,t||4 ≤ C(H/n)4γ1 and E[h4t ||βzx,t||4] ≤ Eh8t + E||βzx,t||8 ≤ C.

Hence,

E||Rn2,1||2 ≤ C(H/n)2γ1n−2
n∑
t=1

1 = C(H/n)2γ1n−1 = o(n−1)

which implies Rn2,1 = op(n
−1/2).

29



Next we evaluate

Rn2 = n−1
n∑
t=1

z′tutp2t = n−1
n∑
t=1

z′tutq
−1
zz,t(Qzz,t − qzz,t)βzx,t

= n−1
n∑
t=1

{η′ztεt}{Iztq−1zz,t}(Qzz,t − qzz,t){htβzx,t}.

Denote

ε∗t = η′ztεt = (ε∗1t, ..., ε
∗
pt)
′, ε∗vt = ηvtεt,

Iztq
−1
zz,t = {θir,t},

Q∗zz,t = K−1t

n∑
j=1

bn,tjIzj
(
ηzjη

′
zj − E[ηzjη

′
zj ]
)
Izj = {smv,t},

htβzx,t = {δk`,t},

where ε∗t is a p× 1 matrix with v-th element ε∗vt, Iztq
−1
zz,t is a p× p matrix with i, r-th element

θir,t, Q
∗
zz,t is a p × p matrix with m, v-th element smv,j , and htβzx,t is a p × q matrix with

k, `-th element δk`,t.

It is easy to see that to prove ||Rn2,2|| = op(n
−1/2) it suffices to show that for any elements

ε∗vt, θir,t, smv,t, δk`,t, it holds

in = n−1
n∑
t=1

θir,tδk`,t{smv,tε∗vt} = op(n
−1/2). (6.101)

Setting ξt = θir,tδk`,t, we can write

in = n−1
n∑

j,t=1

ξt{smv,jε∗vt} (6.102)

where smv,t can be written as

smv,t = K−1t

n∑
j=1

bn,tjgzm,jgzv,j
(
ηzm,jηzv,j − E[ηzm,jηzv,j ]

)
=

n∑
j=1

an,tjβjwj

with

wj = ηzm,jηzv,j − E[ηzm,jηzv,j ], βj = gzm,jgzv,j , an,tj = K−1t bn,tj .

Under assumptions of lemma, {ξt, βt} are independent of {wt}. Observe that

Eξ4t ≤ C, Eβ4t ≤ C,
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where C < ∞ does not depend on t. Indeed, by (6.100), ||Iztq−1zz,t|| ≤ C and therefore,

θir,t ≤ ||q−1zz,t|| ≤ C, while by (6.24), E||βzx,t||8 ≤ C. Hence,

Eξ4t ≤ CE[h4t ||βzx,t||4] ≤ C(Eh8t + E||βzx,t||8) ≤ C,

Eβ4t ≤ Eg8zm,t + Eg8zv,t ≤ C,

by Assumption 2.3(i). Hence, by (7.5) of Lemma 7.2,

E|in| ≤ C( max
t,j=1,...,n

an,tj)m = C(K−1t max
t,j=1,...,n

bn,tj)m.

By (6.40), K−1t ≤ CH−1 and bn,tj ≤ C which implies

E|in| ≤ CH−1m = o(n−1/2)

since by assumption, m = O(log n), and by (14), H ≥ na for some a > 1/2. This completes

the proof of (6.101) and verification of the claim Rn2;2 = op(n
−1/2). That concludes the proof

of the lemma. �

Lemma 6.6. Under the assumptions of Theorem 2.1, Rn defined in (6.8) has property

S−1v̂v̂ Rn = op(n
−1/2). (6.103)

Proof of Lemma 6.6. In (6.57) of Lemma 6.3 it is shown that nS−1v̂v̂ = Op(1). Therefore,

to prove (6.103), it suffices to show

n−1Rn = o(n−1/2). (6.104)

By definition (6.8),

Rn =
n∑
j=1

v̂jz
′
j(βj − β̃j), β̃t = S−1zz,tSzζ,t = Q−1zz,tQzζ,t.

Recall notation

vj = xj − β′zx,jzj , ζj = z′jβj + uj ,

Qzz,t = K−1t Szz,t, qzz,t = E[ztz
′
t|F∗n], Qzu,t = K−1t Szu,t.

Recall also notation

Qzzβ,t = K−1t

n∑
j=1

bn,tjzjz
′
j(βj − βt),

Q∗zzβ,t = K−1t

n∑
j=1

bn,tjIzj(ηzjη
′
zj − E[ηzjη

′
zj ])Izj(βj − βt),
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R∗zzβ,t = K−1t

n∑
j=1

bn,tjIzjE[ηzjη
′
zj ]Izj(βj − βt).

Then, Qzzβ,t = Q∗zzβ,t +R∗zzβ,t, and

Qzζ,t = K−1t

n∑
j=1

bn,tjzjζj = Qzzβ,t +Qzu,t = Q∗zzβ,t +R∗zzβ,t +Qzu,t.

Hence,

β̃t − βt = Q−1zz,tQzζ,t − βt = Q−1zz,t(Qzzβ,t +Qzu,t) (6.105)

= Q−1zz,t(Q
∗
zzβ,t +R∗zzβ,t +Qzu,t).

Write,

v̂tz
′
t = (v̂t − vt)z′t + vtz

′
t(1− q−1zz,tQzz,t) + vtz

′
tq
−1
zz,tQzz,t,

v̂tz
′
t(βt − β̃t) = {(v̂t − vt)z′t(βt − β̃t)}+ {vtz′t(1− q−1zz,tQzz,t)(βt − β̃t)}

+{vtz′tq−1zz,tQ∗zzβ,t}+ {vtz′tq−1zz,tR∗zzβ,t}+ {vtz′tq−1zz,tQzu,t}

= ρ1t + ρ2t + ρ3t + ρ4t + ρ5t.

Hence,

Rn =
n∑
t=1

ρ1t + ...+
n∑
t=1

ρ5t = Rn1 + ...+Rn5.

Therefore, to prove (6.104), it suffices to show that

n−1Rni = o(n−1/2), i = 1, ..., 5. (6.106)

(1) Proof of (6.106) for Rn1. By (6.91), v̂t − vt = (βzx − β̂zx)′zt, and by (6.105), β̃t − βt =

Q−1zz,t(Qzzβ,t +Qzu,t). Therefore,

ρ1t = (βzx − β̂zx)′ztz
′
t(βt − β̃t)

= (βzx − β̂zx)′zt{z′tq−1zz,t}{qzz,tQ
−1
zz,t}(Qzzβ,t +Qzu,t),

||ρ1t|| ≤ ||βzx − β̂zx|| ||zt|| ||z′tq−1zz,t|| ||qzz,tQ
−1
zz,t|| ||Qzzβ,t +Qzu,t||.

