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Abstract

This paper explores a semiparametric version of a time-varying regression,
where a subset of the regressors have a fixed coefficient and the rest a time-
varying one. We provide an estimation method and establish associated theo-
retical properties of the estimates and standard errors in extended for hetero-
geneity regression space. In particular, we show that the estimator of the fixed
regression coefficient preserves the parametric rate of convergence, and that, de-
spite of general heterogenous environment, the asymptotic normality property
for components of regression parameters can be established and the estimators
of standard errors have the same form as those given by White (1980). The
theoretical properties of the estimator and good finite sample performance are
confirmed by Monte Carlo experiments and illustrated by an empirical example

on forecasting.
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1 Introduction

Many empirical studies in applied economics and finance rely on regressions with sta-

tionary or mixing covariates. The literature on structural change in regression param-



eters is vast. A more recent strand of research turns the attention to regression space.
The investigation of regression space that permits estimation and inference on regres-
sion models with fixed or stochastic parameters, has received increasing interest, see
e.g. Phillips, Li, Gao (2017), Hu, Kasparis, Wang (2024), and Giraitis, Kapetanios, Li
(2024) and references therein. Phillips, Li, Gao (2017) study extensions of regression
modelling to non-stationary region for I(1) covariates, and theoretical framework in
Hu, Kasparis, Wang (2024) allows for a wide range of stationary regressors, which can
be strongly dependent, non-mixing and may exhibit long memory. Giraitis, Kapetan-
ios, Li (2024) contribute by shifting the focus from structural change in parameters
to regression covariates which is a new addition to regression literature. They show
that regression space permits both a stationary covariate 7, and its linear transform
e + gim; when the shift p; and the scale g; variables are independent of 7;, and other
assumptions on f, g; are minimal. Such covariates still allow building confidence inter-
vals and estimation of standard errors for components of regression parameter (fixed

or time-varying).

The time series and regression modelling with deterministic smoothly varying pa-
rameters has a long pedigree in statistics, starting with the work of Priestley (1965)
and has been followed up by Robinson (1989), Robinson (1991), Dahlhaus (1997), Chen
and Hong (2012) and others. This approach, while popular in statistics, has been less
prominent in applied macroeconometrics where random coefficient models dominate,
see e.g. Muller and Watson (2008), Kapetanios and Yates (2008) and Muller and Peta-
las (2010). The estimation of locally stationary time series models with deterministic
parameters is well investigated, see e.g. Dahlhaus and Giraitis (1998). Building on
previous work, Giraitis, Kapetanios, and Yates (2014) have developed a framework for

the estimation of time series models with smoothly-varying stochastic parameters.

A number of tests for the presence of parameter breaks exist in the literature, see
Chow (1960), Brown, Durbin, Evans (1974), Ploberger and Kramer (1992), and for on
going smooth change, see Kristensen (2012), Chen and Hong (2012) and Chen (2015).
Testing for change of time varying deterministic parameter was investigated in the

recent work by Hu, Kasparis, Wang (2024).

This research builds on our previous work, Giraitis, Kapetanios, Li (2024), on
Robinson (1988) who introduced semiparametric regression modelling and Kristensen
(2012) who provided parameter estimates and a test for stability of time-varying pa-
rameter in regression model. This paper contributes by developing estimation theory
for partially time-varying regression (PTVR) model in extended for heterogeneity re-

gression space. PTVR methods allows simultaneous estimation of the fixed regression



parameter (with parameteric rate) and time-varying parameter (with non-parametric
rate) which can be deterministic or stochastic. Simultaneous estimation of regression
parameters requires smooth evolution of the time varying parameter and scale factors.
This leads to significant challenges and differences from Giraitis, Kapetanios, Li (2024),
where regression models with fixed and time-varying parameters were considered sep-

arately.

We show rigorously that the PTVR estimates of a single component of parameters
have desirable theoretical properties of consistency and asymptotic normality. Under
our general framework, this requires significant technical effort. Further theoretical
and methodological contribution is showing that the estimators of the robust standard
errors have the same form as those given by White (1980), and in earlier work by Eicker
(1963). The conditions we use are rather weak. Under general heterogeneity covered
by our regression setting, stochastic parameters, regressors and scale factors require
8-th moments, no mixing assumption is used and regressors can take a very general
non-stationary form. It is worth noting that a model specification in Kristensen (2012)
uses non-stationary mixing covariates, and mixing assumption is common in modelling
smooth structural change, see e.g. Chen and Hong (2012), Giraitis, Kapetanios, and
Marcellino (2021) and Dendramis, Giraitis, and Kapetanios (2021).

The paper is structured as follows. In Section 2, we present the main results. In
Section 3 we use Monte Carlo simulations to show that the theoretical properties extend
to finite samples. Section 4 provides an empirical illustration and Section 5 concludes.

Proofs and further simulation findings are provided in the Online Supplement.

Below —,4, —, stand for convergence in distribution and probability. We use notation
||A|| to denote Frobenius norm of a matrix A. We will write a,, =<, b, if a, = Op(by)
and b, = O,(ay,).

2 Partially time-varying regression

In this paper we discuss the estimation of a partially time-varying regression model

(PTVR) for a univariate variable
vy =a'ri+ Bz +ug, t=1,....,n, (1)

which combines a regression model with a fixed parameter and a regression model

with a time-varying parameter. Regressors in (1) can be divided into two groups,
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2y = (14, .., vq) and 2z, = (21, .., 2pt)’, Where regression parameter a = (aq, .., )" at
x is fixed and regression parameter 5; = (B, .., Bpt) at z; is time varying. We suppose
that the regression noise u; is serially uncorrelated. Other assumptions on z;, z; and

u; will be specified later.

The setting of our PTVR model is indebted to innovatory work by Robinson (1988)
on y/n-consistent semiparametric regression and also hinges upon semiparametric anal-
ysis and regression settings by Kristensen (2012) and Fan and Huang (2005). It allows
for general heterogeneity in regressors and noise and structural change of time-varying

regression coefficient over time.

Our research builds on the recent work by Giraitis, Kapetanios, Li (2024) which ex-
tends the existing literature on regression estimation in two directions. Firstly, it shows
that regression estimation of fixed parameter remains valid in very general heteroge-
nous environment, and under weak conditions it still permits developing asymptotic
theory, computation of robust standard errors and building confidence intervals for a
single component «ay, of the fixed regression parameter . Secondly, it shows that the
same general environment allows point-wise kernel estimation of the components [
of time-varying parameter ;. [(; is assumed to be smoothly-varying and it can be

stochastic or deterministic.

In this paper, we focus on simultaneous estimation of the fixed parameter o and
time-varying parameter ;. Our objective is to outline the setting and develop a prac-
tical estimation procedure, where at once the fixed parameter can be estimated with
parametric rate, the time-varying parameter with non-parametric rate, the asymptotic
normality for components of parameters can be established and the standard errors
computed. Simultaneous estimation requires slightly stronger assumptions in compar-
ison to Giraitis, Kapetanios, Li (2024). Nevertheless, it offers practical estimation of
partially time-varying regression model (1) for regressors under very general types of
heteroskedasticity. Our primarily interest is also developing a rigourous estimation
theory equipped with complete proofs. Although this requires considerable technical
effort, it notably validates and extends the use of partially time-varying regression

modelling in applied work.

First we derive closed-form OLS estimators for simultaneous estimation of o and f;

in partially time-varying regression model (1). Introduce notation of a time-varying

fj\t,a = (z": bnvtjzjz;> - ( z": bnti2i(Y; — o/xj)> (2)
P =1

of B; based on y; — o’x;. Assumptions on the weights b, ;; will be specified below.

estimator
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We define the OLS estimator @ of « as the minimizer of the following objective

function:
n

a=argmin L(«), L(a)= Z (yp — &'y — Bg,aztf.

@ t=1
We obtain the estimator Bt of ; by setting Bt = B\t,& in equation (2).

Introduce notation

Bzx,t = Sz_zl,tszoc,ta 5zy,t = Sz_z%tszy,tv (3)

where
Szz,t = Z bn,tjzjzé‘a Szx,t = Z bn,tjzj$;7 Szy,t = Z bn,tjzjyj' (4)
j=1 j=1 j=1
Lemma 2.1. The estimators @ and Bt = Et@ of a and By in (1) take the form:

3 = (D Baczd = Fa)) (= P 4. )

t=1 t=1

B (Chs4) (bt — @), ©)
p =1

These are closed-form estimators for the fixed parameter o and time-varying parameter
B¢ and they are easy to compute. The proof of Lemma 2.1 is given in the Supplemental
Material.

Assumptions. Regression noise variables
ug = hyey, (7)

are uncorrelated and can be written as a product of a stationary martingale difference
noise {g;} and a stochastic or deterministic scale factor {h;} which is independent of

{e:}. More specifically, they have the following properties.

Assumption 2.1. {&;} is a stationary martingale difference (m.d.) sequence with

respect to some o-field filtration F;:
]E[Et|ft71] = 0, EE? =1.

{e:} is independent of {h;}. Moreover, variable €1 has probability distribution density



f(z) and f(z) < ¢ < oo when |z| <z for some xy > 0.

The information set F; will be generated by the past history F; = o(es, 25, s < t) and

possibly other variables.

We postulate that regressors x; = (14, ..., 2qt)", 2t = (214, ..., Zpt)’ can be written as a

product of a scale factor and a stationary process: for k=1,...,qand j =1, ....p,

Tkt = YGaktNakit, Zjt = 9z tNzjt, (8)

/ / :
where 7,0 = (Ma1ty s Nagt)'s Met = (Mot - Map) are stationary sequences, and g, =

(Gz1ts ooy Gugt)'s Got = (Gz1ts -, §ope)” are deterministic or stochastic scale factors.

We assume that {g., g.¢, hi} are independent of {1, 7.+, €} and sequences 1., 7.4

in (8) may have non-zero mean.

Definition 2.1. We say that a (univariate) covariance stationary sequence {&} has
short memory (SM) if > "p> __ |cov(&n, &o)| < oo.

This setting becomes workable by imposing the following assumptions on stationary

sequences {1}, {n.¢}, scale factors and time-varying parameter ;.

Assumption 2.2. 0y = (Ma1ts o Nugt)s Mot = (Matgy ooy Nept) are Fi_y measurable

sequences, E[ngk,t] =1, E[ngﬁ] =1 and E[n§k7t] < 00, E[nfj,t] < 00, E[}] < oo.

(1) {Mat}s ANkt ts {Maktnzos}s {MekaNues} and {nw.Mues} are covariance stationary SM
sequences.

(i1) E[n.an.,| = X.. is a positive definite matriz.

The scale factors in (8) are smoothly varying in the following terms.

Assumption 2.3. (i) The scale factors hy > co, guks > Co, Gzt > Co are deterministic
or stochastic random variables bounded away from 0 by co > 0, and Eh? < C, Egﬁm <
C, ngj’t < C" where ¢y, C' do not depend on t,n,k and j.

(ii) For some vy; € (3/4,1], fort,s=1,..,n,

t—s t—s
(Bllgee — 07 < () il — gy < o2

where C' < 0o does not depend on t,s and n.



The triangular arrays of scale factors hy = hpnt, Got = Gnat, 9ot = Gn. May vary with
n. We skip the subindex n for the brevity of notation. Assumptions 2.2 and 2.3 imply
that

Euf <C, Ellz|f<C, El«lf<c, (10)

where C' < oo does not depend on t,n. Triangular arrays of parameters §; = [,

t =1,...,nin (1) are deterministic or stochastic processes. They satisfy the following
property.

Assumption 2.4. For some v, € (3/4,1],
t— S|\~
Bl -l < o0 ms <o ts=tn ()

where C' < oo does not depend on t,s and n.

It is worth noting that no restrictions on dependence between scale factors g., g.¢, hs
and the time-varying parameter (; are imposed and no smoothness restrictions on
the scale factor h; in regression noise u; = hyey are required. In Kristensen (2012),
regression space is limited to deterministic and smooth h; and h; needs to be estimated
from the data. In addition, he imposes the assumption that E[e?|z, 2] = 1 which
restricts mutual dependence between &, and 7., 7.;. As a consequence, estimation
procedures suggested in Kristensen (2012) are not robust to heterogeneity permitted

by our regression space.

In the estimation of the regression parameters we use the following weights:

b.tj = K(%). (12)

We suppose that the kernel function K on its support satisfies the following property:
for some d > 4 and C < o0,

K(z) < C(14zH7, |(d/dz)K(z)| < CA+zH)7t, z>0. (13)

Examples of kernel weights satisfying this assumption include the flat kernel, K(x) =
(1/2)I(|z] < 1) and Gaussian kernel, K (z) = (1/y/2m)e *"/2.

In the estimation of the fixed parameter o we assume that B\m’t, B\zy,t in & are computed
with the bandwidth H that has the property that

n® < H=0(n*?, a>1/2. (14)
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Subsequently, the estimator B\t in (6) can be computed using the weights b,,;; either
with the same bandwidth H as in @ or with a different bandwidth H, — oo, H, = o(n).

2.1 Estimation of the fixed parameter

This section contains results on estimation of the fixed parameter a = (as, ..., ;) in
partially time-varying regression model (1) by the estimator @ = (@, ..., @) given in

(5). This estimators can be written as
a= S;A@ng’yvz (15)

using notation

~ ~
~

Uy = T — ﬁ;x,t'zta lext =Yt — 5,lzy,tzt7 (16)
Sto = Z?:lﬁti]\;7 S@ﬂx = Z?:l i)\t@;ct'

The fact that we allow for a very general regression setting rules out standard asymp-
totic normality theory results that are common in regression literature. However, we
show that this setting admits estimation of a single component a4, of the fixed parame-
ter a = (o, ..., ). We show that the asymptotic normality property for the estimator
a, of the component «4, can be established which allows to build confidence intervals

for oy,.

We need an additional assumption. Denote

Ve = ot — EMuel ) (B2m]) ™ 0z (17)
Assumption 2.5. (i) For any k,{, the products wy = N.p4Mzee and Wy = NupNeer have
the following properties:
(1) {2}, {wie?} are covariance stationary SM sequences.
(ii) E[1nvy] is a positive definite matriz.

(7ii) There ezists a sequence m = m, = O(logn) such that for j,i >t +m,

Elw;|F] = Elw] 4+t (Erp, )V* < Cn?, (18)
Elwjwi|F] = Elwjw] + rmegi,  (Brk, ;)Y? < Cn™2,

where C' < oo does not depend on j,i,t and m.



Remark 2.1. Observe that under Assumption 2.2, the components of v, = (v1, ..., Vgt)’
and of v, = (V) are a covariance stationary SM sequences. Moreover, under As-
sumption 2.5, the product w; = v, .0, of components of v, also satisfies Assumption

2.5, and wye? is a covariance stationary SM sequence.

Remark 2.2. Stationary processes 7,; and 7,; satisfy Assumption 2.5(iii) in the fol-
lowing cases: (i) {n.t}, {n.+} are mutually independent of {&;}.

(ii) 1.5, N are independent of e, for j,7 >t + L for some L > 0.

(iil) {n.+}, {nwt} are stationary linear processes as in Lemma 2.2 below.

To describe the standard error in the estimation of component «; of the parameter

a = (o, ...,a,) we introduce additional notation:

v = a — Bl F(Elzez | Fl) e
va - Z?:l UtU£7 vauu = Z?:l Utvguga
Qo = (ElSwl Ful) T ElSvoua FR) (E[Suul Fi]) ™ = (wiik) (19)

where F = a(ht, oty Gzt t =1, ..., n) is the information set generated by scales.

The next theorem focuses on estimation of components of the parameter o =

(041, e aq), and derives the asymptotic normality property for the estimator aj of «y.

Theorem 2.1. Suppose Assumptions 2.1-2.5 are satisfied and (14) holds.

Then, the t-statistic for the parameter oy, k =1, ...,q has property:

ak_ak

— 0,1 = n Y2 20
\/U.)_kk dN( ) )7 Wk-k Pn ( )

In practical applications, the standard error ,/wir can be estimated by the diagonal
element v/, of the matrix

Qo = S SwoaaSe = @), W =y — @'y = Bz (21)
The estimator ﬁA’t using residuals u; is computed with the same bandwidth H as in
estimator a.
Corollary 2.1. Under the assumptions of Theorem 2.1, for k =1,...,q,
Wik

—— 3 N(0,1), — =1+0,(1). (22)

WLk Wk

ak_ak



This result allows to compute robust standard errors and build robust confidence in-

tervals for the components «;, of a.

The estimator of robust standard errors ﬁam has the same form as the estimator
for heteroskedasticity-consistent standard errors by White (1980). When regressors x;
and z; are stationary processes and {u;} is an i.i.d. noise independent of {zy, 2}, Qa,n

can be replaced by
af) =5:4,62, 2=n"'> a2 (23)

Unlike ﬁa,t, this estimator (23) is not robust to presence of heterogeneity in data, see

examples in the Monte Carlo study in the Online Supplement.

The following lemma provides conditions when a stationary linear process satisfies

Assumption 2.5(iii).

