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What's the problem in optical imaging ?

Airy Discs

Abbe’s [aw sets the resolution

limit - diffraction limit:
d=A/2NA

Intensity Distributions

Solutions - super-resolution:fluorescent super-resolution
SSIM, STED, PALM, STORM



Super-resolution
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Cell imaging
Imaging system
Image processing

Fluorophores



Cell Imaging - Imaging system
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Component elements of the imaging system
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Imaging system assessment
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Cell imaging — Image Processing

Raw image frames

Left : 529*727*500
Right: 64*64*500
Right Scale: 500 nm

QPALM RainSTORM

Processed image

DirectSTORM DeconSTORM Com-STORM




Cell imaging — Algorithm comparison

Algorithm Description Resolution Data te.st Dat'a test
(Image size) (Time)

QPALM Imagel plugin 40nm 64*64*500 1 minute
SOFI Matlab 20nm 64*64*500 1.5 minutes
Al Matlab Pixel size 64*64*500 1.5 minutes

STORM '

Direct-STORM C 20nm 64*64*500 7 minutes
Decon-STORM Matlab <50nm 64*64*500 20 minutes

SONIPITEES: Matlab <40nm 64*64*500 >3 hours

STORM




Cell imaging

Fluorophores : why use Qdots
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»Improved optical characteristics
» Blinking

» Optically stable

» Biocompatibility



Motivation

« Morphological super-resolution imaging
Cell signal imaging
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Sample Preparation
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Characterisation

CHARACTERISATION TECHNIQUES:
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Figure 1 Normalised Raman Shift from
right to left (a) bulk Ge and Ge
nanoparticles formed by using (b) stain
etching, (c) Sol-gel method and (d) LP-
PLA.
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Figure 2 PL spectra of Ge nanoparticles
formed by (a) stain etching (b) LP-PLA,

(c) sol gel synthesis.

Photoluminescence (PL) spectrum has
been recorded from the each of the
samples with excitation at 473 nm.
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Figure 3 TEM micrograph of
Ge nanoparticles from top to
down prepared by (a) stain
etching (b) LP- PLA and (c)
Sol-Gel Method.
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Characterisation
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Raman Spectroscopy: the model for particle size
evaluation

The Raman signal line shape can be described by the following expression,
which includes phonon dispersion and natural line width:
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The phonon confinement function
which defines the area in the
nanoparticle where phonons can
exist. r is the radial position and L is
the particle diameter.
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Size analysis results

Transmission
Technique Electron Spectroscopy
Microscopy Size FWHM
(nm) (nm)  (cm”)
(a) Stain Etching 10 £ 4 6.9 10
(b) LP-PLA 41 £ 22 6.2 12

(c) Sol-Gel Method 106 5.3 14




Structure of nanoGe

 SYNCHROTRON LIGHT

4. Beam-lines

Synchrotron Light is propagated through a Beam-line;
ntially to the ring, There afe two types
ines, depending on whether [nsertion Devices

or Bending Magnetsareusad for light production

1. Electron production
Electrons are generated in the same
a3 in 2 tebevision tube. Subsequently,
are pre-accelerated by electric fields

Acceleration

In a Booster Ring the electrons are further
accelerated with the aid of powerful
magnetic (20,000 times greater than

the magnetic field of the Earth) and
electric fields, until they reach ve-
locities greater than 99,999% of

the speed of light

5. Light condition

3. Storage

The electrons-ate then injected into a Storage Ring. where
they are-maintained in a circular orbit by
fietds. Velocity is kept constant by compensating
energy lost as light emission with efectric fields from a
radio-frequency source.

Magnets in a Storage Ring
> Bending Magnets: essentially dipoles that bend the

> Quadrupoles: focus the eléctron beam onto a nomin
> Séxtupoles: reduce the'energy dispersion (chromatig
act the e

> Pulsed Magnets (S
They produce strong magnetic fields in a short period R

magnetic materials

In an optical “hutch”™ one selects.certain waye-
{engths, i.e., a small portion of the white electio-
magnetic spectrum, by means of 3 monochromator
These photons are transported and focused onto
the sample by, for example, bent X-ray mirrors

The light the 2 ted is white (polychromatic)
albeit bess collimated and intense than that from the
Insertion Devices

In the Insertion Devices Synchrotron-Light is gen:
when the-electrons are accelerated into a sinusoidal
trajectory by a periodic magnetic structure. The light
thus obtained is very intense and collimated
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— = Data reduction and analysis
In the control “hutch™ the ex ental set-up and

tion s L computer control. Data a
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exracted, n
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ODXAS measurements

| [x-rays
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FIG. 1. A schematic diagram of the excitation-luminescence
cycles. Three different excitations—from a 1s state (absorption
coefficient u,) to a continuum state, a ls state (u,) to a bound
state, and a 2s (u3) to a continuum state—give rise to a single
luminescence with the respective luminescence yields 1, 1;, and
1. The events of an x-ray fluorescence, a KLL Auger, electron
multiscatterings, a nonradiative decay due to electron-phonon
scattering, and radiative transitions are schematically depicted.
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XEOL measurements of the Ge

nanoparticles at 100 K.
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Comparison of OD-XAS and EXAFS of

Ge K edge of LP-PLA (a) in k space (b)

in R space.




ODXAS and Structure
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Structure: EXAFS and ODXAS

‘R = 2.44(1) A - consistent with the
corresponding value for the diamond
structure of c-Ge

*Debye-Waller factor (mean square
relative displacements of atoms) of
0.0044(15) A2 (0.0027(2) A2 for c-Ge at
this temperature).

*The coordination number was found to
be reduced (2(0.7) against 4 in c-Ge).
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Structure: EXAFS and MD

FT magnitude
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Conclusion

Comparison of OD-EXAFS, EXAFS and Raman shows that various sub-
structures can be responsible for light emission.

* PL in Ge nanocrystals synthesised by various routes can be of different
origin depending on the surface termination.

*We show that for a given nano-particle set OD-EXAFS can show sub-
nanoparticle resolution.

Future work

« Surface/strain effects in PL and Raman.

« Improving photon yield and controlling peak wavelength.
« Blinking.

 In-vitro bio-stability and toxicity

« Magnetic semiconductor nanoparticles