Observe that under assumptions of lemma,

||z′tq−1zz,t|| = ||η′ztIzt{I−1zt Σ−1zz I
−1
zt }|| = ||η′ztΣ−1zz I

−1
zt ||

≤ ||ηzt|| ||Σ−1zz || ||I−1zt || ≤ C||ηzt||.
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Moreover

||qzz,tQ−1zz,t|| ≤ ||qzz,tQ−1zz,t − 1||+ 1 = ||(qzz,t −Qzz,t)Q−1zz,t||+ 1

≤ ( max
t=1,...,n

||qzz,t −Qzz,t||)( max
t=1,...,n

||Q−1zz,t||) + 1 = Cn = Op(1),

in view of the bounds (6.30) and (6.31). In addition, by (6.50),

||β̂zx,t − βzx,t|| ≤ Cn(||βzx,t||+ 1){||Qzz,t − qzz,t||+ ||Qzx,t − qzx,t||}.

Recall also that ||zt|| ≤ ||Izt|| ||ηzt||. Thus, setting νt = (||βzx,t|| + 1)||Izt|| ||ηzt||2, we obtain

the bound:

ρ1t ≤ Cnρ
∗
1t, ρ∗1t = νt{||Qzz,t − qzz,t||+ ||Qzx,t − qzx,t||}{||Qzzβ,t||+ ||Qzu,t||}.

Hence,

n−1||Rn1|| ≤ Cnr∗n1, r∗n1 = n−1
n∑
t=1

ρ∗1t,

where Cn = op(1). We will show that

Er∗n1 = o(n−1/2), (6.107)

which implies r∗n1 = op(n
−1/2) and proves the required claim: n−1||Rn1|| = op(n

−1/2).

To verify (6.107), notice that under the assumptions of lemma and by (6.24),

Eν4t = E
[
(||βzx,t||+ 1)4||Izt||4 ||ηzt||8

]
= E

[
(||βzx,t||+ 1)4||Izt||4

]
E||ηzt||8 ≤ {E(||βzx,t||+ 1)8 + E||Izt||8}E||ηzt||8 ≤ C,

where C <∞ does not depend on t. Moreover, by (6.25), (6.26), (6.115) and (6.119),

E||Qzz,t − qzz,t||4 ≤ C
(
H−2m2 + (H/n)4γ1

)
, E||Qzx,t − qzx,t||4 ≤ C

(
H−2m2 + (H/n)4γ1

)
,

E||Qzzβ,t||2 ≤ C(H/n)2γ2 , E||Qzu,t||2 ≤ CH−1 (6.108)

where C <∞ does not depend on t. Therefore, using Hölder’s inequality, we can bound

Eρ∗1t

≤ (Eν4t )1/4(E(||Qzz,t − qzz,t||4 + ||Qzx,t − qzx,t||)4)1/4(E(||Qzzβ,t||2 + ||Qzu,t||)2)1/2

≤ C
(
H−2m2 + (H/n)4γ1

)1/4(
H−1 + (H/n)2γ2

)1/2
≤ C

(
H−1/2m1/2 + (H/n)γ1

)(
H−1/2 + (H/n)γ2

)1/2
= o(n−1/2). (6.109)
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The last bound in (6.109) follows noting that γ1, γ2 ∈ (3/4, 1], m = O(log n), and by assump-

tion (14), na ≤ H = O(n2/3) for some a > 1/2. Then, H−1m = o(n−1/2), H−1/2m1/2(H/n)γi =

n−1/2(H/n)γi−1/2m1/2 = o(n−1/2) for i = 1, 2, and (H/n)γ1+γ2 ≤ (n2/3/n)γ1+γ2 = o(n−1/2).

This completes the proof of (6.106) for Rn1.

(2) Proof of (6.106) for Rn2. Using property (6.105) of β̃t, we obtain

ρ2t = vtz
′
t(1− q−1zz,tQzz,t)(βt − β̃t)

= vtz
′
tq
−1
zz,t(qzz,t −Qzz,t)Q

−1
zz,t(Qzzβ,t +Qzu,t),

||ρ2t|| ≤ ||vtz′t|| ||q−1zz,t|| ||qzz,t −Qzz,t|| ||Q
−1
zz,t|| ||Qzzβ,t +Qzu,t||

≤ Cn||vtz′t|| ||qzz,t −Qzz,t|| ||Qzzβ,t +Qzu,t||,

since by (6.24) and (6.31), ||q−1zz,t|| ||Q
−1
zz,t|| ≤ Cn = Op(1) where Cn does not depend on t.

Hence,

n−1||Rn2|| ≤ Cnr
∗
n2, r∗n2 = n−1

n∑
t=1

||vtz′t|| ||qzz,t −Qzz,t|| ||Qzzβ,t +Qzu,t||.

We will show that

Er∗n2 = o(n−1/2) (6.110)

which implies r∗n2 = op(n
−1/2) and proves the required claim: n−1||Rn2|| = op(n

−1/2).

It remains to show (6.110). Under assumptions of lemma, E||vtz′t||4 ≤ E||vt||8+E||z′t||8 ≤
C where C <∞ does not depend on t. Hence, using Hölder inequality, and the bound given

in (6.108), we obtain

E
[
||vtz′t|| ||Qzz,t − qzz,t|| {||Qzzβ,t||+ ||Qzu,t||}

]
≤ (E||vtz′t||4)1/4(E||Qzz,t − qzz,t||4)1/4{(E||Qzzβ,t||2)1/2 + (E||Qzu,t||2)1/2}

≤ C
(
H−1/2m1/2 + (H/n)γ1

)(
(H/n)γ2 +H−1/2

)
= o(n−1/2). (6.111)

where the last relation in (6.111) holds because of the same argument as in (6.109).

Thus,

Er∗n2 ≤ o(n−1/2){n−1
n∑
t=1

1} = o(n−1/2)

which proves (6.110).

(3) Proof of (6.106) for Rn3. We have

n−1||Rn3|| ≤ n−1
n∑
t=1

||q−1zz,t|| ||Q∗zzβ,t|| ||vtz′t||
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≤ Cn−1
n∑
t=1

||Q∗zzβ,t|| ||vtz′t||,

since ||q−1zz,t|| ≤ C by (6.24).

By the assumptions of the lemma, E||vtz′t||2 ≤ E||vt||4 + E||zt||4 ≤ C, while by (6.118)

of Lemma 6.7,

E||Q∗zzβ,t||2 ≤ CH−1(H/n)2γ2 .

Hence,

E[||Q∗zzβ,t|| ||vtz′t||] ≤ (E||Q∗zzβ,t||2)1/2(E||vtz′t||2)1/2 ≤ CH−1/2(H/n)γ2 ,

E
[
n−1

n∑
t=1

||Q∗zzβ,t|| ||vtz′t||
]
≤ n−1

n∑
t=1

E
[
||Q∗zzβ,t|| ||vtz′t||

]
≤ CH−1/2(H/n)γ2 = Cn−1/2(H/n)γ2−1/2 = o(n−1/2)

since γ2 > 1/2 and H = o(n). This implies n−1||Rn3|| = op(n
−1/2) which proves the claim

(6.106) for Rn3.