Lemma 2.2. Suppose that components of N = (Na1ty s Nagt) and Nt = (Na1ty s Napit)’

are stationary linear processes

Nekt = Z botei& ok t—is Neet = Z butilett—i (24)
=0 i=0

with exponentially decaying weights b,y ;, by i:

{&ki}s {&ei} are uncorrelated stationary noises with the 8-th finite moment, and C, p
do not depend on k,l,i. Suppose that F, = o(es, s < t) and variables &,y ;, Epei are
independent of e, e, 1, ... when i >t + L for some L > 0. Then Assumption 2.5(iii)
holds with m = blogn for large enough b.

The estimation of PTVR parameters in Theorem 2.1 requires smooth change of scale
factors ¢.x, gok¢ and time-varying parameter [3;, see Assumptions 2.3 and 2.4, and no
smoothness restrictions on the scale factor h; in regression noise u; = h;e; are imposed.

Typical examples of smooth deterministic or stochastic change are as follows.

Example 2.1. A deterministic sequence g, = f(t/n), t = 1,...,n, where f(-) > 0 is
a Lipschitz smooth function, |f(x) — f(y)| < Clz — y|” with parameter v € (1/2, 1],
has property |g: — gs| < C(|t — s|/n)?, and is a standard example of is a scale factor

satisfying smoothness assumption (9) with parameter v € (1/2, 1].
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An example of stochastic smoothly varying scale factor is a stochastic process

t
gt:n_V‘Z§j|> tzla"'vna
j=1

where {{;} is a stationary ARFIMA(0, d,0) process with parameter d € (0,1/2) and
zero mean, see e.g. Chapter 7 in Giraitis, Koul and Surgailis (2012). It satisfies

smoothness property (9) with v = 1/2 + d. Indeed, then for t > s,

|9t — hs] = n77 ‘ 22:1 éj‘ - ‘ Zj‘:l f]‘ <n7| Z;=s+1 f]’

< ([t =sl/n)|Sesl, Sis=({—s)7 Z;:s—&-l &j-

If ARFIMA process is generated by i.i.d. innovations with p > 2 finite moments, then
by stationarity and Propositions 4.4.3 and 3.3.1 in Giraitis, Koul and Surgailis (2012),

E|Sys|P = B|Si—sol” < (BSE 0" < C.

Then, (E|g, — g|?)"/? < C(|t — 5|/n)” where C' < oo does not depend on ¢, s and n.

2.2 Estimation of the time-varying parameter

This subsection outlines results on estimation of the time-varying parameter g; =
(Bits -, Bpe)' in partially time-varying regression model (1). The estimator Bt = (Blt, s Bpt)’
given in (6) can be written as

B = S48, (26)

2z,

using notation:

_ n / _ n ~ ~ _ !
Saat =D i1 bngizi%s Sagt = D i1 bntjzi¥egy  Yaj = Y5 — X0 (27)

We compute the weights b, ;; in the estimator Bt with bandwidth parameter H, — oo
which can be different from the bandwidth H used in the estimation of the fixed
parameter «. The bandwidth H, satisfies H, = o(n), H, — oo. It is required to satisfy

assumption (14) only in the estimation of standard errors in Corollary 2.2.

We consider the point-wise estimation of components [3;; of the parameter vector
By for t = 1,...,n. In particular, we derive the asymptotic normality property and

estimation procedure for standard errors for the estimator B\kt of B at time t.

11



Standard errors for the estimator Bkt will be described using the diagonal elements
wpkk¢ of the matrix

Qpe = (B[Seal F2) T ELS

)

— 2 / 2
Sezunt = 21 bngj??

n](E[Szz,tLF;])_l = (ij,t), (28)

In the next theorem we establish the consistency rate and the asymptotic normality
property for estimation of the component (;; of the time-varying parameter 3; by the

estimator Ekt in partially time-varying regression model (1).

Theorem 2.2. Suppose assumptions of Theorem 2.1 are satisfied. Then, for 1 <t =
t, <nand k=1,...,p, the following holds:

B\kt Brt = O ( P4 (Hz/n)w)- (29)

Moreover, if H, = o(n?2/?2+1)  then;:

Bkt Bkt —1/2
—4 N(0,1), Wrke =p H Y2 (30)
Wkt ’

Furthermore, the unknown standard error ,/wgr, in the normal approximation above

can be estimated using the diagonal element Wy of the matrix:
Qpe = S24SeaaaeSTh = D), Uy = y; — d'z; — Bz, (31)

Corollary 2.2. Assume that bandwidth H, satisfies property (14). Then, under as-
sumptions of Theorem 2.2, for k=1, ..., p, the following holds:

5kt Bt Ly N(0,1) Wk

Y )
\/wkkt Wkt

Computation of standard errors y/@Wy; in estimation of partially time-varying model is

=1+ 0,(1). (32)

straightforward. The estimator Q/B’t of robust standard errors in (31) is a time-varying

version of heteroskedasticity-consistent standard errors by White (1980).

The robust estimation of standard errors by Q/B’t differs from the standard estima-

12



tion by
Q(ﬁs? - (K2,t/Kt)Sz_z%t 357 Go=n" u; uj =y; —a'w; — fz, (33
KQ,t = Z?:l biyw Ky = 2?21 bn,tj'

Estimator (33) is applicable when regressors are stationary processes and independent
of regression noise u; which is a stationary martingale difference noise. It is not robust
to heterogeneity, and fails to estimate standard errors under heteroskedasticity settings,

see examples considered in the Monte Carlo study in the Online Supplement.

3 Monte Carlo study

In this section, we use Monte Carlo simulations to examine the theoretical properties of
the estimators of parameters of the partially time-varying regression model, established
in Section 2. The theory shows that the fixed parameter o can be estimated with the
parametric rate y/n and the time-varying parameter 3; with a non-parametric rate
which is slower than /n. In particular, we explore the validity of the asymptotic
normality property of t-statistics established for the components of parameters o and
By in finite samples and its robustness to heterogeneity. We consider a variety of scale
factors, noises and time-varying parameters (; allowed by our model setting, see also

Section 8 in the Online Supplement.

The simulations confirm the validity of our theoretical results. The estimators show
good finite sample performances, reveal robustness to heterogeneity under different

regression settings and confirm the ease of practical application.

We set the sample size to n = 1500, conduct 1000 replications, and use the bandwidth
H =n"and H, = n", h = 0.4,0.5,0.6,0.7. (Estimation results for n = 200, 800 are
available upon request).

3.1 Estimation of PTVR model

We generate arrays of samples y;, t = 1,...,n of a partially time-varying regression

model

Y = QX + ﬁézt + U, U = htgt (34)
= Bu+ar; + Bayza + uy,

13



with a fixed parameter av = 0.5, time-varying parameter 3; = (01, B2:)" and regressors

2z = (1, z94)', where 1, = 0.5sin (wt/n) + 1, t =1,...,n is a time-varying intercept.

The regression noise u; = hye; is a product of an i.i.d. A(0, 1) noise &; and a determin-
istic scale factor
hy = 0.5sin (0.87t/n) +1, t=1,.. n. (35)

The regressors {x;} and {zy} are univariate, and are products of scale factors g.¢, .

and stationary MA(1) processes My, 1.1,

Ty = GutNats Net = 0.2 4+ €44 + 0.5€5 41, (36)
2t = 92Nt Nt = 0.2+ €, +0.5€, 41,

where {€,;}, {€.¢+} are mutually independent i.i.d. A(0,1) noises and mutually inde-
pendent of {g.t, g.+}-

We consider two cases of scale factors g4, 9., t =1,...,n:

Deterministic : ¢, = 0.5sin (0.37¢t/n) +1, ¢, = 0.5sin (0.47t/n) + 1, (37)

t t
Stochastic:  gn = |n~"? va| +0.2, gu=n" szi| +0.2, (38)

i=1 =1

where {v;;}, {v.;} are stationary ARFIMA(0,d,0) processes with memory parameter
d=0.4.

We centre on two cases of time-varying parameter [;:

Deterministic : o = 0.5sin (0.57¢/n) + 1, t =1,...,n, (39)
t
Stochastic :  fg = [n77 Z e;| +0.2, (40)
i=1

where e; is an ARFIMA(0, d,0) process with parameter d = 0.4.

The stochastic processes g.t, g.+ in (38) satisfy the smoothness assumption (9) with pa-
rameter v; = 0.5+d = 0.9, and the stochastic parameter s in (38) satisfies smoothness

assumption (11) with parameter v = 0.5 + d = 0.9, see Example 2.1.

We consider two partially time-varying regression models. Model 3.1 combines de-
terministic scale factors and time-varying parameter [, while Model 3.2 is based on

stochastic scale factors and So;.

Model 3.1. y;, t = 1, ..., n follows model (34) with deterministic scale factors {gut, .+ }

14



as in (37) and parameter By as (39).

Model 3.2. y, t = 1,...,n follows model (34) with stochastic scale factors {gut, g.¢}
as in (38) and parameter B as in (40).

More complex simulation examples, that verify the robustness of our estimation and

inference approach, can be found in the Online Supplement.

We start with the analysis of the deterministic setting of Model 3.1. Table 1 reports
the bias, RMSE and coverage rate (in %) for 95% confidence intervals for the fixed
parameter . The estimation results confirm the good performance of the PTVR
estimation method for the fixed parameter «, achieving small bias, RMSE and good
coverage rates for bandwidth H = n%% and H, = n%* n®® ..., n%7. We find that PTVR
estimation shows little difference over combinations of H, H,. So, in PTVR estimation
of parameters «, one can consider pre-selecting H, e.g. in this simulation study we set
H = n%5. The impact of H, on the quality of estimation of « is also minimal. Hence

in estimation of o once could set H = H. as recommended by the theory.

Table 1: Estimation of « in Model 3.1. Table 2: Estimation of o in Model 3.2.

h Bias RMSE CP SD h Bias RMSE CP SD

0.4 0.00014 0.02735 94.6 0.02735 0.4 0.00017 0.06834 93.5 0.06834
0.5 0.00017 0.02679 94.1 0.02679 0.5 0.00021 0.06736 94.1 0.06736
0.6 0.00025 0.02645 94.5 0.02645 0.6 0.00020 0.06690 94.3 0.06690
0.7 0.00025 0.02639 94.2 0.02639 0.7 0.00035 0.06660 94.3 0.06660

Figure 1 displays point-wise estimation results for parameter ; for a single sample
of Model 3.1 for the bandwidths H = n%% H, = n%5 and sample size n = 1500. It
reports the true parameters f3; (blue solid line), the estimates Bt (red solid line) and
their point-wise 95% confidence bands (gray dash lines). The first row of panels reports
estimation results for the deterministic time-varying intercept 81;. The 95% confidence
band covers (31; and the estimator Blt follows closely the path of the true intercept (y;.
The time-varying parameter (s, is also covered by the 95% confidence interval almost
everywhere and the estimator B\Qt tracks the changes in ;.

The three panels of Figure 1 (a) (b) (c) spell out the importance of selection of H, in the

estimation of time-varying parameter 3,. For H, = n®4 n0?

n%C the true parameter
B; is well-covered by the 95% confidence bands including the end points. However,

the confidence intervals become unstable over the time and wide, for small bandwidth
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H, = n%*. As the bandwidth increases, the paths of the estimates Bt become more
and more smooth, and the confidence bands for 5; become narrower. In addition, we

also find that confidence bands for the time-varying parameter ; are wider than for a

fixed parameter a.
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Figure 1: Robust 95% confidence bands for time-varying parameters (31, B2; in Model
3.1: n = 1500, bandwidth H = n%®, H, =n" h =0.4,0.5,0.6. Single replication.
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Figure 2: Coverage rates (in %) of robust 95% confidence intervals for time-varying
parameters (314, Bo; in Model 3.1: n = 1500, bandwidth H = n%®, H, = n" h =

0.4,0.5,0.6.
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Figure 2 displays the empirical coverage rate (in %) of 95% confidence intervals for
time-varying parameter 5; in Model 3.1. It allows the evaluation of the validity of the
asymptotic normal approximation for components of the parameter f3; in the point-wise
estimation of (; by B\t for sample size n = 1500. The bandwidth H = n%% is fixed.
For example, it shows that in panel (b), the coverage rates are close to the nominal
95%. Estimation with H, = n°® achieves slightly better coverage rate than with
H, = n%*, and we see more coverage distortions when H, = n"® which is consistent
with our previous finding that the confidence intervals become narrower in estimation
with larger bandwidth.

The bias of the PTVR estimator Bt is close to zero, and the RMSE becomes smaller

as H, increases. (These results are available upon request).

The second Model 3.2 focuses on the stochastic setting. Again, we pre-select the
bandwidth parameter H = n%%, in estimation of the fixed parameter o. Table 2 reports
estimation outcomes for the fixed parameter o which confirm good performance of the

PTVR estimator & and excellent coverage rate for 95% confidence intervals.

Figure 3 displays PTVR estimation results for the time-varying parameter (; for a
single sample from Model 3.2 for bandwidth parameters H, = n%* n%5 n%6. The 95%
confidence intervals cover the path of the true parameter [3; for most of the times, and
the estimator Et tracks the path of f;.
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Figure 3: Robust 95% confidence bands for time-varying parameters (314, 82; in Model
3.2: n = 1500, bandwidth H = n®®, H, =n" h =0.4,0.5,0.6. Single replication.
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Figure 4 displays empirical coverage rate of 95% confidence intervals in PTVR estima-
tion of the time-varying parameter 3, in Model 3.2. With bandwidth H, = n®®, the
coverage rate is very close to the nominal 95%. Figure 5 shows that the RMSE is small
and becomes smaller when bandwidth increases. However, the RMSE can rise when

there is a lot of variability in (;.
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Figure 5: RMSE for time-varying parameters (1, 8o, in Model 3.2: n = 1500, band-
width H = n®%, H, =n" h=10.4,0.5,0.6.
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3.2 Forecasting using PTVR model

In this section we consider a forecasting exercise using four competing methods, in-
cluding a PTVR model. We generate a sample yq, ..., y, of n = 1500 observations from
the PTVR model given by

yt:axt+5tzt+ut7 t:17 y 1, (41)

with fixed parameter o = 0.5, time-varying parameter §; = (1/2)sin (27t/n) + 1, and
i.i.d. N(0,1) noise u;. The regressors z; = 0.5z, 1 + Ny and 2z, = 0.7z,_1 + n,; are
stationary AR(1) processes generated by uncorrelated noises 7,y = vy + vsy, Mo =
va+ + v3; which are cross-correlated, where {vy:}, {va:}, {vs:} and {w;} are mutually
independent i.i.d. A(0, 1) noises.

To compute the 1-step ahead forecast yy;—1 of y;, we use the fitted PTVR model
Yt = QL1 + Bi—12-1,

where parameters «, ;1 are estimated using yq,...,y:—1. We compare this forecast
with forecasts ;1 obtained using a method where all parameters are estimated as
time varying (FTVR), the OLS method where all parameters are estimated as fixed,
and an AR(1) forecast.

To evaluate the quality of the forecast, for each method we conduct in-sample

forecasting of y; by Y1 for t = to,...,n and evaluate mean square forecast error

(MSFE):

n

Z (ye — @\tlt—l)Q-

t=to+1
In our simulation, ty = 750. We will use MSFE to determine the best forecast method

and bandwidth H that minimises forecast error. For each forecast method, we compute
also the MSFE ratio :MSFE/MSFEPTVR

MSFE =

n—to

Table 3 reports MSFE and MSFE ratio results for all four forecasting methods and
bandwidths H = H, = n%* n%® n%® n%7 Regardless of bandwidth, the PTVR and
FTVR methods produce a smaller forecast error than OLS and AR(1), and achieve the
smallest MSFE at H ~ n%% n%6 which is close to 1, or the variance of the regression
noise u;, which suggests high quality for the forecast. The MSFE ratio for the FTVR
method is close to 1, which implies that PVTR and FTVR methods are comparable.
They produce significantly better forecasts than the remaining two methods, OLS
(ratio > 1.5) and AR(1) (ratio > 3).

19



Table 3: MSFE and MSFE ratio

Bandwidth PTVR FTVR OLS AR(1)
MSFE 1.101 1154 1.788 3.454

H = nb* :
MSFE (ratio) 1 1.048 1.642 3.137
o MSFE 1.078  1.108 1.788 3.454
H=n"" " MSFE (ratio) 1 1.028 1.659 3.204
MSFE 1.081  1.097 1.788 3.454

H = n®¢ -
MSFE (ratio) 1 1.015  1.654 3.195
MSFE 1.133 1140 1.788 3.454

H=n""" \[SFE (ratio) 1 1.006 1.578 3.049

To further evaluate the optimal bandwidth H for the PTVR method, we plot the
MSFE for a grid of bandwidths H = n%% n%! .. n%% n. Figure 6 shows that the
PTVR forecast achieves the smallest MSFE at H = n?%.

1.8
1.6
1.4+

1.2}

1
0 0.2 0.4 0.6 0.8 1

Figure 6: MSFE for PTVR method, H = n”, h on the horizontal axis.

