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Laser Ablated nc-Ge
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Beam-lines

Synchrotron Light is propagated through a Beam-line;
placed tangentially to the ring, There afe two types
of beam-lines, depending 6n whether [nsection-Devices

Structure of nanoGe

“iin the Insertion Devices Synchrotron-Light is generated

when the-electrons are accelerated into a sinusoidal
trajectory by a periodic magnetic structure, The light

The light then generated is white (polychromatic),

albeit less collimated and intense than that from the
Insertion Devices.

__or Bending Magnets-are'usad for light production. thus obtained is very intense and collimated.

Shielding wall
Bending Magnets accelerate the electrons cel

Synchrotron light

Light condition.

In an optical “hutch” one selects.certain waye-
\engths, i.e., a small portion of the white electro~
magnetic spectrum, by means of a monochiomator
These photons are transported and focused onto._
the sample by, for example, bent X-ray mirrors.

2. Acce!erat_ion i

~. Data reductlon and analysrs
In the control “hutch™ the experimental set-up and
data collection is under computer control. Data are
edracted, reduced, processed and prepared. for anarysa
and/or storage.

3. Storage
The elecirons-ate then injected into a Starage Ring. where
—~they are-maintained in a circular orbit by strong magnetic
fields. Velocity is kept constant by compensating for the
energy lost as light emission witl efectric fields from a
radio-frequency source. %

Ihzm in a Storage Ring
> Bend(ng Magnets: essentially dipoles that bend lbe
> Quzdrupoles focus the eléctron beam onto a riomin)
# Séxtupoles: reduce the energy dispersion (chromatid
/ S-Couectors small dipofes that correct the electran | '

/ > Pulsed Magnets (Sepfum_s, Kickers and Bumpefs)‘av
They produce strong magretic fields in a short period
magnetic materials. | |
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FIG. 1. A schematic diagram of the excitation-luminescence
cycles. Three different excitations—from a 1s state (absorption
coefficient ;) to a continuum state, a ls state (u,) to a bound
state, and a 2s (u3) to a continuum state—give rise to a single
luminescence with the respective luminescence yields 7, 717,, and
1,. The events of an x-ray fluorescence, a KLL Auger, electron
multiscatterings, a nonradiative decay due to electron-phonon
scattering, and radiative transitions are schematically depicted.
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Imaging with nanoSi

Light from [ li =
I ght waves g waves add,
two objects ! from close ! } objects are
resolved : objects interfere unresolved
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Conclusion

Strong visible luminescence

Strong nonlinear T-dependent PL — requires detailed band-gap
calculations

Strong nonlinear pressure response — requires detailed
atomistic description

Presence of the topological disorder distinctly different from
thermodynamically meta-stable amorphous state

Future work

« Surface effects in PL and Raman

« Resonance effects in excitation

« Blinking

« Magnetic semiconductor nanoparticles