(4) Proof of (6.106) for Rn4. By (6.15),

vt = Ixtνt, νt = ηxt − E[ηxtη
′
zt](E[ηztη

′
zt])
−1ηzt, (6.112)

vtz
′
t = Ixtνtη

′
ztIzt, E[νtη

′
zt] = 0,

R∗zzβ,t = K−1t

n∑
j=1

bn,tjIzjE[ηzjη
′
zj ]Izj(βj − βt).

Hence, we can write n−1Rn4 as

n−1Rn4 =

n∑
t=1

vtz
′
tq
−1
zz,tR

∗
zzβ,t = n−1

n∑
t=1

Ixtνtη
′
zt{Iztq−1zz,tR∗zzβ,t}

=

n∑
t=1

{n−1Ixt}{νtη′zt}{Iztq−1zz,tR∗zzβ,t}.

Denote in = maxt=1,...,n ||Ixt||. Then,

n−1Rn4 = inJn Jn =
n∑
t=1

{n−1i−1n Ixt}{νtη′zt}{Iztq−1zz,tR∗zzβ,t}.

By Assumption 2.2(i) of theorem, the elements the matrix νtη
′
zt are stationary short memory

sequences which have zero mean, Eνtη
′
zt = 0, and {i−1n Ixt, Iztq

−1
zz,tR

∗
zzβ,t} and {νtη′zt} are
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mutually independent. Hence by (7.2) of Lemma 7.1,

E||Jn||2 ≤ Cn−2
n∑
t=1

E
[
||i−1n Ixt||2||Iztq−1zz,tR∗zzβ,t||2

]
≤ Cn−2

n∑
j=1

E
[
||i−1n Ixt||2||Iztq−1zz,t||2||R∗zzβ,t||2

]
.

By definition of in, ||i−1n Ixt||2 = i−2n ||Ixt||2 ≤ 1, and ||Iztq−1zz,t|| ≤ C by (6.100). Hence,

E
[
||i−1n Ixt||2||Iztq−1zz,t||2 ||R∗zzβ,t||2

]
≤ CE||R∗zzβ,t||2 ≤ C(H/n)2γ2

by (6.117) of Lemma 6.7 where C <∞ does not depend on t, n. Therefore,

E||Jn||2 ≤ Cn−2
n∑
j=1

(H/n)2γ2 ≤ Cn−1(H/n)2γ2 .

Hence, Jn = Op
(
n−1/2(H/n)γ2

)
.

By assumption (14), H = O(n2/3), and by Assumption 2.3(ii), γ1 ≥ 3/4 + δ for some

δ > 0. Hence (H/n)γ2 ≤ C(n−1/3)3/4+δ ≤ Cn−1/4−δ/3. Under assumptions of lemma, the

variable ||Izt||2 has 4-finite moments: E||Izt||8 ≤ C where C < ∞ does not depend on t.

Hence, by Lemma 6.4, in = Op(n
1/4+a) for any a > 0. Suppose that a < δ/3. Then,

||n−1Rn4||2 ≤ inJn = Op(n
1/4+a)Op(n

−1/2n−1/4−δ/3) = Op(n
a−δ/3) = op(1)

which implies (6.106) for Rn4.

(5) Proof of (6.106) for Rn5. Recall that uj = εjhj , Qzu,t = K−1t
∑n

j=1 bn,tjzjuj . Then,

Rn5 =
n∑
t=1

vtz
′
tq
−1
zz,t Qzu,t =

n∑
t=1

vtz
′
tq
−1
zz,t{K

−1
t

n∑
j=1

bn,tjzjuj}

=

n∑
j,t=1

K−1t bn,tjvtz
′
tq
−1
zz,tujzj

=

n∑
t=1

{
n∑
j=1

K−1j bn,tjvjz
′
jq
−1
zz,j}utzt.

We need to show that

n−1Rn5 = op(n
−1/2). (6.113)

By (6.112), vjz
′
j = Ixjνjη

′
zjIzj and qzz,j = IzjΣzzIzj . Thus, vjz

′
jq
−1
zz,j = Ixjνjη

′
zjΣ
−1
zz I

−1
zj .
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Hence,

Rn5 =
n∑
t=1

{
n∑
j=1

K−1j bn,tjIxjνjη
′
zjΣ
−1
zz I

−1
zj }{htIztεtηt}.

Denote Σ−1zz = {σ`m}. By Assumption 2.2(ii), ||Σ−1zz || <∞ which implies |σ`m| <∞. Observe,

that n−1Rn5 is a linear combination of the following type of sums:

in = n−1
n∑
t=1

{
n∑
j=1

K−1j bn,tjgxk,jνkjηz`,jσ`mg
−1
zm,j}{htgzm,tεtηzm,t}.

Clearly, to prove (6.113), it suffices to show that

E|in| = o(n−1/2). (6.114)

Setting

snt =
n∑
j=1

K−1j bn,tj{gxk,jσ`mg−1zm,j}νkjηz`,j

=
n∑
j=1

an,tjβjwj , an,tj = K−1j bn,tj , βj = gxk,jσ`mg
−1
zm,j , wj = νkjηz`,j

we can write

in = n−1
n∑
t=1

ξt{sntε∗t }, ξt = htgzm,t, ε
∗
t = εtηzm,t.

Under the assumptions of the theorem, wj is a stationary short memory sequence with

Ewj = 0. Moreover, {wj , ε∗t } and {ξj , βj} are mutually independent and gzm,j ≥ c0 > 0

by Assumption 2.3. Hence,

Eξ4t ≤ E[h4t g
4
zm,t] ≤ E[h8t ] + E[g8zm,t] ≤ C,

Eβ4t ≤ E[g4xk,jσ
4
`mg

−4
zm,j ] ≤ CE[g4xk,j ] ≤ C

where C <∞ does not depend on j, n.

Hence, by Lemma 7.2(iii),

E|in| ≤ C( max
t,j=1,...,n

an,tj)m = C( max
t,j=1,...,n

K−1j bn,tj)m ≤ CH−1m

because by (6.40), K−1j ≤ CH−1 and bn,tj ≤ C. Therefore,

Ei2n ≤ CH−1m = o(n−1/2)
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since m = O(log n) and by (14), H ≥ na for some a > 1/2. This proves (6.114), implies

(6.106) for Rn5 and completes the proof of the lemma. �

The following lemma is used in the proof of Lemma 6.6.

Lemma 6.7. Under the assumptions of Theorem 2.1, the following holds:

E||Qzzβ,t||2 ≤ C(H/n)2γ2 , (6.115)

E||Qβ,t||4 ≤ C(H/n)4γ2 , (6.116)

E||R∗zzβ,t||2 ≤ C(H/n)2γ2 , (6.117)

E||Q∗zzβ,t||2 ≤ CH−1(H/n)2γ2 , (6.118)

E||Qzu,t||2 ≤ CH−1, (6.119)

E||Qzu,t||4 ≤ CH−1, (6.120)

where C <∞ does not depend on t, n

Proof of Lemma 6.7. Proof of (6.115). We have

||Qzzβ,t|| ≤ K−1t

n∑
j=1

bn,tj ||zj ||2||βj − βt||,

E||Qzzβ,t||2 ≤ K−2t

n∑
j,i=1

bn,tjbn,tiE
[
||zj ||2||zi||2||βj − βt|| ||βi − βt||

]
.