4 Empirical illustration

In this section, we assess the performance of the PTVR forecast when applied to a set
of U.S. macro-economic variables. Our purpose is not to construct the best forecast
method for this particular data set, but to examine the usefulness of the partially
time-varying regression approach in an empirical forecasting context. The dataset
is composed of 8 quarterly time series spanning from 1949Q1 to 2018Q4. Data are
obtained from the Federal Reserve Economic Database of St. Louis Federal Reserve

Bank. All variables are transformed following standard practice (see Stock and Watson
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(2012)) and are described in Table 4. In this experiment, we use the PTVR approach
for one-quarter-ahead forecasts of Real Gross Domestic Product (GDPC1).

To evaluate the quality of the PTVR forecasts, we start forecasting at time t; = 100

and continue until the entire sample is used.

Table 4: Data description

Variable Description Transformation form
GDPC1 Real Gross Domestic Product Alog z;
GPDIC1 Real Gross Private Domestic Investment Alog z;
PCEC96 Real Personal Consumption Expenditures Alog z;
PAYEMS All Employees, Total Nonfarm Alog x;
Average Weekly Hours of Production and

AWHMAN Nonsupervisory Employees, Manufacturing Ay
UNRATE Unemployment Rate A%g,

CPIAUCSL Consumer Price Index for All Urban Consumers A%log x,
INDPRO Industrial Production Alog x;

Figure 7 shows that the GDPC1 series we want to forecast exhibits different patterns of
fluctuation in different time periods. We first test for the presence of serial correlation
in y; (GDPC1) using standard and robust tests, see Giraitis, Li, Phillips (2024). Figure

8 confirms the presence of significant autocorrelation in GDPCI1.

6 — — Standard CB(95%) — — Robust CB(95%) WMl AC
- Standard CB(99%) - Robust CB(99%)
1-
41 08 -
0.6+
27 0.4+
02r
0 0
02- o
-2 04" I . 1 i ] i
0 50 100 150 200 250 0 5 10 15 20 25 30

Figure 7: Plot of series GDPC1 (y;) Figure 8: Correlogram for GDPC1 (y,).
(1949Q1-2018Q4)
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Figure 9: FTVR estimates B\t of regression parameters, H, = n%”.

Next, we use our partially time-varying regression model, PTVR, to regress the variable
of interest GDPC1, y;, on 8 regressors, which include a time-varying intercept, lagged
dependent variable y;_; and the remaining 7 variables from the Table 4 all lagged by

one period.

In order to divide regression parameters into fixed and time-varying sets, we first fit to
y; the FTVR regression model with regressors (all one period lagged) which estimates
all parameters as time-varying. Since the sample size n = 279 is small, we use a
bandwidth value of H, = n%7. In Figure 9, lines depict the paths of the estimates of
parameters of all regressors under consideration. We notice that the intercept, and the
coefficients at regressors GDPC1, GPDIC1, and UNRATE are almost constant. So, in

our PTVR regression we will treat these parameters as constant.

Subsequently, we fit to y; a PTVR regression model where the intercept and the co-
efficients of GDPC1, GPDIC1, UNRATE (one period lagged) are constant, and the
coefficients of the remaining regressors (one period lagged) are time-varying. Here

we use the same bandwidth for estimation of fixed and time-varying parameter, i.e.

H=H,.
Figure 10 presents the plot of residuals u; of PTVR regression. It shows that in

the first half of the sample, residuals have larger volatility than in the second one,
i.e. the variance of residuals is not constant. Figure 11 reports testing results for
correlation in residuals for this period. We find significant autocorrelation at some lags
at 5% significance level, and no correlation at 1% significance level. Comparing to the
correlogram of y,; in Figure 8, correllation in residuals is significantly reduced and the

noise u; in PTVR regression seems uncorrelated.
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To evaluate the quality of the forecasts, similarly to Section 3.2, for each forecasting
method, PTVR, FTVR, OLS and AR(1), we conduct in-sample forecasting over period
t =100, ...,279 and compute MSFE and MSFE ratio. (Here to = 100, n = 279). The

results are shown in Table 5.

2 — — Standard CB(95%) — — Robust CB(95%) Wl AC
- Standard CB(99%) - Robust CB(99%)

0.4

0 50 100 150 200 250 e s 10 s 20 25 30

Figure 10: Plot of PTVR residuals uy, Figure 11: Correlogram of u;, t =
H = n®7 101,---,279, H = n°7.
Figure 12 shows the plot of the MSFEs of the PTVR forecasts using a denser grid of
bandwidths. It is clear that the optimal bandwidth is around H = n°?8.
Overall, PTVR and FTVR methods produce smaller forecast errors compared with
OLS and AR(1), and PTVR performs somewhat better than FTVR. As the bandwidth
increases, the forecast MSE of PTVR and FTVR methods achieve their minimum
around H = n%®. Hence, H = n®8 can be a good bandwidth choice in this empirical

exercise and for these sample sizes.

Table 5: MSFE and MSFE ratio

Bandwidth PTVR FTVR OLS AR(l)
MSFE 0.178 0.198 0.143 0.198

H = no> .
MSFE (ratio) 1 1112 0.803 1.112
MSFE 0.151  0.165 0.143 0.198

H = nO.G .
MSFE (ratio) 1 1.093  0.947 1.311
. MSFE 0.140  0.142 0.143 0.198
H=n""" MSFE (ratio) 1  1.014 1.021 1.414
o MSFE 0.137 0.134 0.143 0.198
H=n""" \SFE (ratio) 1 0978 1.044 1445

oo MSFE 0.139  0.135 0.143 0.198
H =n""" MSFE (ratio) 1 0971 1.029 1.425
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Figure 12: MSFE of PTVR forecast for Figure 13: PTVR forecasts, H = n’®
H =n"
Figure 13 displays the plots of the last 50 true values of y; (GDPC1) and predicted
values ;1 forecasted using the PTVR method. The predicted values by PTVR (blue

solid line) and the true values (black solid line) are close and almost coincide.

5 Conclusion

In this paper we develop estimation and inference theory for a new general partially
time-varying regression model. The setting of the model permits for general heterogene-
ity in regressors and noise and structural change of time-varying regression coefficients
over time. The asymptotic estimation theory for this model has a number of novelties.
In particular, the fixed parameter can be estimated with parametric rate and standard
errors can be easily computed. Unlike the rest of the literature, we allow stochastic
scale and parameter processes. Our assumptions on scales, parameters, regressors and
noise are considerably milder that in previous work. The Monte Carlo study confirms
the excellent performance of parameter estimation and inference in finite samples and
in forecasting on simulated data. We present an empirical illustration, where we ap-
ply PTVR modelling to forecasting, leads also to promising results. The theoretical
and empirical findings of this paper demonstrate the clear potential of regression mod-
els that combine fixed and time-varying parameters. Future work can be focused on
methods that determine what subsets of regressors should have fixed or time-varying

parameters.
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This Supplement provides proofs of the results given in the text of the main paper. It
is organised as follows: Section 6 provide proofs of the main theorems. Section 7 contains
auxiliary technical lemmas used in the proofs. Section 8 provides some additional Monte

Carlo simulations which are not covered by the main paper.

Formula numbering in this supplement includes the section number, e.g. (6.1), and
references to lemmas are signified as “Lemma 6.#”, e.g. Lemma 6.1. Theorem references to
the main paper include section number and are signified, e.g. as Theorem 2.1, while equation

references do not include section number, e.g. (1), (2).

In the proofs, C' stands for a generic positive constant which may assume different values

in different contexts.

6 Appendix. Proofs

6.1 Proofs of Lemma 2.1 and Theorem 2.1 and 2.2

In this section we provide proofs of Lemma 2.1, Theorem 2.1 and Corollary 2.1, and Lemma
2.2 for the estimator @ of the fixed parameter «, and of Theorem 2.2 and Corollary 2.2 for

the estimator Bt of the time-varying parameter (;.

Proof of Lemma 2.1. We will find the minimizer & by solving the equation for the gradient,
VL(O‘)‘a:& =0.
Notice that Ew = Bzyﬂf — ﬁm,toz. )

Yt — .%'QCV - Z{fﬂt,a = (yt - Zéﬁzy,t) - (x,t - Zéﬁz@t)aa (6-1)



n

L) = 3 (—#4Bep) — (0}~ 4Per)a)

t=1

Hence,

VL(O() = —QZ ((yt - Z{sgzy,t) -

= _22 - z:ptzt

(l':t - Z{&ﬁzaz,t)a> (-T;t - Zzltﬁzx,t)/

ztﬁzy t + 2 Z - z:): tzt)(mt

which implies (5). The claim (6) follows setting o = @ in S 4, Bt = fra-

Proof of Theorem 2.1. Recall notation,

ﬁzz,t = Q;zltq,zx ty Qzzt = E[th,q]'—:;], Qzzt = E[thﬂfry;]’

6zz,t — Szztszx,ta
ﬁzy,t = Szztszyta

/
Szz7t = § bn,tjzjzja
=y

n
Szy,t = 5 bn,tjzjij

n
/
Sz:c,t = § bn,tjzjlija

z{t antj’Z]C]7

- B;m,tzt)/a7

where F' = a(ht, Gats Gots t =1, .oy n) is the information set generated by the scales.

Introduce the regression model

G

= 5;2’] + u;

with a dependent variable (; and time-varying parameter §;. Denote

Br =

zzt ZCt

the time-varying OLS estimator of parameter §; in model (6.4).

Set

Notice that we can write y; = o/z; + 8

Yj

s
= Yj — 2Bz
—_— . — / .
= Ty Bzx,jzﬁ

p— P / .
- x] Bzm,jz]'

'2j +ujin (1) as

= x;a + G-

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)



Therefore,

/Bzy,t = S_l Szy,t = S_l Szx,ta + S_l Sz(,t

zz,t zz,t zz,t

= /Bzx,ta + th-

Then

~

& =yj— 2By = {ja+ 2B +ui} — {2Bewjo + B}
= (25 — Blejzi) @+ uj + 25(Bj — Bj)
= Uja+u;+ 2585 — B)).

So, we can write the estimator &, given in (5), as

~ _ a-lg
a—SMSﬁé

VU

a+ S5 Sou+ S Ry, Rn=>_ 0;25(8; — B;)
j=1
= a+ Sy Sou + {555 Sou — Syut Svu} + S5 Ry, (6.8)

where

n n n
o~ ~ /
Sﬁﬁ = § Ut Vy, Sﬁu = § Vtut, Svv = § VU, (69)
t=1 t=1 t=1

n n
Sou = g VtUt, Sgg: E Vs
t=1 t=1

In (6.89) of Lemma 6.5 we show that
S5t S5 — Syt Suu = 0p(n~1/3),
and in Lemma 6.6 it is shown that SUA}}Rn = op(n_l/Q). Then,
a—a=2S8.1Su+o0,(n"1?). (6.10)

Observe that the OLS estimator & of parameter « in OLS estimation of fixed parameter in

the regression model
yi = a'vj+uy (6.11)
has property
a—a=58,"Sy —a=_S,"Swm (6.12)

where Sy« = > 1 vy;.



The regressors v; in (6.11) have the following properties, see (6.15). Denote

Ve = Mot — EMaenly] (Emzemy]) ™ 0z (6.13)

By (8), we can write

Tt = LgtNxt, Iy = diag(.qwl,t: ) gxq,t): (614)
2t = LMzt Iy = diag(gd,h --'>gzp,t)7

where {ng1+}, {125} are stationary sequences which may have non-zero mean. Hence,

v = @ — Blyyz = x — Blrz| Fy)(Blzz| Frl)~
= LaNat — IxtE{nxtnlzt]IztI;tl(E[ﬁztﬁlzt])_ll,;tlfztﬁzt
= L{net — Bt (EMmanle]) "z} = Lo,

Utvllf = Ixtytyjlﬁlxt' (615)

Under assumption of theorem, v; is a covariance stationary sequence, see Remark 2.1, and
the scale factor I,; is independent of {1,}. It is easy to see that regressors v; has similar
structure as x; and satisfy assumptions of the corresponding regression model (1) considered
in Giraitis, Kapetanios, i (2024). Theorem 2.1 together with Lemma 2.1 and Corollary 2.1

of that paper imply (20) and |/wik =<, n=1/2,

This completes the proof of the Theorem 2.1. ]

Proof of Corollary 2.1. We will show that

~

1(Qan — Qo) = 0p(1) (6.16)

)

which implies n(&@xx — wik) = 0p(1). By (20), wik <, n~ L. Therefore,

w Wil — w n(Wkk — w
N ek S (2 kk):1+0p(1).
Wik Wik NWek
This, together with (20) of Theorem 2.1 implies
ap — Wk Oy — O
k—Qk Wk Qp — Qg L N(0,1)

Vore  Vrke Vwrk
which proves the claim (22) of the corollary.
It remains to prove (6.16). Recall that

Qapn = (E[Sm)],F,’:])*lE[vadf;](E[Sw\.7::])’1 = (Wjk);

Fay -1 -1 ~ ~ ~/ o
Qan = Si5SwaaSy; = Wik), Ut =yt — dxe — Bz



By (6.56) and (6.55) of Lemma 6.3,
nSss = n(E[Su|Fa)) ™ 4+ 0p(1),  n(E[SwlFy]) ™" = Op(1).

By (6.61) and (6.60) of Lemma 6.3,
1" Ssoaa = 1 E[Svvuu] Fi] + 0p(1), 17 E[Sppunl Fii] = Op(1).

Then,

nQan = {nsv;;}{n_lsmﬂ}{nsﬁ%l}
= {n(E[vaLF;D_l + Op(l)}{n_lE{vauuu—;] + Op(l)}{(E[Sva;])_l +op(1)}
= TLQa,n + Op(l)

which proves (6.16). This completes the proof of the corollary. O
Proof of Theorem 2.2. By (1), y; = zja + 2}3; + u;. Denote by

G = Z},Bj + u; (6.17)

the regression model with a time-varying parameter. We can write

yj — @'z, {8 + u;} + 2j(a — @)
= ¢ +ai(a—a).

Then the estimator Bt in (6), with weights by, ;; computed using bandwidth H, can be written

as
R n 1 n
B = (D bawizizi) (D bagizi(y; — d'xy))
st i=1
n 1 n
= (D bniziz) T (D] batyzi (G + 2f(a— @)
=1 i=1
= Sz_zl,tSZC,t + S,z_zl,tszw,t<a —a)
= B+ S Swp(a—a), Br=521Scu (6.18)
Hence,
By — By = B — By + 84Sz i(a — Q). (6.19)
Bound
n
152 Szt (o — @) < ||ESZU NI Seal [l = 8ll, Kp = oy (6.20)
7=1
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By Theorem 2.1, ||a — @|| = Op(n~'/?). In (6.28) of Lemma 6.1 below it is shown that
||Kt5’;z{t|| = O,(1) and in (6.27) we show that || K; 'S...|| = O,(1). Hence, S;;tSzm(a—a) =
O,(n~"/2) which together with (6.19), yields

B — B = Br — Bi + 0,(n~Y?). (6.21)

Notice that H, = o(n) implies n-1/2 — O(Hz_l/Q).

Observe that the regression model (; = zg Bj+uj, (6.17), with a time-varying parameter 3;
is a special case of the corresponding regression model (18) considered in Giraitis, Kapetanios,
Li (2024) and Bt in (6.18) is a kernel estimator of time-varying parameter /3; which asymptotic
properties were established in that paper. Our model (6.4) satisfies assumptions of Theorem
3.1 in Giraitis, Kapetanios, Li (2024) which implies the claims (29) and (30) of our Theorem
2.2

This completes the proof of the theorem. O

Proof of Corollary 2.2. The proof follows the same pattern as in the proof of Corollary

2.1. For completeness, we include a detailed proof. It suffices to show that
H.(Qs0 — Qs.1) = 0p(1), (6.22)
Then, H,(Okkt — wrkt) = 0p(1) which together with (30), wyr =) H 1 implies

Orkt 14 Wkkt — Whkyt - H, (@t — Wikt)
Wk, t Wkt H,wpp s

=14 0p(1).

Together with (30) of Theorem 2.2, this verifies the claim (32) of corollary:

~ = z
Bkt/\ Bt _ vV Akk,t Brt — B Ny /\/(0, 1)'
v/ Wkk,t vV Wikt /Wkk,t

Next we verify (6.22). Recall that

Qﬁvt = (E[SZZ,t|}—;])_1E[Szzuu,t’frﬂ(E{SZZ,t ]_-;;])—1 = (ij,t)v
Qﬁ,t = S;zl,tszzﬂﬂ,ts,;zl,t = @jke), U=y —am— Bz

Let K; = Z}Ll byt where by, ;; are defined using bandwidth H,. Then, by (6.40), K; < H,.
By (6.29) of Lemma 6.1,

Ktszjt = Kt(E[Szz,t|f;])_1 + op(1).

By (6.63) and (6.62) of Lemma 6.3,

Kglszzﬁﬂ,t = KglE[Szzuu,t‘f;] + Op(l)a KglE[Szzuu,t’f:L] = Op(l)



Then,

K Qg = {KeS HE T S aa HEKS )
= {Ky(E[So2 il F)) ™ + op (D HEK  E[Szzunil ] + 0p(D)H(E[Sza| Fi]) ™ + 0p(1)}
= Kt Qﬁ,t —|— Op(l).

