
Lecture 1: Sentence Parsing

May 2021
Queen Mary University of London

Janet Dean Fodor

The Graduate Center, City University of New York

Background reading
Comprehending Sentence Structure, Fodor (1995).
In An Invitation to Cognitive Science: Language,

Gleitman & Liberman (eds.).
¯ 8.1 From word string to sentence meaning

¯ 8.1.1 Deducing structure

¯ 8.1.2 Empty categories

¯ 8.1.3 Ambiguity

¯ 8.1.4 Anticipating empty categories

¯ 8.1.5 Using linguistic information

¯ 8.2 Are empty categories real?

¯ 8.2.1 Linguistic explanations

¯ 8.2.2 Experimental evidence

¯ Suggestions for further reading

Two tasks for the parser
¯ PHRASE STRUCTURE PARSING:

(The Sausage Machine; Frazier & Fodor 1978)

Combining input words into a syntactic tree structure.

¯ PARSING TRANSFORMED SENTENCES:
(Parsing strategies & constraints on transformations; Fodor 1978)

Deriving a deep structure tree, which can feed
semantic processing.

3

From a word string to its deep
structure: ‘de-transformation’

¯ Transformational grammar is an implementation
nightmare for building a parser.

¯ A heroic effort: Warren J. Plath (1973, CoLing)

¯ Method: De-transformation from the surface form.

● First, compose a phrase structure grammar for surface
sentences. That frequently overgenerates (as expected).

● Then apply inverse versions of the grammar’s
transformation rules, in inverse sequence (surface
to deep structure).

¯ SURELY NOT PRACTICAL! T-rules don’t work in reverse.

Transformations don’t work well in reverse
¯ A unique outcome if transform from DS to SS.

Multiple alternatives (ambiguity!) if transform from SS to DS.

¯ Which booki did the teacher read gapi to the children?
Which booki did the teacher read to the children from gapi?

¯ Whoi did you expect gapi to make a potholder?
Whoi did youj expect gapj to make a potholder for gapi?

¯ Filler is in a fixed position. GOOD
But more than one possible gap position. PROBLEM

¯ The word string is often structurally ambiguous until
the very end.

¯ But mostly, only one analysis is eventually correct.
5

A more practical model for on-line parsing
¯ For a moment, set aside all theoretical commitment to

transformational derivations. (We’ll discuss below.)

¯ Assume one level of structure. Surface structure, with
traces of ‘transformational’ movement or deletion.

¯ This is the parser’s aim. While computing phrase
structure on-line: Identify any potential ‘fillers’ and ‘gaps’,
and pair them up while proceeding left-to-right through
the sentence. One-pass.

¯ If, as can happen, there’s more than one alternative, pick
one (‘serial’ parsing). That may turn out to be a garden
path (incompatible with later words). If so, back up and
retry (just as for g-paths even without fillers & gaps).

6

A one-level simulation
of a multi-level transformational derivation:

pairing up fillers and gaps
¯ Input: Which book did the teacher read to the

children from?

¯The parser aims to build the right tree. It deduces:
● which book = filler, needs gap;
● read is optionally transitive;
● to reveals that read has no following object;
● so this is a possible position for the gap;
● adopt it (semantically acceptable, ok);
● keep parsing. Ok until from is sentence-final.
● Oops! Must accept this new gap, so revise!

7

The Sausage Machine
¯ The Sausage Machine of Frazier & Fodor (1978) is

one version of this. (There could be others.)

¯ It derives its silly name from another characteristic:
it works on one chunk of the sentence (6 or 7 words,
approx.) at a time.

¯ It shunts the chunks to another processing unit, which
composes them into a complete sentential tree.

¯ So it’s actually a 2-stage model. Why that?

¯ Because human performance shows a curious mix of
intelligence and stupidity – as if it blanks out every now
and then. (Every few words, in a single sentence.)