By (10), E||zj ||8 ≤ C where C <∞ does not depend on j. By smoothness Assumption 2.4,

E||βt − βj ||4 ≤ C(|t− j|/n)4γ2 , t, j,= 1, ..., n. (6.121)

These bounds together with Hölder inequality imply that

E
[
||zj ||2||zi||2||βj − βt|| ||βi − βt||

]
≤

(
E||zj ||8E||zi||8E||βj − βt||4E||βi − βt||4

)1/4
≤ C(|t− j|/n)γ2(|t− i|/n)γ2 .

This, together with the bound (6.40), K−1t ≤ CH−1, and the bound (6.41) which is valid

also for γ2, implies (6.115):

E||Qzzβ,t||2 ≤ C(H/n)2γ2
(
H−1

n∑
j=1

bn,tj(|t− j|/H)γ2
)2 ≤ C(H/n)2γ2 .
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Proof of (6.116). As above,

E||Qβ,t||4 = E
(
K−1t

n∑
j=1

bn,tj ||βj − βt||
)4
≤
(
K−1t

n∑
j=1

bn,tj(E||βj − βt||4)1/4
)4

≤ C(H/n)4γ2
(
H−1

n∑
j=1

bn,tj((|t− j|/H)4γ2)1/4
)4 ≤ C(H/n)4γ2 .

This implies (6.116).

Proof of (6.117). We have

||R∗zzβ,t|| ≤ K−1t

n∑
j=1

bn,tj ||IzjE[ηzjη
′
zj ]Izj || ||βj − βt||

where ||IzjE[ηzjη
′
zj ]Izj || ≤ ||Izj ||2E||ηzj ||2 ≤ C||Izj ||2 and C <∞ does not depend on j. By

Assumption 2.3(i), E||Izj ||8 ≤ C. Hence,

||R∗zzβ,t||2 ≤ CK−2t

n∑
j,i=1

bn,tjbn,ti||Izj ||2||Izi||2||βj − βt|| ||βi − βt||, (6.122)

and (6.117) follows using the same argument as in the proof of (6.115).

Proof of (6.118). Write

Q∗zzβ,t = K−1t

n∑
j=1

bn,tjIzj

(
ηzjη

′
zj − E[ηzjη

′
zj ]
)
Izj(βj − βt)

=

n∑
j=1

AjWjBj ,

Aj = K−1t bn,tjIzj , Wj = ηzjη
′
zj − E[ηzjη

′
zj ], Bj = Izj(βj − βt).

Under Assumption 2.2(i) of theorem, the elements ηzk,jηz`,j−E[ηzk,jηz`,j ] of Wj are stationary

short memory sequences with zero mean and {Aj , Bj} and {Wj} are mutually independent.

Hence by (7.2) of Lemma 7.1,

E||Q∗zzβ,t||2 = E||
n∑
j=1

AjWjBj ||2 ≤ C
n∑
j=1

E
[
||Aj ||2||Bj ||2

]
≤ CK−2t

n∑
j=1

b2n,tjE
[
||Izj ||4||βj − βt||2

]
.

Observe that

E
[
||Izj ||4||βj − βt||2

]
≤ (E||Izj ||8)1/2(E||βj − βt||4)1/2 ≤ C(|t− j|/n)2γ2
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by (6.121) and because under the assumptions of the theorem, E||Izt||8 ≤ C. Moreover,

K−1t ≤ CH−1 and bn,tj ≤ C where C <∞ does not depend on t, n. Hence,

E||Q∗zzβ,t||2 ≤ CH−2
n∑
j=1

bn,tj(|t− j|/n)2γ2

≤ CH−1(H/n)2γ2{H−1
n∑
j=1

bn,tj(|t− j|/H)2γ2} ≤ CH−1(H/n)2γ2

using the bound (6.41) which is valid also for 2γ2. This proves (6.118).

Proof of (6.119). Recall that zj = Izjηgj , uj = hjεj . Then,

Qzu,t = K−1t

n∑
j=1

bn,tjIzjηzjεjhjIzj =

n∑
j=1

AjWjBj ,

Aj = K−1t bn,tjIzj , Wj = ηzjεj , Bj = hjIzj .

Under assumption of theorem, εj is a martingale difference sequence, the elements ηzk,jεj of

Wj are stationary white noise sequences with zero mean and {Aj , Bj} and {Wj} are mutually

independent. Hence, by (7.2) of Lemma 7.1,

E||Qzu,t||2 ≤ C

n∑
j=1

E
[
||Aj ||2||Bj ||2

]
≤ CK−2t

n∑
j=1

b2n,tjE
[
||Izj ||4h2j

]
.

Since E
[
||Izj ||4h2j

]
≤ E||Izj ||8 + Eh4j ≤ C, this implies

E||Qzu,t||2 ≤ CK−1t {K
−1
t

n∑
j=1

bn,tj1} = CK−1t ≤ CH−1

which proves (6.119).

Proof of (6.120). We have

Qzu,t = K−1t

n∑
j=1

bn,tjzjuj = (s1n, ..., spn)′, skn = K−1t

n∑
j=1

bn,tjzkjuj .

We will show that

Es4kn = O(H−1) (6.123)

which implies the required claim E||Qzu,t||4 = O(H−1). Write

s2kn = K−1t

n∑
j,i=1

bn,tjbn,ti{zkjuj}{zkiui}
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= K−2t

n∑
j=i=1

[...] + 2K−2t

n∑
j=1

n∑
i=j+1

[...] = qkn,1 + qkn,2.

We will verify that

Eq2kn,1 = O(H−1), Eq2kn,2 = O(H−1) (6.124)

which implies (6.123): Es4kn = E(qkn,1 + qkn,2)
2 ≤ 2Eq2kn,1 + 2Eq2kn,2 = O(H−1). We have

Eq2kn,1 = K−2t

n∑
j,i=1

b2n,tjb
2
n,tiE[z2kju

2
jz

2
kiu

2
i ].

Under assumptions of lemma, E[z2kju
2
jz

2
kiu

2
i ] ≤ Ez8kj +Eu8j +Ez8ki +Eu8i ≤ C where C <∞

does not depend on j, i. Hence,

Eq2kn,1 ≤ CK−2t {K
−2
t

n∑
j,i=1

b2n,tjb
2
n,ti} ≤ CK−2t

(
K−1t

n∑
j=1

bn,tj
)2

≤ CK−2t ≤ CH−2

by (6.40), which implies (6.124) for qkn,1.

Finally,

Eq2kn,2 = K−4t
∑

1≤j1<i1≤n

∑
1≤j2<i2≤n

bn,tj1bn,ti1bn,tj2bn,ti2E[zkj1uj1zkj2uj2zki1ui1zki2ui2 ].

Observe that under assumptions of lemma,

|E[zkj1uj1zkj2uj2zki1ui1zki2ui2 ]| ≤ Ez8kj1+Eu8j1+Ez8kj2+Eu8j2+Ez8ki1+Eu8i1+Ez8ki2+Eu8i2 ≤ C

where C <∞ does not depend on j1, i1, j2, i2.