This proves (6.22) and completes the proof of the corollary. ]
Proof of Lemma 2.2. We prove the first claim in (19). (The proof of the secon claim is

similar.)

Clearly, it suffices to prove (19) for

[o@)
Wy = N21,jN:1,5 = E (21,1 A21,i5821 5 —i1 €21, —in -
i1,i2—=0

Denote
Cjivis = Qz1,i1 Qxlyins  Clinia = &21,j—ir&a,j—ia — Bl&a1j—i§a1,5—is)-
Then, we can write
o0

wj— Elwi] = Y ¢ininGiinia

i1,i2=0

Set m = blogn where b is such that b(logp)/2 < —8. Then p"/? = exp(b(log p)logn) <
exp(—8logn) < n~8. Write

m/2 9]
wj = Blws] = Y iiisGiia + ) CjiviaCjiria
11,12=0 i1,52=0:max(i1,i2)>m/2

+ .
Tnt,j T T'mt,j-

Under assumptions of lemma, for j > m and i1, — 2 < m/2, E[1 i &1,—in| Ft) =

E[gzl,j—ilgzl,j—lé] and hence, E[Cj7i1i2|ft] =0 and E[T;t,ﬂft =0.
On the other hand, EC;%Z-”Q < C where C < oo does not depend on j,41,%3. Hence, it is easy
to see that,
o0
4
Ermt,j < C Z ’CjailiZcj7i3i4cjvi5i60j:i7i8|
’i1,...,i8=0:i1>m/2
< C Z |az1,i|(z laz14])" < C Z Pt < Cp™? < On8,

i=m/2+1 i=0 i=m/2+1

This proves the first claim in (19): (Erﬁmj)l/4 < COn~ 2 O



6.2 Auxiliary Lemmas

This section contains auxiliary lemmas used in the proofs of Theorem 2.1 and 2.2.

Recall notation K; given in (6.20). Denote

sz,t — Kflszz,ty sz,t:Kglszx,ta (6'23)
Gzt = ElazFl, Guap = Elzy| Fy).

Lemma 6.1. Suppose that the assumptions of Theorem 2.1 are satisfied. Then for bandwidth
H such that H = o(n), H — oo, the following holds:

g < C. EllBeatll® < C,  Ellgeay|/* < C, (6.24)

El|Qust — @ong||* < C(H?m? + (H/n)*M), (6.25)

EHsz,t - q,zm,t|’4 S C(Hisz + (H/n)&n)v (626)

El|Quil|* < C, (6.27)

HQz_thH = O0p(1), fort=t,€{l,..,n}, (6.28)

2z t [sz t|f*] + Op(l)' (629)

where C' < oo does not depend on t,n, and m is the same as in Assumption 2.5 (iii).
In addition, if H satisfies assumption (14), then

tiTllaX ||sz,t - sz,tH = Op(l)a tnllax Hszt QZw,tH = Op(l)a (6.30)

tHi'laX Hsz,tH = Op(l) (631)

Proof of Lemma 6.1.

Proof of (6.24). Recall (6.14). By Assumption 2.2(ii), E[nun,] = Enan,] = X.: is a
positive definite matrix, so that [|3;.}|| < co. By definition of F,

Qzzt = [tht|]:]— ztE[nztnzt]Izt— ZtEZZIZtv (632)
Qezt = Elzzy|Fy] = Li BNy Lot = L B[N0y ) Lot

Observe that I, t = dlabg(gz1 to e .,gz_;t) and by Assumption 2.3, g, > co > 0for j =1,...,p
and all t. Therefore,

P
12 -2 -2
1L |]” = Zgzj,t <cp
i=1

Hence,

q;;t = st

zz *xt



_ _ _ — _92 _
el < MBI < e plIB2 0 < e < o0

zz,t —

where ¢ does not depend on t,n which proves the first claim in (6.24).

On the other hand, 3., ; = q;Zl’tqzm. Therefore, by (6.32),

/Bzac,t = {IztE[nztn,zt]Izt}il{IztE[nztn;ct]Ixt} = Iz_tlE[nztn,lzt]71E[77zt77;/nt]lxt7
1Bzl < N NS EMenpe | | et | < Cl[ Ll

A

where C' < oo does not depend on t. Thus,

E||Beail® < CE|L4|® <C,
Ellgzesll' = ElLiEnaan) Ll

IN

by Assumption 2.3(i) where C' < oo does not depend on t,n. This proves the second and
third claim in (6.24).

Proof of (6.25). (Proof of (6.26) is similar). Write

zj2; — Blaz|Fyl = {zi2) — Elzi 2| Fal} + {Elz; 25| Fl — Elzez Fpl}
= {Ljm.; — Emznl;D) sy + {Li Emani)lz; — LiEnan ) L}

By Assumption 2.2(i), {n.n.;} is a stationary time series with finite 4-th moment. Therefore,

Enzgn.;] = Elnant,] for any j > 1. Hence,

Qezt — Quat = szﬂg + Rzz,t’ (6.33)
n
Qv = K7D boiLej(negnly = Elnegnilg) ey = {aem.},
j=1
n
et = Kfl Z bt (fsz[nzméﬂfzj - IztE[nzlnlzl]Izt) = {rems}-
j=1
Then,
1Qezt — qzzall? < QL7 + 1R, (6.34)

Hsz,t_sz,tH4 S QHQ:z,t

f 2l RE I

p p
2 4
Hsz,tH4 = (Z qgm,t) SPZ Z QEm,tv
{m=1 {m=1
p 9 p
4 2 2 4
HRZz,tH = ( Z rfm,t) Sp Z 7aé’m,t‘
£m=1 fm=1

B[ LAl Zatl *HIEDaAna) ]| < CEN L + Bl Lot *) (El AP + Ellna|[*) < ©



We will show that

Eqy, < CH*m?, (6.35)
Erjyy < C(H/n)*, (6.36)

where C' does not depend on ¢,n. Clearly, together with (6.34) this implies (6.25):

ElQ.I' < CH?m?  E|RL,|[' < C(H/n)", (6.37)
EHQZz,t - q,zz,t||4 < O(H_2m2 + (H/n)éhl)‘

Notice that

n
Gme = K" bntigerjGem,i(MetNemy — Elnzejnzm.s)),
7=1
n
Ttmt = K;1 Z bn,tj (gzﬁ,jgzm,j - gzé,tgzm,t)E[T/zﬁ,lnzm,l]-
j=1

Proof of (6.35). Denote

fj = 9z¢,i92m,j5, Wi = MNzt,5MN=2m,j — E[nzé,jnzm,j]- (6-38)

By Assumptions 2.2(i), {w;} is a zero mean stationary sequence which has 4 finite moments
and satisfies Assumption 2.5(iii). Moreover, by Assumption 2.3(ii), max; F f;»l < C and the

sequences {f;} and {w;} are mutually independent. Thus,
Efjw; = EfjEwj < C.

Hence by (7.4) of Lemma 7.2,
Bahny < B(K;'Y bussfiwi)' < (K7D buas (L)) )’ (6.39)
j=1 j=1

n
< C(ZKflbn,tj)z(t max K{lbmgj)Qm2 < C( max K[l)QmQ,
j=1

,Jj=1,...,n t=1,...,n

because K1 Z?:1 bntj =1 and b,y < C.

Observe that under assumption (13), it holds

max K;'<CH™, max K, < CH, (6.40)

t=1,....,n t=1,....n

where C' < oo does not depend on n which together with (6.39) implies (6.35).

10



Proof of (6.36). Bound,

’fj - ft‘ = ‘gzl,jgzm,j — 9z0t92m t

A

> ‘(gz&j - ng,t)gzm,j‘ + ‘ng,t(gzm,j - gzm,t)’-

Under Assumption 2.3 on the scale factors g.¢, Eggé’t < C, and

. 8
E|gzﬁ,j _ng,t|8 < O(U —t|/’l7,) 717
. 4
gom)t < (Blgay — g200*) (Bl )V < C (15— tl/n)™,

E(|gz&j — Gzt

where C' < oo does not depend on ¢, 7, n. This implies
. 4
Elfj = fil* <C(lj = tl/n) ™.

Since |E[n¢,1M2m,1]| < 00, we can bound

Elrgnel' < CB(H Y buylf; — £l)
j=1
< CHY bug Bl — A1 < O{HTYS bags (1t — 4l/n) "}
j=1 j=1
< C(H/nY " {H™Y bogy (1t — jI/H) "M < C(H/n)*n

Jj=1

since under assumption (13), kernel weights by, ;; have property

S b (LY (6.41)
; ’“( H )

where C' < oo does not depend on ¢, H,n. This competes the proof of (6.36).

Proof of (6.27). By (6.26) and (6.24),

EHsz,t 4 S 4E|‘sz,t - q,zx,t 4 + 4EHQZ:L‘,tH4 S C

which proves (6.27).
Proof of (6.28). We have
st =G = ~Q(Qezt — G0y

1@z — =2 Qe 1Q=zt — ezl 14z (6.42)

IA

11



Therefore, we can bound

HQz_zl,tH < quz t|| + Hszt qz_zl,tH (643)
< quz,tH + Hsz,tH HQZZJ -

By (6.24) and (6.25), quth < C and ||Q:2t — ¢zzt|| = 0p(1). Hence,

1@l < gzl = 11Qzze = qeeal) ™ = O(1)(1 = 0p(1)) 7 = Op(1)  (6.44)
which proves (6.28).

Proof of (6.29). Write

zzt [ ] {szt qzz t} + {qut [ n]il}'
We will show that
z_zl,t - qz_zl,t = OP(1)7 (645)
Gt — BlQu | ] ™1 = 0p(1), (6.46)

which implies (6.29): zzt E|

Fi17t = 0,(1). To prove (6.45), notice that by (6.42),

||szt sztH < ||Q;z1,t||||sz,t_qu,tH||q;z1,t||:Op(l)

since by (6.24), (6.25) and (6.28), [lazyll < C, [|Qzzt — ol = 0p(1) and [|QZL1| = Op(1),
which proves (6.45).

To prove (6.46), write

E[sz,t‘F;] = (et + {E[ *] —qzz t}
= {Qzz t(l + qzz t{E[sz t’]: ] sz,t}) = q,zz,t(l + 0p<1))

since

quzt{E[szt|F*] szt}H < quth HE[sztu:*] - qutH = Op( )

because \|q;1t|| < C by (6.24), and by (6.33) and (6.37),

E[sz,t|f:] —Qzzt = Kt_l an,tj (IZjE[nzln,/zl]Izj - IztE[nzln,lzl]Izt)
j=1
= RL,=Op(H/n)" = oy(1).

zz,t T
This proves (6.46) and completes the proof of (6.29).

Proof of (6.30) first claim. (Proof of second claim is similar.) Denote i, = max;—1__n ||Qzz:—

12



¢2z¢||. It suffices to show that for any € > 0,

P(in, >€) — 0, n— oo. (6.47)

Observe that

n

Plin>¢€) < E[Y I([|Quzj — Gezjll 2 €] S €D ElQuzj — qozyll*. (6.48)
j=1 j=1

By (6.26) of Lemma 6.1,
EHsz,t - QZz,t”4 < C(H72m2 + (H/n)zl’ﬂ) = O(nil))

where C' does not depend on t,n. The last equality holds because by assumption m =
O(logn), y1 > 3/4 and n® < H = O(n?/?) for some a > 1/2 by assumption (14). This proves
(6.30):

> ElQuzj — ezyll* < C(H?m? + (H/n)*")n = o(1).

j=1
Recall that by (6.33), Q..j — ¢z2j = Q%,, + R;,; and Q7 , and R}, have property (6.37).
Thus, by the same argument as in the proof (6.47) it follows that
max (@2l = 0p(1),  max [[RE, = 0,(1). (6.49)

=1,..., Ly

We will use this property in the proofs below.

Proof of (6.31). By (6.43),

HQ,Z_Zl,t < an,1 + ||Qz_z1,t|| qn2,

-1

=1,...,

C o= max {[1Quer — enl ez}

=1,...,

By (6.24) and (6.30), ¢n,1 = O(1) and ¢,2 = 0,(1). Hence we obtain that

Jmax [[QZLI < gua(l = gu2) ™ = O()(1 = 0(1)) 7 = 0,(1).

This proves (6.31) and completes the proof of the lemma. O
Let .4, and BZW be as in (6.2).

Lemma 6.2. Suppose that assumptions of Theorem 2.1 are satisfied. Then,

HBZCBJ - 6217,75” S Cn{Hsz’,t —Qzzt H/Bzw,t + Hsz,t - q,z:c,tH}7 (6~50)
ngm,t - /Bzm,tH S Cn(”ﬁzx,t” + 1)7 t= 17 ey (6.51)

13



where Cp, = Op(1), c¢n = 0p(1) and Cp, ¢, do not depend on t.

Moreover, the following equality holds:

5zaz,t - /Bzz,t = Qz_z%t(sz,t - QZx,t) + Qz_zl,t<q,2z,t - sz,t)/Bzx,t-

Proof of Lemma 6.2. Using (6.23), we can write

Bewg = 84St = Q214 Qunts Bewt = (Bl Fi)) ' Bl F] = 422Gz

So, we obtain

B\za:,t — Bozt = Qz_z{tQZI,t - qz_zl,tqu,t
= Qz_zl,t(sz,t — Qo) + (Qz_zl,t - qz_zlyt)qzz,t
= Q4 Quat — Gng) + Qi (Gomt — Qe )02 10t
= Qz_zl,t(sz,t — Qo) + Qz_zl,t(qu,t — Quzt)Bant

(6.52)

(6.53)

which implies (6.52). Recall that we denote by C;, = O,(1) a generic random variable which

may change from line to line and does not depend on ¢. Then, by (6.24) and (6.31) of Lemma

6.1,

max gyl < Cn,  max [|Q]] < Cn.
t=1,...,n ’ t=1,....,n ’

e

Thus, by (6.53),

1Bt = Bl < Q7 el [1Qeat = qoatl| + 1@ g2t = Qumtl | Bt
>~ Cn{Hsz,t - sz,tH + Hsz,t - q,zz,t ||/32:B,t }

A

This implies (6.50) with C,, = O,(1).
Next, by (6.26) and (6.25) of Lemma 6.1.

max ||sz,t - ‘]zz,tH = Op(1)7 max ||sz,t — Qzzt|| = Op(l)
t=1 n =1,....n

=1,..., t=1,...,

which implies (6.51):
||ﬁzx,t - ﬁzz,tH § Cn(”ﬂzz,t” + 1)'

This completes the proof of the lemma. (Il
Recall notation v, v; given in (6.6). Denote
n n n n
/ ~ A~ ! 2 o~ ~2
Spw = Z vy,  Spp = Z V0, Svouu = g vvpuy,  Syeaa = Z (AT (6.54)
t=1 t=1 t=1 t=1
Ve = n 'S Vis =n 'S5, Ves=n"1'S5% Viewu=n1S Vioan = 1 Sssan
vw = N VU o = "N ooD vo — N op) vouy = M VU voun — 1 voun

14



zzuu ,t E bn t] ] J ) zzuu t = E bn 7] Z]

Lemma 6.3. Under the assumptions of Theorem 2.1,

VoIl = 0,(1),
Vo — Vaul| = 0p(1),
Vit ll = 0,(1),

1Vas' = Vi |l = 0p(1),
[Voul| = Op (n772).

Under the assumptions of Corollary 2.1,

HE[%vuu’f;m = Op(l)a

Under the assumptions of Corollary 2.2,

|K; B[S A= 0,(1),
HKt_l{Szzﬂﬁ,t — B[S cuut| FolH| = Op(l)'

Proof of Lemma 6.3.

Proof of (6.55). Recall (6.15). Then,

n n
Voo = nt vaé =n! Z Ixtytyélxt
t=1 t=1
n n
= n! Z thE[utyg]Izt +nt Z Imt{utyg — E[z/tyé]}lwt
t=1 t=1
= Vo + Ry,
We will show below that

Vvvt)il = Op(1)7
1R = 0p(1).

Then, using (6.64) and (6.65), similarly as in (6.43) and (6.44) we obtain:

—1 *—1 —1 * —1
IVt < Ve M+ Vit = Vi
< WV T IV (Vi = Vo) Vi ]
< Ve M+ VT IR Vi |

15



which implies (6.55):

Vo ] __0(1)

V'l < T =
L= IR, Ve 1= 0p(1)

= 0,(1).

Proof of (6.64). By Assumption 2.5, 1, is a short memory stationary sequence, and ¥, =
Elnw,] = E[r1v]] is a positive definite matrix. Then, there exists by > 0 such that for any
a=(ay,..,a5), ||a]|?> =1,

a'¥,,a > by.

Moreover, by Assumption 2.3(i), gzt > co > 0 for some ¢y > 0. Hence,
p p
1 Lal > = g2 ai > > aj = cjllal]® = .
k=1 t=1
So,

n
dVyia = a'n_lg I3, Ia
t=1

n n
0 (Ia) Sy (Inpa) > 07> [ Iyal|*bo
t=1 t=1

IN

> nt ZCQI)O = cobp =b> 0.
t=1

This implies that the largest eigenvalue of V%, =1 < b~! does not exceed 1/b and proves (6.64).

