
Geometrical theory of critical thickness and relaxation 
instraineddayer growth 

D. J. Dunstan,a) S. Young,b) and FL H. Dixon 
Strained-Layer Structures Research Group, University of Surrey, Guildford, Surrey, GU2 XH, England 

(Received 19 February 199 1; accepted for publication 11 June 199 1) 

In the growth of pseudomorphic strained layers, the critical thickness is the thickness up to 
which relaxation does not occur and beyond which relaxation occurs by plastic 
deformation of the layer. Previous theories have concentrated on the strain energy and 
kinetics of dislocation formation. We present a purely geometrical argument which predicts 
critical thicknesses and also predicts how relaxation progresses with increasing 
thickness. We find that the critical thickness, in monolayers, is approximately the reciprocal 
of the strain. Some relaxation occurs abruptly at critical thickness, and further relaxation 
is hyperbolic with thickness. The model can also handle multilayer structures. If all the layers 
have the same sign of strain, the model predicts that relaxation will occur at the lowest 
interface. These results are found to be in good agreement with experimental observations of 
dislocations in epitaxial structures of InGaAs grown on GaAs. 

1. INTRODUCTION 

We propose a model of plastic relaxation of strained 
epitaxial layers and multilayer structures which is based 
entirely on geometrical considerations. The question of 
how thick such layers may be grown before plastic relax- 
ation sets in, the critical thickness problem, has been stud- 
ied for many years. The accepted models of Frank and van 
der Merwe,’ Matthews and Blakeslee,’ and People and 
Bean3 are based on considerations of the strain energy of 
the layer, the strain energy of a dislocation, and the mech- 
anisms whereby misfit dislocations can be generated. For 
an extensive review, see Ref. 4. These models consider the 
properties of a single dislocation; Willis, Jain and 
Bullough’ develop the energy balance model by taking a 
periodic array of dislocations. All the models agree with 
experiment, to within a factor of about 2, and the key result 
of all the models is that the critical thickness is inversely 
proportional to the strain. 

Much less attention has been paid to the relaxing layer 
above critical thickness. Thus it is not clear whether the 
strain will relax smoothly with increasing thickness or dis- 
continuously at the critical thickness. Also, little attention 
has been paid to the prediction of relaxation in multilayer 
structures, although van der Merwe and Jesser6 have con- 
sidered superlattices (see also Ref. 4), and some work has 
been done on graded epilayers’ and double 
heterostructures.’ Successful prediction of relaxation in 
multilayers in agreement with experimental datas would 
provide an excellent test of critical thickness models. 

Pseudomorphic strained layers, below critical thick- 
ness, are of increasing interest in the field of low-dimen- 
sional semiconductor structures, because of the possibility 
of electronic band structures with new properties leading 
to improved electronic devices. Typical examples are the 
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growth of In,Gar _ XAs on GaAs and Ge.$i, _ X on Si; in 
both systems the lattice mismatch is about 0.07x. On the 
other hand, single-layer and multilayer structures in which 
controlled plastic relaxation occurs are important for the 
engineering of relaxed buffer layers, where the object is to 
achieve a defect-free single-crystal surface with a different 
lattice constant from the substrate. This is necessary for 
the growth of GaAs on silicon substrates and for the 
growth of short-wavelength II-V or long-wavelength III-V 
laser structures on GaAs substrates. 

In our model, strain energies and dislocation energies 
do not appear explicitly. Instead, a simple geometrical ar- 
gument predicts critical thicknesses in reasonable agree- 
ment with previous models and also predicts the behavior 
of the relaxation above critical thickness, in good agree- 
ment with experiment, provided kinetic factors are not im- 
portant. The success of the model shows that energy bal- 
ance calculations are not sufficient and may not be 
necessary to predict critical thicknesses. We begin with an 
idealized version of the model, and then in Sec. III we 
consider the effect of various refinements, including the 
application of the model to multilayer structures. In Sec. 
IV we present some experimental results which support the 
predictions of the model. 

II. THE IDEALIZED MODEL 

We consider a perfect crystalline substrate, with a per- 
fect epitaxial strained layer of thickness G?, strain E, and we 
allow misfit dislocations to form at the interface between 
the layer and the substrate. According to Saint-Venant’s 
principle (see Timoshenko and Goodier) lo and Appendix 
A), the strain field of a dislocation at a depth d must decay 
laterally within a distance of the order d. Consequently, a 
misfit dislocation can only relax the strain in the layer over 
a lateral distance md, where m is a small number, around 
1 or 2, which we estimate in Appendix A. Outside this 
relaxed region, we approximate the relaxation to zero; 
within the relaxed region the relaxation averages b/md, 
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FIG. 1. In (a) the relaxed region around a misfit dislocation is shown for 
three layer thicknesses, in the idealized model of Sec. II. The strain is 
indicated by the hatching: Vertical hatching corresponds to strain in the 
grown-in direction, and horizontal hatching indicates strain of the oppo- 
site sign. The density of hatching is proportional to the strain. In the 
thinnest layer, drawn for half the critical thickness, relaxation induces an 
equal and opposite strain in the region around the dislocation. The next 
layer is at critical thickness, and the strain is fully relieved around the 
dislocation. In the thickest layer, the strain is only partially relieved. Full 
relaxation at critical thickness is shown in (b), by a periodic array of 
dislocations. A random distribution of dislocations at critical thickness is 
shown in (c); the gaps between the unstrained regions are all less than md 
wide. 

where b is the Burgers vector of the dislocation. We ap- 
proximate this to a uniform relaxation of AE = b/md 
throughout the relaxed region [Fig. 1 (a)]. 