Suppose that i2 6= i1. Then j2, j1, i1 < i2 and it is easy to see that under assumptions of

the lemma, E[zkj1uj1zkj2uj2zki1ui1zki2ui2 ] = 0.

Therefore,

Eq2kn,2 ≤ K−4t
∑

1≤j1<i1≤n

∑
1≤j2<i2≤n

bn,tj1bn,ti1bn,tj2bn,ti2I(i1 = i2)

≤ CK−1t
(
K−1t

n∑
j=1

bn,tj
)3 ≤ CK−1t ≤ CH−1.

This proves (6.124) and completes the proof of the lemma. �
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7 Auxiliary Lemmas B.

This section contains auxiliary lemmas used in the proofs of the main results in Section 2.

Lemma 7.1. (i) Assume that sequences {βt} and {wt} of univariate random variables are

mutually independent, and {wt} is a covariance stationary short memory sequence with zero

mean. Then,

E(
n∑
t=1

βtwt)
2 ≤ C

n∑
t=1

Eβ2t . (7.1)

(ii) Assume {At}, {Wt} and {Bt} are p ×m, m × ` and ` × q matrices which elements are

random variables. Suppose that elements of {Wt} are stationary short memory sequences

with zero mean and {At, Bt} and {Wt} are mutually independent. Then,

E||
n∑
t=1

AtWtBt||2 ≤ C
n∑
t=1

E
[
||At||2||Bt||2

]
. (7.2)

In (7.1) and (7.2), C <∞ does not depend on n.

Proof of Lemma 7.1. By assumption of lemma,

E[wtws] = cov(wt, ws) = γw,t−s,
∞∑

k=−∞
|γw(k)| <∞.

Hence,

E(

n∑
t=1

βtwt)
2 ≤

n∑
t,s=1

E[βtβs]E[wtws] ≤
n∑

t,s=1

E[β2t + β2s ]|γw,t−s|

≤ 2

n∑
t=1

E[β2t ]

∞∑
s=−∞

|γw,s| ≤ C
n∑
t=1

E[β2t ],

which proves (7.1).

It is easy to see that (7.1) implies (7.2). �

In the following lemma ηxt, ηzt, vt are defined as in (8) and (6.15) and they satisfy moment

conditions of Assumption 2.2. We denote by ηxk,t, ηzk,t, vkt a kth component of these vectors.

Lemma 7.2. (i) Assume, that random variables εt, ηxt and ηzt satisfy assumptions of The-

orem 2.1.

Suppose that random variables {ξt} and {βt} are mutually independent of {ηxt, ηzt, εt}
and such that Eξ4t ≤ C, Eβ4t ≤ C where C <∞ does not depend on t.
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(i) Define wj = ηzs,jηzv,j − E[ηzs,jηzv,j ] and ε∗j = ηz`,j, and set

snt =
n∑
j=1

an,tjβjwj , (7.3)

where an,tj ≥ 0 are non-random weights. Then,

Es4nt ≤ C
( n∑
j=1

an,tj
)2

( max
t,j=1,...,n

an,tj)
2m2, (7.4)

E
∣∣n−1 n∑

t=1

ξtsntε
∗
t

∣∣ ≤ C( max
t,j=1,...,n

an,tj)m, (7.5)

where C <∞ does not depend on n and m is the same as in Assumption 2.5(iii).

(ii) The bounds (7.4) and (7.5) remain valid for wj = ηzs,jηxv,j − E[ηzs,jηxv,j ] and for wj =

vsjηzv,j.

Proof of Lemma 7.2. We will prove (i). (The proof of (ii) is similar).

Proof of (7.4). Observe that

Es4nt =

n∑
j1,...,j4=1

an,tj1 ...an,tj4E[βj1 ...βj4 ]E[wj1 ...wj4 ].

By assumptions of lemma, |E[βj1 ...βj4 ]| ≤ Eβ4j1 + ...+Eβ4j4 ≤ C and |E[wj1 ...wj4 ]| ≤ Ew4
j1

+

...+ Ew4
j4
≤ C, where C <∞ does not depend on t. Therefore,

Es4nt ≤ C
∑

1≤j1≤...≤j4≤n
an,tj1 ...an,tj4 |E[wj1 ...wj4 ]|

≤ C( max
t,j=1,...,n

an,tj)
2

∑
1≤j1≤...≤j4≤n

an,tj1an,tj3 |E[wj1 ...wj4 ]|

≤ C( max
t,j=1,...,n

an,tj)
2

×{
∑

1≤j1≤...≤j4≤n :j4−j2≤2m
[...] +

∑
1≤j1≤...≤j4≤n :j3−j2>m

[...] +
∑

1≤j1≤...≤j4≤n :j4−j3>m
[...]}

≤ C( max
t,j=1,...,n

an,tj)
2{qnt,1 + qnt,2 + qnt,3}. (7.6)

Observe that

qnt,1 ≤ C
∑

1≤j1≤...≤j4≤n :j4−j2≤2m
an,tj1an,tj3

≤ C(

n∑
j1=1

an,tj1)
( n∑
j3=1

an,tj3{
n∑

j2,j4=1:|j2−j3|≤2m,|j4−j3|≤2m

1}
)
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≤ Cm2(

n∑
j1=1

an,tj1)(

n∑
j3=1

an,tj3) = Cm2(

n∑
j=1

an,tj)
2. (7.7)

To bound qnt,2, recall that by Assumption 17(iii), for j3 − j2 > m,

E[wj3wj4
∣∣Fj2 ] = E[wj3wj4 ] + rmj2,j3j4 , (Er2mj2,j3j4)1/2 ≤ Cn−2. (7.8)

Since for j1 ≤ j2 variables wj1 , wj2 are Fj2 measurable, then

E[wj1 ...wj4 ] = E
[
E[wj1 ...wj4

∣∣Fj2 ]
]

= E
[
wj1wj2E[wj3wj4

∣∣Fj2 ]
]

= E[wj1wj2 ]E[wj3wj4 ] + E
[
wj1wj2rmj2,j3j4

]
.

Moreover, by the assumptions of the lemma,

E[wj1wj2 ] = cov(wj1 , wj2) = γw(j2 − j1),
∞∑

j=−∞
|γw(j)| <∞,

|E
[
wj1wj2rmj2,j3j4

]
| ≤ (Ew4

j1)1/4(Ew4
j2)1/4(Er2mj2,j3j4)1/2 ≤ Cn−2

by (7.8) and since Ew4
j ≤ C where C <∞ does not depend on j. Therefore,

qnt,2 ≤ C
∑

1≤j1≤...≤j4≤n :j4−j2>2m

an,tj1an,tj3{|γw(j2 − j1)γw(j4 − j3)|+ Cn−2}

≤ C
( n∑
j1,j2=1

an,tj1 |γw(j2 − j1)|
)2

+ C
( n∑
j=1

an,tj
)2

≤ C
(
{

n∑
j1=1

an,tj1}{
∞∑

j=−∞
|γw(j)|}

)2
+ C

( n∑
j=1

an,tj
)2

≤ C
( n∑
j=1

an,tj
)2
. (7.9)

To bound qnt,3, notice that by the Assumption 2.5(iii), for j4 − j3 > m,

E[wj4
∣∣Fj3 ] = E[wj4 ] + rmj3,j4 , (Er4mj3,j4)1/4 ≤ Cn−2. (7.10)

Recall that E[wj4 ] = 0. For j1 ≤ j2 ≤ j3 variables wj1 , wj2 , wj3 are Fj3 measurable. Therefore,

E[wj1 ...wj4 ] = E
[
E[wj1 ...wj4

∣∣Fj3 ]
]

= E
[
wj1wj2wj3E[wj4

∣∣Fj3 ]
]

= E[wj1wj2wj3rmj3,j4
]
.