Proof of (6.65). Observe that the elements of
n
Ry, =" Ly{vy — Byl e = {sn.0}
t=1
are of the form

n
Spok = nT Z G204 9akt{VattVakt — EVrotVak ]}
=1

Under Assumption 2.2, w; = Vyp tVakt — EVar4Vak,t) is a covariance stationary short memory
sequence with zero mean, sequence {8t = gur19uk+} is independent of {w;} and EB? <
Eg;lgt + Egikt < C where C' < oo does not depend on t, k, . Hence, by Lemma 7.1(i),

n
Esly < Cn™2) EB; <Cn™'=o(1)
t=1

which implies s, ¢, = 0p(1) and proves (6.65).
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Proof of (6.56). We have
i)\tﬁ; — ’Ut’Ué = (i)\t — 'Ut)(ﬁt — ’Ut), + (/'l}t — 'Ut)’l)é — 'Ut(i)\t — Ut>/,

where Uy — vy = (B224 — Bext) 2. Then,

[5:0; — vl < 10 — vel* + 2[[8% — v | [|vel |
< 1Bawit = Bowtl PNl2]1% + 211 Bazt — Bowl| ||2e]] [0l -
Using the bound (6.51) for ||+ — BZMH, we obtain
[00; — vevpll < e ([1Beatll + 12|26l * + cnl[|Bawtl | + D] 2¢]] [
< 2(c + ) (1Bzaell + 1 (121> + [Joe]?)
< 2(c2 4 ) ((1Baatll + D + [zel[* + [Joe] %), (6.66)
where ¢, = 0,(1). Therefore,
n
Viz = Vil < n~! Z [0 — vevy]| < (0721 + ),
t=1
n
rno= Y {(Beall + 1) 2l + (v} (6.67)
t=1

By (6.24), E[B:04]|* < C, by (10), Ellz]|* < C, and by (6.15), Ellv|[* < Bl Ly Lu|[* <
E||L||?E||v]|* < C, where C does not depend on t,n. Therefore,

n
Erp=n""Y  E((||Bswull + 1" + ||zl + [Juel?) < C
=1
which implies r, = O(1) and proves the required claim: ||V — Vi|| < 0p(1).

Proof of (6.57). Similarly as in the proof of (6.55), we obtain

Vol Voo 1+ 11V = Vil

Vs 11+ Vg [ Vag = Vil LIV -

A

Using (6.55) and (6.56), this implies (6.57):

Vo' _ Oy
1—||Vis — Vil [IVio' || 1= 0p(1)

1Vl = 0p(1).

Proof of (6.58). Bound,
IVas' = Vo Il = IV (Ves = Vo) Vi |l

17



_ —1
< VIV = Vil IV

Together with (6.57), (6.56) and (6.55), this implies (6.58):

va_ﬁl -V 'l = Op(1)0p(1)Op(1) = 0p(1)
Proof of (6.59). By (6.15), vy = I+14. Hence

n n
= n_l Z VUt = 7’L_1 Z{htlzt}{ytgt} = (Unla ceny ’Unq)/
t=1 t=1
where
n
Une =" Z{htgxé,t}{l/etﬁt}-
t=1

Under assumptions of lemma, h;gg¢; and vy, are mutually independent variables, {vy €.} is
a martingale difference sequence and E[h? gxg J < E[h{] + Elg}, ] < C, E[v}e?] < C where

C' < oo does not depend on t. Hence,
-2 -1
ne = ZE tgxét Vétgt) <Cn

which implies that ||Voy|| = Op(n=1/2).

Proof of (6.60). Under the assumptions of the lemma,

loevpug]] < Jloel o,

Bllowwiaf|| < Ello||* + Bug < C

where C' < 0o does not depend on t. Hence,

E||Blowpui| Pl < E[E[lvwq|| [ 7]

= [Hvtvtut || <C.

Then,

E|| Vo i)l < 07 Y El| Bl | Fll| < Cn~' ) 1< C
=1 t=1
which implies (6.60).

Proof of (6.61). We have

18



We will show that

HVvvuu - E[%vuu’f:”‘ = Op(1)7 (668)
[[Vasaa — Vovuul| = 0p(1), (6.69)
which implies (6.61): ||Vizaa — E[Vovuul Fi) || = 0p(1).

Proof of (6.68). By (6.15), viv; = Ly I. Hence,

/.2 /2 2 A /_2 2

v — Elvoyd | Frl = Lu(vvje; — Elvvjel]) Luh; -

Therefore, we can write

V;wuu_ [ vvuu|F* - 712AtWtBt
t=1

/2 /2 2
At = 1y, Wt = Wnlhey — E[Vtytgt]a Bt = mtht-

Under Assumption 2.2(iii), see also Remark 2.1, of Theorem 2.1, the elements of W; are
covariance stationary SM sequences, and the elements of A; and B; are independent of the
elements of W;. Hence, by (7.2) of Lemma 7.1,

ElVovuu = EVoru FA?P = Elln™ Y AWiB|? < Cn™2 ) E[[| 4P| Be|?].
t=1 t=1

Observe that under assumptions of lemma,
E[|AdPIIBel*] < Ell|Lutl|*hi] < El||Luel®) + B[R] < C (6.70)

where C' < oo does not depend on t,n. Therefore,

El|Vovuu = EVowua| FAIP < 072 Z 1<Cn~' =o(1)
t=1
which implies (6.68).
Proof of (6.69). We have
HVvvuu - VmaH < n_l Z Hb\tv/\,tut vtthQH (6'71)
t=1

Bound

10074 — vyl < |00 — vevpug || + [oev (@ — )]
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< 907 — vevilluf + lloel [ — .

Thus,

n n
Vovuu — Vazaall < nt Z |00, — T)t’U;HU? +n! Z H”tHQm? — U
t=1 t=1

= Qn1 + qn2-
It suffices to show that
qn1 = op(1), n2 = op(1).
To evaluate gy,1, recall that by (6.66),
1960, — vevil| < cnlllBawall + 12 (2] ” + loel?)s e = 0p(1).

Hence

n

Gn1 < CnGp1s  Gpy = nt Z(H/Bzx,t
t=1

+1)% (el P + [foel?) uf'

Notice that under the assumptions of the lemma, by (6.24) and (10),

+ 12 (1|l 12+ [foe]?) yui?]
+ 1)+ B[22l + lloel?)*ud)

E[{(H/Bzx,t
< E([|Bza.t]

4
< E(||Bzenll + D+ E(||2]]* + ||vel?)” + E[Wf] < C

2

(6.72)

where C' < oo does not depend on ¢,n. Hence Eq;; < C which implies ¢}, = Op(1). Thus,

dnl S CnQZl = OP(1)0P<1) = OP(1>'

Next we evaluate ¢,3. Notice that
’TL\? — U% = (ﬁt — Ut)2 + 2(@ — ut)ut.
We have,

(o — a),lﬁt + (B — Bt),zt,
U — ] < wel[ [l — @l + (]2 18 — Bell

(@ —u)® < 2|zel]? [l = &I1° +2|I(8, — Br) =]

ﬂt — Ut

A

(6.73)

We will denote by C), and ¢,, the random variables C,, = O,(1) and ¢, = 0,(1) which do not
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depend on t. By Theorem 2.1, ||a — @|| = O,(n~/2) = ¢,,. Recall notation
n
sz,t = Kt_lszz,ta Qzu,t = Kt_lszu,ta sz,B,t = Kt_l Z bn,thjZ§' (B] - 515)
j=1

Recall that by (6.4), (; = 2}B; + u; and thus,

n n n
!
Sect = ) bngiziCG = bngizZiBi+ Y bngiziu
j:l j:l j:l

n n
= Z bn,thjzé- (,3] — Bt) + Szz,tﬁt + Z bn,thjUj,
j=1

j=1

Sz;{tszc,t - Bt = Q;;t{@zzﬁ,t + Qzu,t}-

Therefore, by (6.18),

B~ B = {S2\Suce— B} + Sk Suala - a)
= QI AQust + Quut) + Q2 Qur 0 — @),
18 = Bill < 1R MHIIQuall 1| + 11 Quull + | @zl [l — @I}
< ColllQzzpill +11Qzusl} + e l|Qzull, (6.74)

since by (6.28), max;—1

-----

n HQz_zl,tH < Cy, = Op(1). Hence,

18 = Bll> < CudllQuzpal P+ 11Qaul P} + en [1Quael* (6.75)

Hence, using (6.74), (6.75) and (6.73), we obtain the following bounds:

ur —ue| < callz| + ||zl | 15 — Bell
< enlllaell + [zl 1@zl ) + Crllzel | {|Qzzp el | + 1| @zl [}
e —wel® = cnlllael* + |12l P1|Quael*) + Cullzel P {[|Qzzp el + [|Quucl -

Hence, we can bound

n
2 = n Y |wlPla; — uf|
=1
n
< 7Y ol P (@ — ) + 2[ — e [ue)
=1
< cugn2,1 + Cngnz2 + Crgna 3, (6.76)
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where

n
grza =170 Y el Pzl P 4 1zl P Qzatl I + i},
t=1

|2 + HQzui”z}a

n
an2z =" Y (ol Pzl P11 Quzse
t=1
n
qn2z =" D ol Nzl e {11 Qz2.el] + 1| Qzugel 1},
t=1

and ¢, = o0p(1), Cy, = Op(1). We will show that

qn2,1 = Op(l)a qn2,2 = Op(l)a qn2,3 = 0p<1)7 (677)

which together with (6.76) implies g2 = 0p(1) and proves (6.72).
(1) First, we bound ¢y2,1. Observe that

el P12t P11 Q] * < el 1zl [* + 11Quael* < Hoell® + [22]* + [| Qe
Then, under assumptions of lemma and by (6.27),

Elloel P{lwel 1 + [zl [|Qzoell* + u}] (6.78)
< BE[oel[* + el [* + Mol [P+ Nzl® + 1| Qua [ +uf] < ©

where C' < oo does not depend on ¢,n. Hence, Egy21 < C, and gn2,1 = Op(1).

(2) Next we bound ¢p22. Denote i,, = max;—1,. ||2¢||2. Then,

n n
1Qozpall < EY bagillzi25 (8 = BOIl < K7 Y bl 1185 — Bell
j=1

Jj=1

< inQpts Qpe =K' Z b8 — Bell- (6.79)

Jj=1

Then,

n
g2z < 070 Nl Pz P{IQas P 4 1|Quuel P}
t=1

IN

in{n ™" D Mol Pllzel PNQp el Py + {n™ Y Hoel Pllzel Pl Qe P} (6.80)
t=1 t=1

= 2501 + Jn2- (6.81)
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Observe that

ElloelPllzelPl1Qsall?] < (B[llvel*llzel D YA(E]1Qp.l[Y? < C(B]Qaul DY,
E[lvel Pllzel*1Qauill?] < (E[Joel*l2e D2 (B Quutl|)? < C(E(|Quusl[*)/?

since under the assumptions of the Corollary 2.1, E[|jvg|[*]|2¢|[*] < E|lvi]|® + El|z||® < C
where C' < oo does not depend on t. Moreover, by (6.116) and (6.120),

E|lQpl[* < C(H/n)"™2,  E||Quugll* <CH™.

By assumption of corollary, H = O(n2/ 3), and by Assumption 2.4, y5 > 3/4 + & for some
§ > 0. Hence (H/n)*? < C(n~Y/3)3+4 < Cn=1-9, Therefore,

Ejm < 2 < C(H/n)»? < Cn~ /2792 (6.82)
t=1
n n
Ejnz < 07t Eflfoel Pllael P Qeuel ] < Cn™ Y H™' = CH™' = o(1).
t=1 t=1
Under assumptions of lemma, the variable & = |[2]|?> has 4-th finite moments: E&} =

E||z]|® < C where C < oo does not depend on ¢. Hence, by Lemma 6.4, i,, = O,(n'/4+%) for
any a > 0. Suppose that a < §/4. Then,

Gn2.2 < 1241 + Jnz = Op(nt/*T20)0, (n"Y279/2) 1 0,(1) = 0,(1). (6.83)
(3) Finally, to bound g¢,2 3, notice that by (6.115) and (6.119),
ElllQzzp:4"] < C(H/n)*™ = o(1),  E[llQzull’) < CH™' = 0(1).
Therefore,

Ellvel * 1zel] [uel{]1Qzzp.1 + [|Qzuctll}]
< (El[vel[* [12¢]* [ue ) 2{( D2+ (B|Quunl )2}
< C((H/n)"™2 + H'?) = 0(1) (6.84)

which implies that Eg¢,23 = o(1) and gn2,3 = 0p(1). This completes the proof of (6.61).

Proof of (6.62). We have

E[ijéuﬂf;] = E[Izjnzjnzg zyh? ?’f*] = [Ing[UngZJ j]IZ]hJZ]
|Elzzpu | FAlll < BHIL; PR 511?67} < Bl L1 PR3] El|n.51%€3]
< A{BIL4lI* + BRHE|ln4||* + Bej}y < C©
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where C' < 0o does not depend on j, see Assumptions 2.2 and 2.3. Thus,

K B[S s Fl] < K{lzbij[E[zjz}u?\]:;]]

< OK7 Y 82, < OK7 S buyy = C,

7j=1 n Sty
which implies the required claim: K; 'E[S, ... F:] = Op(1).

Proof of (6.63). Bound

||Szzﬂﬂ,t - E[Szzuu,t

n]” < ||Szzuu,t - E[Szzuu,t|f;]” + HSzzz’Zﬁ,t - Szzuu”-
Similarly, as for deriving the bound (6.68) in the proof of (6.61), it suffices to show that

HKt_l(SzzuU,t - E[Szzuu,t|~7::;])|‘ = o0p(1), (6.85)

HKt_1<Szzﬁﬂ,t - Szzuu,t)” = Op(1)7 (6.86)
which implies (6.63): HK S.aat — ElSzouut Fi)|| = 0p(1).
Proof of (6.85). We have
Zj JQ

; = ZjannzjejIZ]h]7 ZJZ;UJQ E[ |]:*] - ZJ (772]7],3] J E[nzjn;jeg])lzjh?'

Hence, we can write
Kgl(SZZUu,t - E[ zzuut|f 1 Z bn t]A W B]7

By Assumption 2.5(i), the elements of W} are covariance stationary SM sequences, and the

elements of A; and B; are independent of the elements of W;. Hence, by (7.2) of Lemma 7.1,
E||K;1(Szzuunt - E[Szzuu,t|]:;]||2 = E||K ! an tgA W B H2
< COKy 2mej [11A451211B5117].

Under the assumptions of the lemma, similarly as in (6.70) it holds, E[||A;]|?||B;|[*] < C,

where C' < 0o does not depend on j,n. This implies

BIE N (Sezunt — BlSeud FDIP < CKf Qant] <CK;'<CH '=o(1),
j=1
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since by, ; < C, Kt_l S bnti =1 and K; < CH~! by (6.40). This implies (6.85).

Proof of (6.86). We have
Szzﬁﬂ,t - SZZUU,t = an 5737 J 3)’

beml\zg\l jaf — ujl.

IN

HSzzﬂﬁ,t - Szzuu,t“

Notice that by, ;; < C. Then, similarly to (6.76), we obtain

jn = _1‘|Szzﬂ1’lt_8zzuut||

IN

K Z by, tj | ’Z]H ’U - u2| < Cnln2,1,t + CnQn2,2,t + CnQnZ,?;,t
where ¢, = 0,(1), Cp, = Op(1) and

n
Gn2,1e = K Y bnggllzl Pl + 112 Pl Quo gl P + 3,

j=1
n
220 = K7 bnillzl1{11Qaz8,411 + 1Qeu P},
j=1
n
23t = K> bngll2]1P 1 [ {11Qzz.41] + Qg l}-
j=1
It remains to show that
qn2,1,t = Op(1)7 qn22,;t = Op(l)y qn2,3,t = Op(l)a (687)

which implies the required claim, j, = op(1).

To evaluate g,2,1 ¢ notice that similarly as in (6.78), E[||2;|[*{l|z;|*+||2j]|*||Qza,;|[*+ui}] < C

where C' < oo does not depend on ¢,n. Hence,

n
Egnai1: < CK;? an,tj =C
j=1
which implies gn2,1+ = Op(1).

To bound gpn2 2+, notice that similarly to (6.81), we can write

n
22t < KUY bnggllzl*11Quzs 1 + |Qeuyl*}

J=1
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IN

4
2511 Qzu s *}

n n
Z{EDY bl zl1M1Qa 12+ {ETED by

j=1 j=1

9 . .
= tdnit t In2t

where i, is the same as in (6.79). Since K;! > i=1bntj = 1, the same argument as in
the proof of (6.82) implies that Ejp1 ¢, Ejn2+ and satisfy the same bounds (6.82) as Ejp1,
Ejna. Therefore gno 2, satisfies the same bound (6.87) as g,22 which implies gn22: = 0p(1).
Observe that under assumptions of Corollary 2.2, the bandwidth H, has property H, =
O(n?/?) used in the proof of gu29 = 0,(1) above. The latter follows from the assumption
H, = o(n*?/(2+1)) imposed on bandwidth H, in Corollary 2.2 and assumption v € (3/4, 1].