8

Sausage Machine explains the occasional
shortsightedness of the human parser

¯ The human sentence parsing mechanism is prodigious.
It works at great speed, and can cope with long complicated
sentences when necessary. Almost always accurate!

¯ But some perfectly well-formed sentence constructions
cause befuddlement. *

Sue read the note, the memo and the newspaper to Jim.
I met the boy who Jill took to the park’s friend.

¯ It has something to do with constituent length (weight):

¯ John threw the apple that (Mary had discovered) was
rotten out! (√ out of the window and into the rosebush.)

*For befuddlement with center-embedding, see Lecture 4.
9

Phrasal chunking as the explanation
¯This owes much to John Kimball.

¯Kimball (1973) proposed a 2-stage parser.
Stage 1: Package up 6 or 7 words into a

(well-formed) phrasal unit.
Stage 2: Combine those phrasal chunks into a

complete well-formed sentence tree.

¯We dubbed these the PPP (preliminary phrase
packager) and the SSS (sentence structure supervisor).

¯This model is efficient, because each stage is working
with a relatively small number of units (words or chunks).

Where to make the breaks?
¯ The chunks created by the PPP are phrasal: an NP,

or an Adv phrase, sometimes a whole clause.

¯ They are selected by length, not by syntactic category.

¯ Nevertheless, where exactly to make a break does seem
to respect phrasal boundaries.

¯ Not: (I met the boy who Jill) (took to the park’s friend.)

¯ Our hypothesis (now, though not yet in 1978!) is that
the chunks are prosodic phrases. <See Lecture 2.>

¯ That’s great! Not custom-created for syntactic parsing.√
With implicit (silent) prosody, it works for reading too.√

11

NEXT: How to parse transformed sentences?
¯ So far, we’ve not considered how the parser would/could

re-constitute the tree structure for the whole sentence.

¯ In principle: the 6-7-word outputs of the Sausage Machine
could be put back together and submitted for multi-stage
de-transformation to recover a deep structure.

¯ But we know that could be a real headache for the parser.

¯ And there’s no need to do it, if the transformational history
can be folded into a single tree structure, with fillers and
gaps co-indexed.

¯ This is precisely what Generalized Phrase Structure
Grammar does. (GPSG; Gazdar et al.1982, and related work)
See discussion below.

12

How to cope with non-reversibility of some T-rules?
¯ A reversed Passive transformation works well, whether by

standard TG or by GSPG. Because its filler is associated
with just one specific gap location (obj position).

¯ But not so for unbounded movement and deletion rules:
one filler position, maybe many possible gap positions.

¯ Wh-movement can move a wh-phrase from any position
(pace island constraints): subject, object, indirect object,
obj of preposition, object of a subordinate clause….

¯ Only way for a parser to tell is: What’s missing? Look for a
‘gap’ in the sentence, where a phrase would normally be.

¯ Must also include possible gaps (= absence of an optional
constituent). Might turn out to be the true gap – or not.

¯ Often, there are several candidates along the way.
13

But nothing is gained by actually reversing the
transformation. Just co-index filler and gap.

¯ Whether the aim is, or is not, to actually reverse the
derivation to arrive at a deep structure, the parser has
to do the same work. Recognize a filler! Find its gap!

¯ That can be laborious. (Examples below)
But there’s no way to avoid the work of doing it.
It involves checking argument structure to detect any
possibly ‘missing’ constituents, checking for any
potential ‘fillers’ in legitimate positions,….

¯ But in that case: Why not just build a single tree
structure? One pass through the word string, with any
fillers tagged as such, each co-indexed with a trace in
a legitimately related position. Best thing for the parser.

This can be implemented in GPSG
¯ GPSG is a single-level non-transformational theory.

Now largely overlooked in linguistics, though its offspring
HPSG is highly valued in computer science.

¯ Surface tree structures are generated with fillers and
gaps in-place, and co-indexed.