Hence,

|E
[
wj1wj2wj3rmj3,j4

]
| ≤ (Ew4

j1Ew
4
j2Ew

4
j3Er

4
mj3,j4)1/4 ≤ Cn−2
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since under the assumption of the lemma, Ew4
j ≤ C where C < ∞ does not depend on j.

This implies

qnt,3 ≤ Cn−2
∑

1≤j1≤...≤j4≤n :j4−j3>2m

an,tj1an,tj3 ≤ C
( n∑
j=1

an,tj
)2
. (7.11)

The bound (7.6) together with (7.7 )-(7.11) implies (7.4).

Proof of (7.5). For 1 ≤ m ≤ k ≤ n, denote

s[m,k](t) =
k∑

j=m

an,tjβjwj , s(m,k](t) =
k∑

j=m+1

an,tjβjwj .

Then,

snt = s[1,t](t) + s(t,t+2m](t) + s(t+2m,n](t).

Hence,

in = n−1
n∑
t=1

ξtsntε
∗
t

= n−1
n∑
t=1

ξts[1,t](t)ε
∗
t + n−1

n∑
t=1

ξts(t,t+2m](t)ε
∗
t + n−1

n∑
t=1

ξts(t+2m,n](t)ε
∗
t

= in,1 + in,2 + in,3.

We will show that

Ei2n,1 ≤ Cm( max
t,j=1,...,n

an,tj)
2, E|in,2| ≤ Cm( max

t,j=1,...,n
an,tj), (7.12)

Ei2n,3 ≤ Cm( max
t,j=1,...,n

an,tj)
2,

which implies (7.5):

E|in| ≤ E[in,1 + in,2 + in,3] ≤ (E[i2n,1])
1/2 + E[in,2] + (E[i2n,3])

1/2

≤ Cm( max
t,j=1,...,n

an,tj).

We have,

E[i2n,1] = n−2
n∑

t,s=1

E[ξtξss[1,t](t)s[1,s](s)ε
∗
t ε
∗
s]

= n−2
n∑

t,s=1

t∑
j=1

s∑
m=1

an,tjan,smE[ξtξsβjβm]E[wjwmε
∗
t ε
∗
s]
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= n−2
n∑
t=1

E[ξ2t s
2
[1,t](t)ε

∗ 2
t ], (7.13)

because E[wjwmε
∗
t ε
∗
s] = 0 for s < t since E[ε∗t |Ft−1] = 0 and for j ≤ t, and wj is Ft−1

measurable.

To evaluate E[i2n,1], denote ∆n = m(maxt,j=1,...,n an,tj)
2. Then,

E[ξ2t s
2
[1,t](t)ε

∗ 2
t ]

= E[ξ2t ε
∗ 2
t s2[1,t](t){I

(
ξ2t ε
∗ 2
t ≤ (n∆n)−1s2[1,t](t)

)
+ I
(
ξ2t ε

2 ∗
t > (n∆n)−1s2[1,t](t)

)
}]

= E[(n∆n)−1 s4[1,t](t)] + (n∆n)E[ξ4t ε
∗ 4
t ].

By (7.4),

Es4[1,t](t) ≤ C
( n∑
j=1

an,tj
)2

( max
t,j=1,...,n

an,tj)
2m2

≤ Cn2( max
t,j=1,...,n

an,tj)
4m2 = C(n∆n)2.

Under assumptions of lemma, E[ξ4t ε
∗ 4
t ] ≤ E[ξ4t ]E[ε∗ 4t ] ≤ C, where C < ∞ does not depend

on t, j,m, n. Hence,

E[i2n,1] ≤ C{n−2
n∑
t=1

(n∆n)−1Es4[1,t](t)) + n−2
n∑
t=1

(n∆n)E[ξ4t ε
∗ 4
t ]} (7.14)

≤ C{n−2
n∑
t=1

(n∆n) + n−2
n∑
t=1

(n∆n)} ≤ C∆n

which proves (7.12) for in,1.

To evaluate Ein,2, bound

|in,2| ≤ n−1
n∑
t=1

t+m∑
j=t+1

an,tj{|ξtβj |}{|wjε∗t |}.

Under assumptions of lemma, E[|ξtβj |] ≤ E[ξ2t ]+E[β2j ] ≤ C and E|wjε∗t | ≤ E[w2
j ]+E[ε∗ 2t ] ≤

C. Then,

E|in,2| ≤ n−1
n∑
t=1

t+m∑
j=t+1

an,tjE[|ξtβj |]E[|wtε∗j |]

≤ Cn−1
n∑
t=1

t+m∑
j=t+1

an,tj ≤ C( max
t,j=1,...,n

an,tj)m

which proves (7.12) for in,2.
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Finally, we estimate E[in,3]. We have that

Ei2n,3 = E
(
n−1

n∑
t=1

ξts(t+2m,n](t)ε
∗
t

)2
= n−2

n∑
t,s=1

E
[
ξtξss(t+2m,n](t)s(s+2m,n](s)ε

∗
t ε
∗
s

]
= n−2

n∑
t=s=1

[...] + 2n−2
n∑
s=1

n∑
t=s+1

[...] = qn1 + qn2.

The bound

qn1 = n−2
n∑
t=1

E
[
ξ2t s

2
(t+2m,n](t)ε

∗ 2
t

]
≤ C∆n = Cm( max

t,j=1,...,n
an,tj)

2 (7.15)

follows using the same argument as in the proof of (7.14) for E[i2n,1].

Next we show that

qn2 = C( max
t,j=1,...,n

an,tj)
2, (7.16)

which together with (7.15) proves (7.12) for in,3.

Proof of (7.16). Let t > s. Then,

ξtξss(t+2m,n](t)s(s+2m,n](s)ε
∗
t ε
∗
s

= ξtξs{
n∑

j=t+2m+1

an,tjβjwj}{
n∑

i=s+2m+1

an,siβiwi}ε∗t ε∗s,

E[ξtξss(t+2m,n](t)s(s+2m,n](s)ε
∗
t ε
∗
s]

=

n∑
j=t+2m+1

n∑
i=s+2m+1

an,tjan,siE[ξtξsβjβi]E[wjwiε
∗
t ε
∗
s], (7.17)

|E[ξtξss(t+2m,n](t)s(s+2m,n](s)ε
∗
t ε
∗
s]| ≤ C

n∑
j=t+2m+1

n∑
i=s+2m+1

an,tjan,si|E[wjwiε
∗
t ε
∗
s]|,

since under assumption of lemma, |E[ξtξsβjβi]| ≤ Eξ4t +Eξ4s +Eβ4j +Eβ4i ≤ C where C <∞
does not depend on t, s, j and i.