To bound ¢n23, notice that E[||z;|1 [u;j{||Q:25,]| + ||Qzu,jl|}] = o(1) satisfies the same
bound as E[|Jve||? ||z¢]| |ue|{]|Qz254]| + [|Qzu||}] in (6.84). This implies that

n n
230 < K7 b Ell|25]P i {11Qazp,5] + 1Qzuyl [} < oK) by = o(1).
j=1 j=1

Hence, gn2,3,+ = 0p(1) which completes the proof of (6.87), (6.86) and the lemma. O

Lemma 6.4. Suppose that for some integer k > 2, the random wvariables & > 0 have the

property EEF < C where C < oo does not depend on t. Then, for any a > 0,

in = max & = o(n'/F*+), (6.88)

=1,..,n

Proof of Lemma 6.4. For any ¢ > 0,

P(in, > en'/Fte) < E[Z I(& > enl/k+“)] < e kpiha ZE{f < CeFpke = o(1)
t=1 t=1

which proves (6.88). O

6.3 Lemmas 6.5 and 6.6

Lemma 6.5. Under assumption of Theorem 2.1,
LS5 — Syl Spu = 0p(n71?). (6.89)
Proof of Lemma 6.5. Denote V5, = n~1S5,. We have

S@_ﬁlsﬁu - S;}Svu = V@jv\lvﬁu - V;;;lvtuu
= Vo' (Vou = Vou) + (Vig! = Vi ) Vou

0 VU
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By (6.57), Vir' = O,(1), and by (6.58), Vo' — V,,! = 0,(1), while in (6.59) it is shown that
Vou = Op(n~/2). We will prove that

Vou—Viou = op(n~Y?), (6.90)
which implies (6.89):

Vol Vau = Voo 'Wau = 0,(1)0p(n™2) + 0,(1)O0p(n 1) = 0,(n~1/3).

VU

Proof (6.90). By (6.6), we have

625 — UVt = (Bzz,t - B\zx,t)lzt = zg(ﬁzxt - Bzm t)
Vou—Vou = nt Z@t —v)up = -t Z 2 ( /Bzz t = Bazt)uy. (6.91)
t=1 t=1

By (6.52),

Beat — Beat = Qz_z{t(sz,t — Qeat) + Qz_zlt(qzz,t — Quzt)Bant
= {Qz_zl,t — Qz_zl,t ((sz,t — Qozt) + (Qeat — Qzzt) Bra t)
+qz_zl,t(sz,t — Qzzt) Bzt + Qz_zﬂf(QZ:E,t ~ Qext)

= p1t + P2t + D3t

where

Pt = {sz it qul,t <(sz,t - q,za:,t) (q,zz t— sz t)ﬁzaz t)
P2t = qz_zﬂf (sz,t - sz,t)ﬁza:,ta
P3t = qz_z%t(sz,t - QZx,t)-

Therefore, by (6.91),

n
Vou—Vou=n"" Z(at —v)ur = Ry1 + Rp2 + Rps, (6.92)
=1
where
n
Ry = —n~t Z Zipreug, k=1,2,3. (6.93)
=1

To prove (6.90), it remains to show that for k = 1,2, 3,

R = 0,(n/?). (6.94)
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Let k = 1. Bound,

|82zt } (6.95)
.

p1el] < HQz_zl,t - qz_zl,tH{Hszt — Gl T |Qzzt — ozt
— HQz_zl,t {Hsz,t - sz,tH + Hsz,t - sz,tH Hﬁzw,t

A

Hsz,t - sz,t” qu_zl,t

By (6.24) and (6.31), max;—1_._» l|qz. 4| |Q2]| < Cn = Op(1). Hence,

A

letH = CnHsz,t - sz,1&||{|’sz¢ - q,zm,tH + Hsz,t - q,zz,tH Hﬁz:}:,t“} (696)
Co{|Q22t — @oztl)® + ||Qezt — Gt ||PF(L + ||Bzat]])-

IA

Therefore,

HRan < Op(l)rn,

n
n = nil Z {Hsz,t - sz,tHZ + HQz:v,t —Qzxt
t=1

3182w all + D)l 2] fue]-

We will show that
Er, = o(n~'/?), (6.97)
which implies the required claim R,; = op(n_l/ 2). By Hélder inequality,

E[(”sz,t - QZz,tH2 + ”sz,t - sz,tHQ)(H/BZI,t + 1)Hth ’utH
< {(E[ |4])1/2 + (E[Hchct - qu,t|’4])1/2}(E[(H52x,t|’ + 1)2H2t|’2u?])1/2'

’sz,t - sz,t
By the assumptions of the lemma and (6.24),
E[(1Bzaell + 1)zl Pui] < B(||Bzasll +1)° + Ellzl° + Bug < C

where C' < oo does not depend on ¢, whereas by (6.25) and (6.26),

E[Hsz,t - qu,t||4j| § C(H_2m2 =+ (H/n)471),
E[HQzas,t — Qzxt |4] S C(H_2m2 + (H/TL)471)
Therefore,
Erp < Cn7! Z (H2m? + (H/”)ém)l/2 = C(H *m* + (H/n)4%)1/2 = o(n~Y?),
t=1

because by assumption, m = O(logn) and v, > 3/4, and by (14), n® < H = O(n?/3) for
some a > 1/2 which implies H2m? = o(n™ 1), (H/n)** = o(n™1).

Let k = 2. (Proof for k = 3 is similar as for £ = 2 and therefore it is omitted).
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By (6.33), Qz2t — Gzt = Q%,; + RZ, ;. Recall that u; = hiey where {&;} is a stationary
martingale difference sequence. Hence, {;} is a stationary short memory sequence with zero

mean. Write

n n
R, = _n_l Z /q;zltRzz tﬁzx tup +n- Z /Q,;zthzz tﬁZ$ tUt (698)
t=1

= - Z{nztgt}{lz’tqzz t}Rzz t{ﬁzx,tht} - nil Z{n,lztgt}{Ithz_zl,t}{QZz,t}{ﬂzx,tht}
t=1

= —(Rn2,1 + Rp22).
We will show that
Rugi = op(n~Y?), i=1,2. (6.99)

To evaluate R,z 1, recall that under assumptions of Theorem 2.1, the variables

{qzzt, R}, 45 Bz, Iot, he} are independent of {n,e;}. Hence, by Lemma 7.1(ii),

B||Rp2.1|)? < cn-QZE | Lot 1 | R,

2]'

Under the assumptions of the lemma,

Ithz_zl,t = ]Zt{‘[ lzzzljztl} Ezlez_t’
Izl < BRI < C (6.100)

since by Assumption 2.2(ii), ¥, is invertable, and by Assumption 2.3, g,x+ > ¢o > 0. By
(6.100), letq;l,tH < C where C < oo does not depend on t. By (6.24), E||B...||® < C, and
by assumptions of lemma Eh$ < C. Hence,

B[ Laa P 1R 4| PHE | BeaalP] < C(EIIRE, |1 (BB ell']) /2

C(E||R:.4|IM)"? < C(H[n)*"

IA

because by (6.37), E||R§z,t||4 < C(H/n)* and E[h}||B.ztl[t] < EAS

Hence,

BB |2 < CUmP a2 31 = O(H /) n~ = ofn™")
t=1

which implies Ry21 = op(n_l/Q).
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Next we evaluate

n

n
—1 / —1 / —1
Ry = n E ZiutpPot = N § Ztutqu,t(sz,t - QZz,t)ﬁzx,t
t=1 t=1

= nil Z{n;tet}{lthgzl,t}(@zz,t - QZZ,t){htﬁzx,t}'
t=1

Denote

* / * * \/ *
g = nuee= (el ”'75pt) » o Ept = Tht€t,

Ithz_zlyt = {eir,t} )
n

Q:z,t = K’t_1 an,tjlzj (nzjn,/zj - E[nzjn,zj])jzj = {va,t}v
j=1

htﬂzx,t = {5k€,t }7

where €} is a p X 1 matrix with v-th element ¢}, I thz_;’t is a p X p matrix with ¢, r-th element

vt

Oir.t sz,t is a p x p matrix with m,v-th element s,,, ;, and hiB3.,; is a p x ¢ matrix with

k, f-th element Oy .

It is easy to see that to prove ||Rpu2a|| = 0p(n~1/?) it suffices to show that for any elements

Ent> Oirts Smu,ts Okee, it holds

n
in =10 O Ohe i {smu st} = op(n V).
t=1

Setting & = 0;r10re+, We can write

n
in=n"" Z Ee{smvjeuit

=1

where s,,, ; can be written as

n

—1
smog = K'Y bugjGem,jGeui (Mem,iNev — Ezmjnze.j))

=1

n
= > angiBjw;

Jj=1

with

_ _ _ -1
Wi = Nzm,jNzv,j — E[nzm,jnzv,jL /Bj = 3zm,j9zv,5, On,tj = Kt bn,tj‘

Under assumptions of lemma, {&;, 3;} are independent of {w;}. Observe that

E¢f < C, EBf<C,
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where C' < oo does not depend on t.

Oins < [|laz1]| < €. while by (6.24), E|[Borl[® < C. Hence,

E¢ <

E[h ||Beagl|'] < C(ER + E||Bz0ul®) < C,

EB < Eggm,t + Eggu,t <C,

by Assumption 2.3(i). Hence, by (7.5) of Lemma 7.2,

Eli,| < C'(tjgllax nan,tj)m = C(Kt_l

max by, j)m.
t,g=1,...,n

By (6.40), K; ' < CH™' and b, 4; < C which implies

Eli,| < CH 'm=o(n"?

Indeed, by (6.100), HIthzzt | < C and therefore,

since by assumption, m = O(logn), and by (14), H > n® for some a > 1/2. This completes

the proof of (6.101) and verification of the claim R,2.0 = 0p(

of the lemma. [J

n~1/2). That concludes the proof

Lemma 6.6. Under the assumptions of Theorem 2.1, R,, defined in (6.8) has property

SAR, = op(n~1/?).

(6.103)

Proof of Lemma 6.6. In (6.57) of Lemma 6.3 it is shown that nSa_ﬁl = Op(1). Therefore,

to prove (6.103), it suffices to show

n"'R, = o(n~'/?).

By definition (6.8),

”_ZUJJ

Recall notation

/

v = &5 — Ba i

—1
sz,t = Kt Szz,t7

Recall also notation

Bt ZZ t ZC t = Q;Zl,tQZ<7t'

G =28 + uj,

Qzzt = E[thﬂ./_";], Qzu,t = Kt_lszu,t-

szﬁ,t = 1ant]2] ] Bt)

szﬁ,t -

K an,tjfzj(nzjn’zj — Bz 1:5(8; — Be),
j=1
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zzﬁ,t = Ky ant]IZ]E[nzjnz_]] I.;(Bj — Bt).
7j=1

Then, Q.5+ = szﬁ,t + R;z,é’,t’ and

Qz(,t = K Z bn t]Z]Cj QZZ,B t + Qzut Q;zﬁ,t + Rzzﬁﬂf + Qzu,t-

7=1
Hence,
615 - Bt = Qz_z{thC,t - /Bt = Qz_z{t(szB,t + Qzu,t) (6105)
= Qz_zl,t(Q;zﬁ,t + R:zﬁ,t + QZU,t)'
Write,
Uz = (U — vz + vzl — C];zl,thz,t) + /Utzzlfq;zl,tQZZ,tv
0z(Be— Br) = {0 —v)zi(Be — Be)} + {vezi(1 — q;zthzz ) (Be — Be)}
+{Ut21/£qZ_zl,tQZzB,t} + {UtthZ_zltRzzﬂ t} + {Utthzz thu t}
= p1t + p2t + p3t + par + pse-
Hence,

n n
R, = Zplt + ...+ Zp5t =Ry + ...+ Rys.
= t=1
Therefore, to prove (6.104), it suffices to show that

n 'Ry =o(n~Y?), i=1,..,5. (6.106)

(1) Proof of (6.106) for Ruy. By (6.91), 0 — vy = (Bza — Bzm)lzt, and by (6.105), Et — Bt =
Q;z{t(QZZB,t + QZU,t)' Therefore,

pre = (Bez — Bzx)lztzé(ﬁt - gt)
= (Bzr - Bzr)lzt{zéq;zlt}{sz,tQ;z{t}(szﬁ,t + Qzu,t)a
let” S H/Bzx_/\ gt t+Qzu,tH-

Observe that under assumptions of lemma,

la = ”n;tIZt{I 1Ezzllzt1}” - ||77ztzzz ztlH

e [TIEZHZ ] < Cllmeel .

IN
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Moreover

N

\|qu,th_;¢\| = |‘QZz,tQZ_Z17t - 1” +1= H(sz,t - sz,t)@z_zl’tu +1
( max lgez = Qeztl)( max QLI +1 = Cn = Op(1),
t=1,...,n t=1,...,n ’

IN

[ERRE!

in view of the bounds (6.30) and (6.31). In addition, by (6.50),

||Bzaz,t - ﬁzm,t” S Cn(”ﬁzzﬂ

+ 1){|‘sz,t — Qzzt|| T ||szt,t - C_sz,t”}-

Recall also that ||z¢]| < ||L|| ||n2¢]]- Thus, setting vy = (||Bsz]]| + 1)|[L2t]| |[m2¢||?, we obtain
the bound:

p1it < Cnpit’ P’ft = Vt{Hsz,t - QZZ,tH + Hsz,t - sz,tH}{HQZZﬁ,tH + HQzu,t |}

Hence,
n
0T Rl < Corpys =07t bl
t=1
where C), = 0,(1). We will show that

Ert, =o(n/?), (6.107)

which implies 7, = op(n_l/Q) and proves the required claim: n™!||Ru1|| = Op(n_l/Q).

To verify (6.107), notice that under the assumptions of lemma and by (6.24),

Ev{ = E[(||B:x.l
= E[(/|Bz0.]

1)Ll [* [l °]
+ DI LAP] Bllnad|® < {B(|| Bzl +1)° + Bl P}YElln:|[* < C,

where C' < oo does not depend on t. Moreover, by (6.25), (6.26), (6.115) and (6.119),

EHsz,t - QZz,tH4 S C(H72m2 + (H/n)471)7 EHsz,t - QZ:B,tH4 S C(Hisz + (H/n)471)7
ElQuapel? < CH/m)*2,  BlQuugll* < CH™ (6.108)

where C' < oo does not depend on t. Therefore, using Holder’s inequality, we can bound

Ep’{t
< (BvHYY M B(|Qzzt — @ozill* + 11Qat — Ceat ) HE(1Q2zp > + 1|Quuel) )
< C(H2m? + (H/n)" )/ (H 4 (H/n)?#)"/?
< C(H?m"2 4 (H/n)") (H V2 + (H/n)?)"?
= o(n"/?). (6.109)
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The last bound in (6.109) follows noting that v1,v2 € (3/4,1], m = O(logn), and by assump-

tion (14), n® < H = O(n?/3) for some a > 1/2. Then, H 'm = o(n='/2), H=Y/?m/2(H /n)" =

n~V2(H /n)%=1/2m1/2 = o(n=1/2) for i = 1,2, and (H/n)"+72 < (n?/3 /n)M+72 = o(n=1/2).
This completes the proof of (6.106) for R,;.

(2) Proof of (6.106) for Ry2. Using property (6.105) of B, we obtain

p2r = vz(l— q;zl,thz,t)(ﬁt ~B)
= Utzgqgjzl,t(q,zz,t — sz,t)Q;zl,t(sz@t + Qzut),
o2l < Moezil| gzt il gzze — @zt 1QZ N Q22,6 + Q]
< Chlluezl| G2zt — Qezt]| Q228 + Quutll,

since by (6.24) and (6.31),

Hence,

Zth < Cp = Op(1) where C), does not depend on t.

n
nH[Ruall < Curiay rmp =t ) (el s
t=1

We will show that

Erty = o(n~?) (6.110)
which implies 7%y = 0,(n"/2) and proves the required claim: n~||Rpa|| = o,(n~"1/2).

It remains to show (6.110). Under assumptions of lemma, E||v;2)||* < E||ve||B+ E||2}||® <
C where C' < oo does not depend on t. Hence, using Holder inequality, and the bound given
n (6.108), we obtain

E[lloezfl| 1Qzt = Gootl| {11Q2p.4| + [|Quustl1}]
< (Eloezg BN Qa2 — gzt ) H(ENQuzp 1) + (Bl Qeuil[*) '/}
< C(HY2m'2 4 (H/n)") ((H/n)2 + HY/?)
= o(n"Y/?). (6.111)

where the last relation in (6.111) holds because of the same argument as in (6.109).