¯ Relations between Fs and Gs are tracked by ‘slash’
features, which percolate filler-information through the
nodes of the tree until an appropriate gap is found.
(Examples below.)

¯ See Gazdar, Klein, Pullum & Sag (1985) for the theory;
and Pollard & Sag (1987, 1994) for HPSG.

¯ Note: I’m ignoring scrambling operations here, to the extent
that they go beyond the bounds of enriched PS grammars.

15

Simple example of a GPSG tree, with topicalization
Slash notation (/NP) indicates element

‘moved’ from that constituent

Filler-gap relations in a phrase structure
grammar (no transformations)

¯ Many (perhaps all) of the familiar ‘constraints on
transformations’ can be formulated simply as relations
between nodes in a GPSG tree.

● Nested Dependency Constraint

● A-over-A constraint

● Coordinate structure constraint

● A range of various island constraints

¯ Because a filler–gap dependency runs through the
tree branches, it can be sensitive to the nodes it
passes through on the way.

17

Transformations don’t work well in reverse
¯ A unique outcome if compute from DS to SS.

Multiple alternatives if compute from SS to DS.

¯ Which booki did the teacher read ECi to the children?
Which booki did the teacher read to the children from ECi?

¯ Whoi did you expect ECi to make a potholder?
Whoi did youj expect ECj to make a potholder for ECi?

¯ The Wh-filler needs to find an empty NP somewhere.
The subject of expect may or may not be an Equi filler.

¯ More than one possible gap position. The word string is
often structurally ambiguous until the very end.

¯ But mostly, only one analysis is eventually correct.
18

Example: The Nested Dependency Constraint
¯ The NDC regulates how fillers and gaps are paired up

in a sentence which has 2 fillers and 2 gaps.
e.g. What are boxes easy to store gap in gap?

¯ The issue arises only if both fillers are of the same
category, e.g. both are NP. If not, there’s no ambiguity.

¯ But it can arise even if the two ‘movement’ rules differ,
e.g. Wh-movement and Tough-movement.

¯ The NDC favors the second filler for the first gap.
Answer: Boxes are easy to store in closets.

Not: Pencils are easy to store in boxes.

19

Filler-gap relations don’t need
transformations

¯ The NDC is very simple - essentially free. It is also:

¯ Very useful – it eliminates ambiguity.

¯ Very efficient – it applies immediately, as soon as the
issue arises, i.e. at the first gap position.

¯ Very strong – it applies even if the outcome is silly,
e.g. What are warehouses easy to store in?

¯ And all of this can be done without any movement,
or transformations at all. With an enriched context-free
phrase structure grammar.
Just: Adopt the closest filler. (Least effort on-line!)

20

Summary
¯ A single tree structure per sentence is easier for

‘left-to-right’ mental computation than a series of
related ones.

¯ Therefore: As a psycholinguist, I strongly vote for
some kind of enriched phrase structure grammar.
I consider this case closed!

¯ As a linguist, I think it is elegant and explanatory.
But I welcome your advice on that.

To end

¯ FOR FURTHER READING:
How can grammars help parsers?
(Crain & Fodor, in Dowty et al. 1985, sections 3.1-3.2)

¯ FOR FURTHER THINKING:

How can linguists help grammars help parsers?

22

23

Abstract
A sentence parsing system has two main tasks:
(i) to combine words into a syntactic tree structure, and
(ii) to deduce the deep structure, which will feed semantic
interpretation. For step 2, Transformational Grammar is
an implementation nightmare. Early attempts to ‘de-
transform’ a surface string were immensely cumbersome.
The major problem was that transformational rules don’t
work well in reverse (surface to deep), especially for a
left-to-right on-line parsing system. More practical is an
enriched phrase structure grammar, which delivers a
single tree structure enriched with notations of ‘fillers’ and
‘gaps’.
I propose that this is better linguistics as well as better
psycholinguistics. And I add a plea to future researchers:
How can linguists help grammars help parsers?

24