We will prove that for j ≥ t+ 2m+ 1, i ≥ s+ 2m+ 1 and t > s,

∣∣E[wjwiε
∗
t ε
∗
s]
∣∣ ≤ Cn−2, (7.18)
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which together with (7.17) implies (7.16):

qn2 ≤ n−2
n∑
s=1

n∑
t=s+1

|E
[
ξtξss(t+2m,n](t)s(s+2m,n](s)ε

∗
t ε
∗
s

]
|

≤ Cn−2
n∑
s=1

n∑
t=s+1

{n−2
n∑

j,i=1

an,tjan,si} ≤ ( max
t,j=1,...,n

an,tj)
2.

Proof of (7.18). To bound |E[wjwiε
∗
t ε
∗
s]|, we consider two cases.

a) Let i > t+m. Since j > t+ 2m, then by Assumption 2.5(iii),

E[wjwi
∣∣Ft+m] = E[wjwi] + rm(t+m),ji, (Er2m(t+m),ji)

1/2 ≤ Cn−2. (7.19)

Moreover, t, s ≤ t+m and therefore variables ε∗t , ε
∗
s are Ft+m measurable. Thus,

E[wjwiε
∗
t ε
∗
s] = E

[
E[wjwiε

∗
t ε
∗
s

∣∣Ft+m]
]

= E
[
ε∗t ε
∗
sE[wjwi

∣∣Ft+m]
]

= E[ε∗t ε
∗
s]E[wjwi] + E[ε∗t ε

∗
srm(t+m),ji] = E[ε∗t ε

∗
srm(t+m),ji]

since E[ε∗t ε
∗
s] = 0 when t > s. Notice that

|E[ε∗t ε
∗
srm(t+m),ji]| ≤ (E[ε∗ 2t ε∗ 2s ])1/2(Er2m(t+m),ji)

1/2 ≤ Cn−2

since under the assumptions of the lemma, E[ε∗ 2t ε∗ 2s ] ≤ Eε∗ 4t +Eε∗ 4s ≤ C where C <∞ does

not depend on t, s. This implies (7.18).

b) Let s+ 2m < i ≤ t+m. Since j > t+ 2m and E[wj ] = 0, then by Assumption 2.5(iii),

E[wj
∣∣Ft+m] = E[wj ] + rm(t+m),j = rm(t+m),j , (Er4m(t+m),j)

1/4 ≤ Cn−2.

Moreover, for t, s, i ≤ t+m variables ε∗t , ε
∗
s, wi are Ft+m measurable. Thus,

E[wjwiε
∗
t ε
∗
s] = E

[
E[wjwiε

∗
t ε
∗
s

∣∣Ft+m]
]

= E
[
ε∗t ε
∗
swiE[wj

∣∣Ft+m]
]

= E[ε∗t ε
∗
swirm(t+m),j ],

|E[ε∗t ε
∗
swirm(t+m),j ]| ≤ (E[ε∗ 4t ]E[ε∗ 4s ]Ew4

i ])
1/4(Er4m(t+m),j)

1/4 ≤ Cn−2

which implies (7.18).

This completes the proof of (7.4) and of the lemma. �
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8 Additional Monte Carlo Simulations

In this section, we use Monte Carlo simulations to verify the asymptotic theory established

in Section 2 of the main paper for more complex data generating processes. In subsection 8.1

models permit the dependence between regressors and regression noise. In Section 8.2, we

compare the performance of robust standard errors and standard errors in PTVR estimation.

8.1 Regressors generated by AR(1) processes

In Section 3 of the main paper, we consider the model

yt = α′xt + β′tzt + ut, t = 1, ..., n,

with regressors xt = gxtηxt, zt = gztηzt where ηxt, ηzt are stationary MA(1) processes.

This section explores the finite-sample performance of PTVR estimation procedures when

the components ηxt, ηzt of regressors are stationary autoregressive AR(1) processes. The

regressors xt and zt are constructed as:

xt = gxtηxt, ηxt = 0.2 + 0.5ηx,t−1 + εxt,

zt = gztηzt, ηzt = 0.2 + 0.5ηz,t−1 + εzt,

where εxt = εt−1 and εzt = εt−2. A more complex regression noise ut = htεt is used. We

suppose that εt follows GARCH(1,1) process:

εt = σtet, σ2t = 1 + 0.7σ2t−1 + 0.2ε2t−1, et ∼ i.i.d.N (0, 1). (8.1)

In this setting, {εt} and {ηxt, ηzt} are mutually dependent processes.

The scale factor ht is either deterministic or stochastic trend:

Deterministic : ht = 0.5(t/n) + 0.5, t = 1, ..., n, (8.2)

Stochastic : ht = |n−γ
t∑
i=1

ξi|+ 0.2, (8.3)

where ξi is an ARFIMA(0, d, 0) process with parameter d = 0.4, see Giraitis, Koul and

Surgailis (2012), Chapter 7.

The time-varying intercept β1t is a sine function:

β1t = 0.5 sin (πt/n) + 1.

We centre on two types of time-varying parameter βt:

Deterministic : β2t = 0.5 sin (2πt/n) + 1, t = 1, ..., n, (8.4)
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Stochastic : β2t = |n−γ
t∑
i=1

ei|+ 0.2, (8.5)

where ei is an ARFIMA(0, d, 0) process with parameter d = 0.4.

We consider two data generating models, Model 8.1 and Model 8.2, that include deter-

ministic and stochastic scale factors gxt, gzt, t = 1, ..., n:

Deterministic : gxt =
1

2
sin

(
2πt

n

)
+

0.3t

n
+ 1, gzt =

1

2
cos

(
2πt

n

)
+

0.4t

n
+ 1, (8.6)

Stochastic : gxt = |n−γ
t∑
i=1

υxi|+ 0.2, gzt = |n−γ
t∑
i=1

υzi|+ 0.2, (8.7)

where {υxi}, {υzi} are stationary ARFIMA(0, d, 0) processes with memory parameter d = 0.4.

Model 8.1. yt, t = 1, · · · , n follows (34) with deterministic scale factors gx,t, gzt as in (8.6),

ht as (8.2) and parameter β2t as (8.4).

Model 8.2. yt, t = 1, · · · , n follows (34) with stochastic scale factors gx,t, gzt as in (8.7), ht

as (8.3) and parameter β2t as (8.5).

Tables 1 and 2 report estimation results for fixed parameter α in Model 8.1 and 8.2. They

confirm good coverage rate for bandwidth H = nh, h = 0.6, 0.7.