Thus,
Ert, < o(nY?){ 1Zl}—o —1/2)

which proves (6.110).
(3) Proof of (6.106) for R,3. We have

nHRusll <

zell llvezt]]
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n
< O Y NIQLgll oz,
t=1

since qu_zltH < C by (6.24).
By the assumptions of the lemma, E||vi2||?> < E||vs||* + E||z||* < C, while by (6.118)

of Lemma 6.7,

E|lQ%pll* < CHT'(H/n)™™

Hence,
ElIQzsll ezt < (ElNQkus )2 (Bl vzt )2 < CHT2(H ),
n n
Bln ™ Y Qs lzill] < 07> B[ luell]
t=1 t=1

< C’H*1/2(H/n)"72 = C’rfl/Q(];[/n)'YTl/2 = o(nil/z)

since 72 > 1/2 and H = o(n). This implies n™!||Ry3|| = 0p(n~'/?) which proves the claim
(6.106) for Rps.

(4) Proof of (6.106) for Ry,4. By (6.15),

v = Iuvi, v =Nw — EMunl) (EMam]) na, (6.112)

vz, = Iyvn,ly, Elnn,] =0,

n
tar = K[! Z bn,tj L5 B[] 1 (B — Br).
j=1
Hence, we can write n 'R, as
n n
n 'Ry = Z vtzwéqz_zl,tR:zB,t =n"" Z Iﬂ?tytn,lzt{Ithgzl,tR:zﬁ,t}
t=1 t=1
n
= Z{n_ljxt}{thét}{Ith;l,tRzz,B,t}'
t=1
Denote i, = max¢=1 . p ||Iz¢||. Then,
n
n_an4 =indp Jn = Z{n_lir_zllxt}{th,,zt}{lth;zl,tRZzﬁ,t}
t=1

By Assumption 2.2(i) of theorem, the elements the matrix 147, are stationary short memory

sequences which have zero mean, Evn., = 0, and {i,, "1, Ithz_;?tRizm} and {mn,} are
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mutually independent. Hence by (7.2) of Lemma 7.1,

’]

n
EHJTLH2 < Cn_2ZE[HigllthQHIthg_zl,t zzﬁ,t
t=1

n
< On72Y  Bllin Ll Pl Lzt P RE.p4l 17
j=1

By definition of iy, ||i; 1 L||* = i,,%||L:||* < 1, and HIth;Zl’tH < C by (6.100). Hence,

Ellin Lot [ Ltaz | P I RepallP] < CE||R:g,l1° < C(H /n)*

2z, —

by (6.117) of Lemma 6.7 where C' < co does not depend on ¢,n. Therefore,

B[P < Cn 2 (H/n)»? < Cn”'(H/n)>".
j=1
Hence, J, = O, (n~Y/2(H/n)").

By assumption (14), H = O(n?/3), and by Assumption 2.3(ii), 71 > 3/4 + 0 for some
§ > 0. Hence (H/n)"? < C(n~Y/3)3/4+% < COn~1/479/3, Under assumptions of lemma, the
variable ||I,¢||?> has 4-finite moments: E||I||® < C where C' < oo does not depend on t.
Hence, by Lemma 6.4, i, = Op(n1/4+“) for any a > 0. Suppose that a < §/3. Then,

||n_1Rn4H2 < indn = Op(n1/4+a)Op(”_l/zn_1/4_6/3) = Op(na_6/3) = 0p(1)
which implies (6.106) for Ry4.
(5) Proof of (6.106) for Rys. Recall that uj = ejhj, Quut = Kt_1 Z?Zl bntjzju;. Then,

n
/_—1 /_—1 —1
Ry = E :vtthZz,t Qzu,t: E Utthzz,t{Kt E :bmthj’LLj}

t=1 t=1 7=1

n
-1 /7 —1
= § Ky bn 10244, 41525
7,t=1

n n
2 : § : -1 /-1
= { Kj bmtjvjzjqzzyj}utzt.

t=1 j=1

We need to show that
n Rys = op(n~Y?). (6.113)

By (6.112), sz;. = Ixjujr]’zjlzj and ¢,,; = I.;%..1,;. Thus, vjz;-q;;j = Ixjyjn’ZjE_llfl.

2z " zj
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Hence,

n n
s = O AD K ong Lojvynl S0 I H e Leie )

t=1 j=1

Denote ;! = {04, }. By Assumption 2.2(ii), ||$,.}|| < co which implies |o,,,| < 0o. Observe,

that n 1Rn5 is a linear combination of the following type of sums:
n n
in = nt Z{Z Kj_lbn,tjgxkd‘ij’l?z&j(femgz_wll’j}{htgzm,tgtnzm,t}'
t=1 j=1

Clearly, to prove (6.113), it suffices to show that
Elin| = o(n~1/?). (6.114)

Setting
n
Snt = ZKj_lbn,tj{gxk,jo-ﬂmgz_r;j}Vk‘jnzé,j
j—l

= Zan t]ﬁ]w]7 Antj = K bn 7R 5] = Jxk,j Em.gzm]7 Wy = VgjNze,j
7j=1

we can write
n
—1 * *
=n E &{Sntft}a §t = MGemits € = ENamyt-

Under the assumptions of the theorem, w; is a stationary short memory sequence with
FEw; = 0. Moreover, {wj,e;} and {;, 3;} are mutually independent and g, ; > co > 0
by Assumption 2.3. Hence,

IN

Eg? [ht gzm t] [hs] + E[gzm t] < C
Eﬂf < E[gxk:,jo-ﬁmgzm,]] = CE[gxk: ] ¢

where C' < 0o does not depend on j,n

Hence, by Lemma 7.2(iii),

Eli,| < C( max apg)m=C( max K;'b,;)m <CH 'm
t7j:17"'7n ’ t7j:17"'7n J '

because by (6.40), Kj_l < CH™! and bntj < C. Therefore,

Ei2 < CH 'm=o(n/?

n —
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since m = O(logn) and by (14), H > n® for some a > 1/2. This proves (6.114), implies
(6.106) for R,5 and completes the proof of the lemma. O

The following lemma is used in the proof of Lemma 6.6.

Lemma 6.7. Under the assumptions of Theorem 2.1, the following holds:

El|Qupill* < C(H[n)™?, (6.115)
BllQsl* < C(H/m)™", (6.116)
E||R%s,l> < C(H/n)*2, (6.117)
BlQi.p.l* < CH '(H/n)*, (6.118)
E|QuulP < CH™, (6.119)
El|Quuill* < CHTY, (6.120)

where C' < oo does not depend on t,n

Proof of Lemma 6.7. Proof of (6.115). We have

n
| < KUY baallzl P18 — B,

HQZZ,B,t
j=1
n
BlQupill® < K72 buajbn s B [|1251P 1121171185 — Bill 18: — Bil ]
Jyi=1

By (10), E||;]|® < C where C < oo does not depend on j. By smoothness Assumption 2.4,
ElB = BlI* <C(t —jl/m)", tj,=1,..,n. (6.121)

These bounds together with Holder inequality imply that

1/4

A

Ellz51Pllzl*18; = Bl 1B: = Bill] - < (Ellz5|PEN=|PEIB; — Bell*ENNB: — Bull*)
C(|t = gl/n)= (|t =il /n).

IN

This, together with the bound (6.40), K; ' < CH~!, and the bound (6.41) which is valid
also for g, implies (6.115):

Bl|Quzpell” < C(H/M)™(H™ Y bugy(t = jI/H)?)* < C(H/n)*™.
j=1
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Proof of (6.116). As above,
n 4 n 4
ElQsll* = B(K Y bugsll8y = 8ll) < (K7D buas(BUIB; - BIHYY)
Jj=1 J=1

< WY (HS by (1 - 1/H))Y < O(H /),
=1

This implies (6.116).
Proof of (6.117). We have
IR gl < K'Y bugsllLeg Blnegiy1 L1185 — Bell
j=1

where ||1.; E[n:n;]125] < [|11:5]1?E||n2;||* < C||I|]* and C < oo does not depend on j. By
Assumption 2.3(i), E||L;||® < C. Hence,

n
1R 0ll? < CE;2 Y bngsbuaal LI Pl Lal P18 — Bel 118 = Bell, — (6.122)
ji=1
and (6.117) follows using the same argument as in the proof of (6.115).
Proof of (6.118). Write
n
Qipr = K'Y buyjls (7723'77;3' - E[ann,/zj])IZj(Bj - Bt)
j=1

n
= > A;W;B;,
=1
Aj = K 4515, W; = MMy — Bzl By = Lij(B — Br).

Under Assumption 2.2(i) of theorem, the elements 1., ;7.0 ;—E[1:k,;72¢,;] of W are stationary
short memory sequences with zero mean and {A4;, Bj} and {W;} are mutually independent.
Hence by (7.2) of Lemma 7.1,

E|| Y 4WiBi|P < C Y B[IIA;1%1B4]°]

J=1 J=1

CK; 2502 G E[1L511418; — Bil[).
7j=1

Q4,1

IN

Observe that

E[IL;11M18; = 8lI°7] < (BILIM)V2(EIB; — )2 < Ot — I /n)*>*
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by (6.121) and because under the assumptions of the theorem, E||I¢||® < C. Moreover,
Kt_1 < CH™ ' and bntj < C where C' < oo does not depend on ¢,n. Hence,

n
ElQ%p < CH™2Y buy(Jt —jl/n)>”
j=1

CH™'(H/n)*»{H™ ibn,tj(!t —JI/H)*"} < CH™'(H[n)*”
j=1

IN

using the bound (6.41) which is valid also for 2. This proves (6.118).

Proof of (6.119). Recall that z; = I.;ngj, u; = hje;. Then,

n n
Quut = KD bugileynzeshily = A;WiB;,
st i=1

Aj = K ougiley, Wi =1z, Bj =yl

Under assumption of theorem, ¢; is a martingale difference sequence, the elements 7, je; of
W; are stationary white noise sequences with zero mean and {A4;, B;} and {W;} are mutually

independent. Hence, by (7.2) of Lemma 7.1,

2 < O E[AIPIBIP) < CK;2D b SB[ L] h3].
j=1 j=1

E| |Qzu7t

Since E[|]Izj\|4h§] < B||L;||® + Eh;l» < C, this implies

n
El|Qzutll> < CK7 MK bpyjl} =CK; ' < CH™!
j=1

which proves (6.119).

Proof of (6.120). We have

n n
—1 / -1
Qzu,t = Kt g bn,tjzjuj = (Slm e 5pn) y  Skn = Kt E bn,tjzkjuj-
Jj=1 Jj=1

We will show that
Es;, =O0(H™) (6.123)

which implies the required claim E||Qy||* = O(H™1). Write

n
Sin = Kt_l Z bn,t5bn i zkjug H zriwi }
Ji=1
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= Kt_2 Z +2K 22 Z —an,1+an,2-

Jj=i=1 j=1li=75+1

We will verify that
2 _ -1 2 -1
Eqkn,l - O(H )7 Ean,Z — O(H ) (6124)

which implies (6.123): Es%n = E(qgn,1 + q/m,g)2 < 2qun71 + 2qu%n,2 = O(H™1). We have
2
qu%n,l = Z bn R7] ntz ijufzzzu?]
Ji=1

Under assumptions of lemma, E[z,%u?z,%lu%] < Ezlfj + Eu? + Bz}, + Eu} < C where C <

does not depend on j,i. Hence,

n

— 2

qu%n,l < CK 2{K ? Z bnt] ntz} < CK t 1an9tj)
7i=1 j =

< CK;/2<CH™

by (6.40), which implies (6.124) for giy, 1.
Finally,

2 —4
Eqeno = K ) Y " bt bty bt Dt B[y Wy 2o U 2y Wiy Zhiy ).
1<j1<i1<n 1<ja<iz<n

Observe that under assumptions of lemma,
| B2y Uy Zhjo Wia Zhiy Wiy Zheig Wis) | < Ezzjl—i—Eu —i—Ezk]Q—l—Eu —|—Ez,m+Eu +Ezkl2+Eu§2 <C

where C' < oo does not depend on j1, i1, jo, is.

Suppose that io # i1. Then ja, j1,41 < i2 and it is easy to see that under assumptions of

the lemma, E[zpj, U, 2k jo U)o Zhiy Wiy ZhioWis) = 0.

Therefore,
Eq,, < K ) Y butibuinbngisbngin I (i1 = i)
1<j1<i1<n 1<j2<i2<n
n
< OK7 YK b))’ <CE;7' < CHTL
j=1
This proves (6.124) and completes the proof of the lemma. O
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7 Auxiliary Lemmas B.

This section contains auxiliary lemmas used in the proofs of the main results in Section 2.

Lemma 7.1. (i) Assume that sequences {5} and {w} of univariate random variables are
mutually independent, and {w;} is a covariance stationary short memory sequence with zero

mean. Then,

n

E(Y Brwn)* <CY EB;. (7.1)
t=1

t=1

(ii) Assume {Ai}, {Wi} and {B:} are p x m, m x £ and { x q matrices which elements are
random variables. Suppose that elements of {W,} are stationary short memory sequences

with zero mean and {As, Bi} and {W,} are mutually independent. Then,
B> AW < O B[4 PIIBE). (72)
t=1 t=1

In (7.1) and (7.2), C < oo does not depend on n.

Proof of Lemma 7.1. By assumption of lemma,
oo
Elwiws] = cov(wt, ws) = Y t—s, Z [w (k)] < oc.
k=—o0

Hence,

n

EQ) fan)* < Y ElBiBuElwaws] < > E[B} + B2yl
t=1

t,s=1 t,s=1
n oo n
< 2) B[S D sl <CY B[S,
t=1 §=—00 t=1
which proves (7.1).
It is easy to see that (7.1) implies (7.2). O

In the following lemma 7, 17,4, v are defined as in (8) and (6.15) and they satisfy moment

conditions of Assumption 2.2. We denote by 1,1+, 12k.t, ke @ kth component of these vectors.

Lemma 7.2. (i) Assume, that random variables €;, Ny and 1 satisfy assumptions of The-

orem 2.1.

Suppose that random variables {&} and {8} are mutually independent of {Nyt, Nat, et}
and such that B¢ < C, EB} < C where C < oo does not depend on t.
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(i) Define wj = nzs N2, — ENzs,jNev,j] and 5; = Nz0,5, and set
n
Spt = Z .15 3505, (7.3)
j=1

where a, 5 > 0 are non-random weights. Then,

n
4 2 2, 2
J:
n
Bln™ Y &smei| < C( max ang)m, (7.5)
t—l W T ey

where C' < 0o does not depend on n and m is the same as in Assumption 2.5(iii).

(ii) The bounds (7.4) and (7.5) remain valid for w; = N.s jNavj — ENzs jNev,i] and for w; =

VsjNzv,j-
Proof of Lemma 7.2. We will prove (i). (The proof of (ii) is similar).

Proof of (7.4). Observe that

n
Espy = Y angjytngia BBy 85 Elwy .wj,].
1 yeenrja=1
By assumptions of lemma, |E[3;,...5;,]| < E ;-11 +.. +Eﬂ;-14 < C and |Elwj, .. wj,]| < Ew?1 +
R Ewé{1 < C, where C' < co does not depend on t. Therefore,

4
Esy, < C ) Aty -0 tgg | B [Wjy w3, ]|
1<j1<..<ja<n

< C(t rillax nan,tj)2 Z an,tjlan,tj:;|E[wj1“'wj4”
RO 1<j1<..<ja<n

IN

C( max an,tj)2
t,j=1,...,n

x{ 3 [+ > [+ >

]}

1<i1<.<jasn ja—j2<2m 1< Sjasngjz—ja>m 1< <jasnija—j3>m

< C(t jfillax nan,tj)z{%t,l + nt2 + Gne 3}

Observe that

nt1 < C E Qn,tj1 An,tj3
1<51 <. <ja<n 1 ja—j2<2m

C(zn: an,tj1)< 2”: A tjs{ En: 1})

J1=1 Js=1 J2,Ja=1:|j2—33]|<2m,|ja—j3]|<2m

IN
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< OmP (Y angi) (Y angs) = Cm*(Y_ang;)”. (7.7)
j=1

Jji=1 ja=1

To bound g 2, recall that by Assumption 17(iii), for js — jo > m,

E[wj3wj4|]:j2] = E[wj3wj4] + T'mja,jsjas (Erz )1/2 < Cn72' (7'8)

mj2,j3ja
Since for j; < jp variables wj,, w;, are Fj, measurable, then
Blwj,..wj,] = B[E[wj,..w;,|Fp]] = Bwjwj, Elwws, | Fj)]
= Elwjwj,] Elwjyw;,] + E[wj, wjyTmjs.jsja] -
Moreover, by the assumptions of the lemma,

oo
Elwj, wj,] = cov(wjy, wj,) = yw(j2 — j1), Z 7w (5)] < o0,
j=—o00
|E[wj1wj2rmj27jsj4}| < (Ew?1)1/4(Ew;‘12)1/4(E7“2 )1/2 < Cn™2

mj2,J3j4

by (7.8) and since Ew;!‘ < C where C' < oo does not depend on j. Therefore,

dnt,2 < C Z Qn,tjq an,tj3{‘7w(j2 - jl)’Yw (]4 - ]3)| + CTL_Q}
1<5: <. <ga<n :jg—ja>2m
< C( Z an,tj1|7’w(j2 - ]1)|)2 + C(Zan,t]’)z
Ji,52=1 j=1
< (Y anii H Y. @GN+ (D ang)’
ji=1 j=—o00 j=1
< O any)®. (7.9)
=1

To bound gt 3, notice that by the Assumption 2.5(iii), for js — j3 > m,

Ewj, | Fjy) = Elwj,] + Tmjsge, (B, ;)4 < On72 (7.10)

myj3,j4
Recall that E|wj,] = 0. For j; < ja < j3 variables wj,, w;,, wj, are Fj, measurable. Therefore,

Elwj,..wj,] = E[Ewj,..wj,|Fj]] = Elwj,wj,wj, Elw;, | Fj]]
= Ewj, wj,wjsrmyjs j |-
Hence,
| E[w;j, wjywiyTmysja ]| < (Ew?lEw?-QEw;-lgEr4 W< on?

mjs,j4
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since under the assumption of the lemma, Ew;-1 < C where C' < oo does not depend on j.

This implies

n
Int3 < Cn™? Z An,tj1 A tjs < C(Za",tﬂ')Q

1<j1 <. <ja<n ja—jz>2m j=1
The bound (7.6) together with (7.7 )-(7.11) implies (7.4).

Proof of (7.5). For 1 <m < k < n, denote

k
g an,tj/ijj7 S(m, k] E Qn,tj /gjwj
j=m

j=m+1

Then,

St = S[1,4)(t) + S(t142m) (t) + S(et2mn) (t)-

Hence,

n

. —1 *

in = 1N E ftsntgt
t=1

= 'Y Gspg(ter +n7t Y Gsperam(Def + 0T Esirromn (De]
t=1 t=1 =

= in,l + Z'n,Z + in,3-
We will show that

2
Ezml

IN

Cm( max antj)2, Elin2| < Cm( max apgj),
t,g=1,..., t,j=1,...,n

Ei2, < Cm( max ang)?,
’ t,j=1,....,m

which implies (7.5):

Blin| < Eliny +in2 +in] < (Elis 1))/ + Elina] + (E[i5 3]) "/
< Om( max anyy).
t,j=1,...,n
We have,
Eliz)] = n™° Z [€essp1,(t) s 5] ()t es]
t,s=1

n t S
= 0233 tjn am Bl6€4Bi B Elwjwme el

t,s=1j=1m=1
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= w2 Blgsh (0], (7.13)
t=1

because Elwjwpyefer] = 0 for s < t since Elej|F;—1] = 0 and for j < ¢, and w; is Fy—4

measurable.

To evaluate E[z’%71], denote A, = m(max¢ j—1,. nant;)°. Then,

[§t3[1 t]( )e *2]
= E ?6?28[1 g(OU (€7 < (ndn) st (1) + I (&fef™ > (nAn) sty (D) )]
= El(nAn) ™" s(14(8)] + (nAn) E[g/ 7],

By (7.4),

2

IN

2
E ant] max An,tj)“m

ES?l,t} (t) L

IN

C'n (t mlax anij)tm? = C(nA,)>.
7‘77
Under assumptions of lemma, E[¢ter?] < E[¢}|Eler?] < C, where C < oo does not depend

on t, 7, m,n. Hence,

n

Cin 23 (nA) ' Esh o (6) + 02 S (nA)Elgle; ) (7.14)
t=1

t=1

E[i2 ]

n,1l

IN

n

< C{n7? fj(mn) +n72) (nAn)} < CA,
t=1

t=1
which proves (7.12) for iy ;.
To evaluate Fiy 2, bound

n t+m

fingl < 07t Y Y ang{l€8 HIwsel |}

t=1 j=t+1

Under assumptions of lemma, E[|&,5;|] < E[¢§7]+ E[87] < C and Elwje;| < E[w?]+ Elef?] <
C. Then,

n t+m

Eling| < 07 > ang E[&B | E|wie] ]
t=1 j=t+1
n t+m
*12 Z antj < rnlax Aptj)M
t=1 j=t+1 b=

which proves (7.12) for iy 2.
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Finally, we estimate El[i, 3]. We have that

n
. _ 2
E%zz,S = E(n 1Z§t3(t+2m,n} (t)gt)
t=1

n
= n 2 Z E[gtgss(t—&-%n,n](t)s(s+2m,n](5)5:5:]
t,s=1
n n n
= n? Z [..]+2n2 Z Z [-] = @n1 + qna-
t=s=1 s=1t=s+1
The bound
n
i = n 2 Z E[ﬁfs%tﬁm’n} (t)ef?] < oA, = Cm(t max nan,tj)2 (7.15)
t—1 sJ =Ly
follows using the same argument as in the proof of (7.14) for E[4 ,].
Next we show that
dn2 = C( max any;)?, (7.16)
t,j=1,...,n
which together with (7.15) proves (7.12) for 4, 3.
Proof of (7.16). Let t > s. Then,
ét&ss(t—i—Zm,n} (t)s(s+2m,n] (S)E?E:
n n
= gtés{ Z an,tjﬁjwj}{ Z an,siﬁiwi}grgza
j=t+2m+1 1=s+2m+1
E[‘Etfss(t—ﬁ—Zm,n} (t)s(s—i-Qm,n] (8)€?€:]
n n
= Z Z an,tjn,si B[&€s B Bil E[wjwiegeg], (7.17)
j=t+2m-+1i=s+2m+1
n n
| E[606s5(t2mm) (DS (sr2mm (SEres) < C > D angjansil Elwgwierel]],

j=t+2m+1i=s+2m+1

since under assumption of lemma, |E[&:&8;8:]| < BEF+ BEX + Eﬁ;-l + EB} < C where C' < o0

does not depend on t,s,j and 1.

We will prove that for j >t+2m+1,i>s+2m+ 1 and t > s,

| Elwjwiefes]| < Cn™2,
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which together with (7.17) implies (7.16):

Gn2 < n_QZ Z ‘E[gtéss(t+2m,n](t)8(5+2m7n](3)5:5:}|

s=1t=s+1
n n n
< Cn”? {n~? jn,si} < ( )’
> n n An tj0n sif > . ,Illlaxnan,t] .
s=1t=s+1 Gri=1 O

Proof of (7.18). To bound |E[wjw;efe}]|, we consider two cases.

a) Let i > t + m. Since j > t + 2m, then by Assumption 2.5(iii),
Elwjwi|Frim] = Elwjwi] + rmemyjic - (Erigimy 0" < Cn2 (7.19)
Moreover, t,s <t 4+ m and therefore variables €}, €} are F;1,, measurable. Thus,

Elwjwieies] = FE[E[wjwieies|Fipm]] = Elefet Elwjw;| Frm)]

= Elefei]Elwjwi] + Elefesrmitm), il = Eletesrm+m),jil
since ElefeX] = 0 when ¢ > s. Notice that
|Elereirm(rmy.jill < (Eler e 2 (Brlypm 0)"° < Cn™?

since under the assumptions of the lemma, E|s}2%c%?] < Eej*+ Ee** < C where C < oo does

not depend on t,s. This implies (7.18).

b) Let s +2m < i < t+m. Since j >t + 2m and Efw;] = 0, then by Assumption 2.5(iii),
Elwj| Frim] = E[ws] + Peim) g = Fmsmygs (B )/t < Cn72

Moreover, for ¢,s,¢ <t + m variables €}, €5, w; are Fyy,, measurable. Thus,

Elwjwieie] = E|[Elwjwieies| Fopml] = E[efeiw Blw;|Fiiml)
= E[€:€:wi’l“m(t+m)’j],

Bleietwmmuimyll < (Blei Bl B A Brd o ) < On?

which implies (7.18).

This completes the proof of (7.4) and of the lemma. O
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8 Additional Monte Carlo Simulations

In this section, we use Monte Carlo simulations to verify the asymptotic theory established
in Section 2 of the main paper for more complex data generating processes. In subsection 8.1
models permit the dependence between regressors and regression noise. In Section 8.2, we

compare the performance of robust standard errors and standard errors in PTVR estimation.

8.1 Regressors generated by AR(1) processes
In Section 3 of the main paper, we consider the model
Yt = O/.’L’t + /8£Zt + uy, t= 17 s Ty

with regressors oy = gutNst, 2t = gztNst Where 14,1, are stationary MA(1) processes.

This section explores the finite-sample performance of PTVR estimation procedures when
the components 7., 1,; of regressors are stationary autoregressive AR(1) processes. The

regressors x; and z; are constructed as:

Tt = GatNat,  Not = 0.2+ 05011 + €41,
Zt = GztNzt, Mot = 0.2+ 0.57, 11 + €,

where €,4 = €;-1 and €, = €;_2. A more complex regression noise u; = hiey is used. We
suppose that ¢; follows GARCH(1,1) process:

et = oper, o0f=14+0707 1 +027 1, e ~ii.dN(0,1). (8.1)

In this setting, {e;} and {1, 7.} are mutually dependent processes.

The scale factor h; is either deterministic or stochastic trend:

Deterministic :  hy = 0.5(t/n) + 0.5, t =1,...,n, (8.2)
t
Stochastic:  hy = |n"7 Z§1| +0.2, (8.3)
i=1

where & is an ARFIMA(0,d,0) process with parameter d = 0.4, see Giraitis, Koul and
Surgailis (2012), Chapter 7.

The time-varying intercept (i; is a sine function:
B1t = 0.5sin (wt/n) + 1.
We centre on two types of time-varying parameter [;:
Deterministic : oy = 0.5sin (27t/n) + 1, t=1,...,n, (8.4)
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t
Stochastic : B = [n7 Z eil +0.2, (8.5)
1=1

where e; is an ARFIMA(0, d, 0) process with parameter d = 0.4.

We consider two data generating models, Model 8.1 and Model 8.2, that include deter-

ministic and stochastic scale factors g.¢, g.¢, t = 1,...,n:

1 27t 0.3t 1 27t 0.4t
Deterministic : g, = = sin il + — 41, g,t = = cos ot +—+1, (8.6)
2 n n 2 n n

¢ ¢
Stochastic : gy = [n~7 va\ +0.2, gu=|n" szi| +0.2, (8.7)
i=1 i=1

where {vg;}, {v,i} are stationary ARFIMA (0, d, 0) processes with memory parameter d = 0.4.

Model 8.1. y;,t =1,--- ,n follows (34) with deterministic scale factors gy, gzt as in (8.6),
ht as (8.2) and parameter Bay as (8.4).

Model 8.2. y;,t =1,--- ,n follows (34) with stochastic scale factors gy ¢, gzt as in (8.7), ht
as (8.3) and parameter o as (8.5).

Tables 1 and 2 report estimation results for fixed parameter o in Model 8.1 and 8.2. They
confirm good coverage rate for bandwidth H = n", h = 0.6,0.7.

Table 1: Estimation of « in Model 8.1. Table 2: Estimation of « in Model 8.2.
h Bias RMSE CP SsD h Bias RMSE CP SD
0.4 0.0239 0.0326 79.2 0.0222 0.4 0.0558 0.0807 &83.4 0.0582
0.5 0.0121 0.0250 90.7 0.0219 0.5 0.0277 0.0641 93.1 0.0578
0.6 0.0053 0.0224 94.6 0.0218 0.6 0.0135 0.0590 94.6 0.0574
0.7 -0.0019 0.0223 94.7 0.0222 0.7 0.0060 0.0576 94.2 0.0572

Next we proceed to estimation results for the time-varying parameter [; with pre-selected
bandwidth H = n%% and H, = n”, h = 0.4,0.5,0.6. Figure 1 displays estimation results for
a single simulation in Model 8.1. It shows that the estimator Et tracks the path of the true
parameter 3; and the true parameter is well covered across the time ¢ by 95% confidence
intervals. Empirical coverage rates, shown in Figure 2, are close to the nominal 95% which
confirms the good finite-sample performance of the normal approximation established for

PTVR estimator for components of 5;.

Figure 3 shows that overall the bias in estimation of 3, is small and increases as the
bandwidth H, increases. Figure 4 reveals that the RMSE is declining when the bandwidth
H, increases, but it can rise when there is a lot of variability in the time-varying parameter

B, see panel (b).
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The estimation results of Model 8.2 are similar to those for Model 8.1, confirming the

applicability of PTVR estimation procedures to our complex regression setting. By address-

ing both deterministic and stochastic scale factors and parameters, our results reaffirm the

theoretical and practical strengths of the PTVR estimation in dealing with complex data

structure.
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Figure 1: PTVR estimates of parameters 3; and their 95% confidence bands for one simulation

of Model 8.1. Sample size n = 1500.
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Figure 2: Empirical coverage probability of 95% confidence intervals for 8; in Model 8.1.

Sample size n = 1500.
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Figure 3: Bias of 5; in Model 8.1. Sample size n = 1500. Bandwidth parameters H =
n%6 H, =n" h=04,0.50.6,0.7.
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Figure 4: RMSE of 3; in Model 8.1. Sample size n = 1500. Bandwidth parameters H =
n%6 H, =n" h=04,0.50.6,0.7.
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Figure 5: PTVR estimates of parameters 3; and their 95% confidence bands for one simulation
of Model 8.2. Sample size n = 1500.
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Figure 6: Empirical coverage probability of 95% confidence intervals for ; in Model 8.2.
Sample size n = 1500.

53



—h=0.4 —h=0.5 —h=0.4 —h=0.5
h=0.6 h=0.7 h=0.6 h=0.7

0.05 027

Wﬂ 0.1

005} /
AR
0.1} AV \/
0.15 ‘ ‘ ‘ 0.1 | ‘ ‘ ‘
0 500 1000 1500 0 500 1000 1500
(a) Bre (b) Bas

Figure 7: Bias of 5; in Model 8.2. Sample size n = 1500. Bandwidth parameters H =
n%6 H, =n" h=04,0.50.6,0.7.
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Figure 8: RMSE of 3; in Model 8.2. Sample size n = 1500. Bandwidth parameters H =
n%6 H, =n" h=04,0.50.6,0.7.

8.2 Robust standard errors vs. classical standard errors

In the main paper, for estimation of PTVR model we apply the robust standard errors, (21)
for fixed parameter, and (31) for time-varying parameter. We use the term classical standard
errors to refer to standard errors commonly used in the literature. In this section, we make
a comparison between the performance of the PTVR estimation based on robust standard

errors, as in (21) and (31), and classical standard errors, as in (23) and (33).

We focus on a simplified version of Model 8.1 of Section 8.1. We set all scale factors

9z,t, 9=t and hy equal to 1 and generate arrays of samples y;, t = 1,--- ,n of the following
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model:

y = amg+ Bz +ug, up =gy (8.8)
= i+ oz + Porzar + 4,

where ; is GARCH(1,1) process as in (8.1). With g, ¢, g;+ = 1, the regressors in (8.8) become

Tt = Nat, Net = 0.2 4+ 0.57; -1 + €41,
2t = Nat, Nt = 0.2+ 057,41 + €2,

where €;,; = ¢41 and €,; = ;2. We set the fixed parameter a« = 1 and employ the time-

varying parameter 5y = (S1+, B2t)’ as below:

P = 05sin(nt/n)+1, t=1,..,n,
Por = 0.5sin(27t/n) + 1.

Table 3 reports the empirical coverage rate for the fixed parameter a based on robust stan-
dard errors (denoted by CP) and classical standard errors (denoted by CPg). We observe
that the robust standard errors produce coverage close to the nominal 95%, and, clearly,

implementation of the classical standard errors leads to coverage distortions.

Table 3: Estimation of o in model (8.8)

h Bias RMSE SD CP CPg

0.4 0.0395 0.0546 0.0377 79.2 62.2
0.5 0.0199 0.0423 0.0374 90.2 779
0.6 0.0098 0.0385 0.0372 924 823
0.7 0.0046 0.0374 0.0371 93.8 83.6

Figure 9 displays estimation results for time-varying parameter 5; for one single sample. We
observe that the true value of 5; is well covered by the confidence intervals based on the
robust standard errors. Figure 10 reports the empirical coverage (in %) of 95% confidence
intervals for parameter (y; based on robust standard errors (blue line) and classical standard
errors (red line). The PTVR estimation based on robust standard errors achieves good
coverage rate, while estimation with classical standard errors leads to size distortions due
to the presence of a non i.i.d noise £; and the dependence between regressors and regression
noise. Figure 11 reports the RMSE in estimation of By with different bandwidth parameters
H,=n" h=0.4,05,0.6,0.7. It shows that RMSE decreases as h increases, but RMSE can

rise because of rapid change in the time-varying parameter [, see panel (b).

95



—Bit — By - -~ CB(95%) —Bit — B - -~ CB(95%) — By — i - - -CB(95%)

0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

— ot — By - -~ CB(95%) — ot — By - -~ CB(95%) —Bot — Boy - -~ CB(95%)

1500 0 500 1000 1500 0 500 1000 1500

0 500 1000

(a) H=n"6 H, =no4 (b) H =n%6 H, =n05 (c) H=n"6 H, =n06

Figure 9: PTVR estimates of parameters 3; and their 95% confidence bands for one simulation
n (8.8). Sample size n = 1500.
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Figure 10: Empirical coverage probability of 95% confidence intervals for 5; in (8.8). Sample
size n = 1500.
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Figure 11: RMSE of 5; in (8.8). Sample size n = 1500. Bandwidth parameters H =
n%6 H, =n" h=0.4,0.50.6,0.7.
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