Table 1: Estimation of α in Model 8.1.

h Bias RMSE CP SD

0.4 0.0239 0.0326 79.2 0.0222
0.5 0.0121 0.0250 90.7 0.0219
0.6 0.0053 0.0224 94.6 0.0218
0.7 -0.0019 0.0223 94.7 0.0222

Table 2: Estimation of α in Model 8.2.

h Bias RMSE CP SD

0.4 0.0558 0.0807 83.4 0.0582
0.5 0.0277 0.0641 93.1 0.0578
0.6 0.0135 0.0590 94.6 0.0574
0.7 0.0060 0.0576 94.2 0.0572

Next we proceed to estimation results for the time-varying parameter βt with pre-selected

bandwidth H = n0.6 and Hz = nh, h = 0.4, 0.5, 0.6. Figure 1 displays estimation results for

a single simulation in Model 8.1. It shows that the estimator β̂t tracks the path of the true

parameter βt and the true parameter is well covered across the time t by 95% confidence

intervals. Empirical coverage rates, shown in Figure 2, are close to the nominal 95% which

confirms the good finite-sample performance of the normal approximation established for

PTVR estimator for components of βt.

Figure 3 shows that overall the bias in estimation of βt is small and increases as the

bandwidth Hz increases. Figure 4 reveals that the RMSE is declining when the bandwidth

Hz increases, but it can rise when there is a lot of variability in the time-varying parameter

βt, see panel (b).
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The estimation results of Model 8.2 are similar to those for Model 8.1, confirming the

applicability of PTVR estimation procedures to our complex regression setting. By address-

ing both deterministic and stochastic scale factors and parameters, our results reaffirm the

theoretical and practical strengths of the PTVR estimation in dealing with complex data

structure.

(a) H = n0.6, Hz = n0.4 (b) H = n0.6, Hz = n0.5 (c) H = n0.6, Hz = n0.6

Figure 1: PTVR estimates of parameters βt and their 95% confidence bands for one simulation
of Model 8.1. Sample size n = 1500.

(a) H = n0.6, Hz = n0.4 (b) H = n0.6, Hz = n0.5 (c) H = n0.6, Hz = n0.6

Figure 2: Empirical coverage probability of 95% confidence intervals for βt in Model 8.1.
Sample size n = 1500.
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(a) β1t (b) β2t

Figure 3: Bias of βt in Model 8.1. Sample size n = 1500. Bandwidth parameters H =
n0.6, Hz = nh, h = 0.4, 0.5, 0.6, 0.7.

(a) β1t (b) β2t

Figure 4: RMSE of βt in Model 8.1. Sample size n = 1500. Bandwidth parameters H =
n0.6, Hz = nh, h = 0.4, 0.5, 0.6, 0.7.
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(a) H = n0.6, Hz = n0.4 (b) H = n0.6, Hz = n0.5 (c) H = n0.6, Hz = n0.6

Figure 5: PTVR estimates of parameters βt and their 95% confidence bands for one simulation
of Model 8.2. Sample size n = 1500.

(a) H = n0.6, Hz = n0.4 (b) H = n0.6, Hz = n0.5 (c) H = n0.6, Hz = n0.6

Figure 6: Empirical coverage probability of 95% confidence intervals for βt in Model 8.2.
Sample size n = 1500.
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(a) β1t (b) β2t

Figure 7: Bias of βt in Model 8.2. Sample size n = 1500. Bandwidth parameters H =
n0.6, Hz = nh, h = 0.4, 0.5, 0.6, 0.7.

(a) β1t (b) β2t

Figure 8: RMSE of βt in Model 8.2. Sample size n = 1500. Bandwidth parameters H =
n0.6, Hz = nh, h = 0.4, 0.5, 0.6, 0.7.

8.2 Robust standard errors vs. classical standard errors

In the main paper, for estimation of PTVR model we apply the robust standard errors, (21)

for fixed parameter, and (31) for time-varying parameter. We use the term classical standard

errors to refer to standard errors commonly used in the literature. In this section, we make

a comparison between the performance of the PTVR estimation based on robust standard

errors, as in (21) and (31), and classical standard errors, as in (23) and (33).

We focus on a simplified version of Model 8.1 of Section 8.1. We set all scale factors

gx,t, gzt and ht equal to 1 and generate arrays of samples yt, t = 1, · · · , n of the following
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model:

yt = αxt + β′tzt + ut, ut = εt (8.8)

= β1t + αxt + β2tz2t + εt,

where εt is GARCH(1,1) process as in (8.1). With gx,t, gzt = 1, the regressors in (8.8) become

xt = ηxt, ηxt = 0.2 + 0.5ηx,t−1 + εxt,

zt = ηzt, ηzt = 0.2 + 0.5ηz,t−1 + εzt,

where εxt = εt−1 and εzt = εt−2. We set the fixed parameter α = 1 and employ the time-

varying parameter βt = (β1,t, β2t)
′ as below:

β1t = 0.5 sin (πt/n) + 1, t = 1, ..., n,

β2t = 0.5 sin (2πt/n) + 1.

Table 3 reports the empirical coverage rate for the fixed parameter α based on robust stan-

dard errors (denoted by CP) and classical standard errors (denoted by CPst). We observe

that the robust standard errors produce coverage close to the nominal 95%, and, clearly,

implementation of the classical standard errors leads to coverage distortions.

Table 3: Estimation of α in model (8.8)

h Bias RMSE SD CP CPst

0.4 0.0395 0.0546 0.0377 79.2 62.2
0.5 0.0199 0.0423 0.0374 90.2 77.9
0.6 0.0098 0.0385 0.0372 92.4 82.3
0.7 0.0046 0.0374 0.0371 93.8 83.6

Figure 9 displays estimation results for time-varying parameter βt for one single sample. We

observe that the true value of βt is well covered by the confidence intervals based on the

robust standard errors. Figure 10 reports the empirical coverage (in %) of 95% confidence

intervals for parameter β2t based on robust standard errors (blue line) and classical standard

errors (red line). The PTVR estimation based on robust standard errors achieves good

coverage rate, while estimation with classical standard errors leads to size distortions due

to the presence of a non i.i.d noise εt and the dependence between regressors and regression

noise. Figure 11 reports the RMSE in estimation of β2t with different bandwidth parameters

Hz = nh, h = 0.4, 0.5, 0.6, 0.7. It shows that RMSE decreases as h increases, but RMSE can

rise because of rapid change in the time-varying parameter β2t, see panel (b).
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(a) H = n0.6, Hz = n0.4 (b) H = n0.6, Hz = n0.5 (c) H = n0.6, Hz = n0.6

Figure 9: PTVR estimates of parameters βt and their 95% confidence bands for one simulation
in (8.8). Sample size n = 1500.

(a) β2t: H = n0.6, Hz = n0.4 (b) β2t: H = n0.6, Hz = n0.5 (c) β2t: H = n0.6, Hz = n0.6

Figure 10: Empirical coverage probability of 95% confidence intervals for βt in (8.8). Sample
size n = 1500.

(a) β1t (b) β2t

Figure 11: RMSE of βt in (8.8). Sample size n = 1500. Bandwidth parameters H =
n0.6, Hz = nh, h = 0.4, 0.5, 0.6, 0.7.
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