The model is then based on the following key observa- 
tions: (1) A dislocation will not form if the relaxation 
b/md exceeds the strain E in the layer. (2) If a dislocation 
forms within a region of width md, translational symmetry 
demands that dislocations will form in every other avail- 
able region of width md in the crystal. 

The first observation is due to the fact that relaxation 
to a state of opposite strain should not occur. The condi- 
tion can be weakened by allowing some opposite strain to 
be developed, we consider this point below (Sec. III C) . It 
is still a geometrical constraint, for although we are aware 
that relaxation occurs in order to reduce the energy of the 
system, we are limiting the amount of relaxation simply by 
observing that large opposite strains are no improvement 
on the original large grown-in strain. The second observa- 
tion expresses the fact that the model does not include any 
assumptions about mechanisms of dislocation generation, 
but does assume that a perfect crystal would have the same 
critical thickness as a real crystal. That is, although real 
crystals contain defects which act as dislocation sources 
and which break the translational symmetry, we assume 
that the value of the critical thickness is not affected, only 
the mechanism of relaxation. If this were not so, any the- 
ory of critical thickness should be dominated by details of 
substrate and epilayer defects. 

Thus the layer is prevented from relaxing at small 
thicknesses simply because the relaxation AE = b/md ex- 
ceeds the strain E; it may relax when b/md = E, and if 
sufficient strain energy is available, the layer will relax 
when this condition is met. Rearranging, we obtain a pre- 
diction for the critical thickness of 

d,= b/ma. (1) 

If we take a Burgers vector of one atomic separation and 
put m - 1, this becomes 

d,- l/E, (2) 

where d is in units of monolayers. This result is in fair 
agreement with other models and with experiment. 

The relaxation induced by a periodic array of disloca- 
tions at the separation md, is b/md,; from Eq. ( 1) this is 
equal to E. Consequently, the idealized model predicts that 
relaxation occurs discontinuously and completely at the 
critical thickness [Fig. 1 (b)]. Discontinuous relaxation was 
also found by Frank and van der Merwe in the one-dimen- 
sional monolayer model.1P4 Refinements to our model, 
however, reduce or eliminate the discontinuity, as we shall 
see in the next section. 

111. REFINEMENTS TO THE MODEL 

A. Random dislocation generation 

We are considering here the relaxation of a perfect 
crystal, without localized dislocation sources. This means 
that dislocations may form anywhere, independently. It 
follows that the regions of width md, containing a disloca- 
tion will not normally be contiguous: There will be gaps 
between them of unrelaxed material [Fig. 1 (c)l. These 
gaps may be of any width up to md, but not larger because 
then another dislocation would form. The analysis of the 
statistical distribution of gap widths is given in Appendix 
B. It is approximately a triangular distribution, so that the 
average gap width is a third of md,. This means that at the 
critical thickness only three-quarters of the initial strain is 
relieved. 

There are two approaches to the subsequent relief of 
strain above critical thickness. We may take an interface 
containing misfit dislocations (a partially relaxed inter- 
face) to be no different from an unrelaxed interface. A 
layer in which three-quarters of the strain has been relieved 
is then equivalent to a layer with a uniform strain of ~/4, 
and Eq. ( 1) then predicts a new critical thickness four 
times as large. Relaxation then proceeds in a stepwise way, 
with the strain being reduced by a factor of 4 when the 
thickness is increased by the same factor (see Fig. 2). Al- 
ternatively, we may note that the strain after initial relax- 
ation is not uniform since the gaps are distributed statisti- 
cally. Larger gaps will tend to induce further relaxation 
before narrow gaps do. In particular, the larger gaps nearly 
md, in width should relax at thicknesses not much greater 
than d,. This effect is expected to smooth the steps after the 
initial relaxation at d, (see Fig. 2); a full statistical analysis 
is, however, outside the scope of this paper. It may readily 
be seen, however, that if the steps are fully smoothed, the 
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FIG. 2. Relaxation is shown as a function of layer thickness as described 
in the text. The dashed line (i) shows the discontinuous, complete relax- 
ation predicted by the idealized model and shown in Fig. 1 (b) . Taking the 
random generation of dislocations into account, as in Fig. 1 (c) the dot- 
dashed line (ii) shows the stepwise relaxation by factors of 4 if the layer 
is assumed to be homogeneous after each step. The dotted line (iii) shows 
schematically the smoothing effect of the layer inhomogeneity. Finally, 
the solid line (iv) shows in addition the effect of softening the edges of the 
relaxed regions around each dislocation, together with the effect of resid- 
ual strain. Note that in all cases the critical thickness is the same. 

state of strain of a layer above critical thickness will be 
independent of the original strain and will be given by the 
thickness alone: 

d&=&o, d<d, 
(3) 

-e(d) =.f-&,/4 d>do 

where so is the mismatch and ( 1 -f) is the fraction of the 
strain which is relieved abruptly at critical thickness. 

B. Softening the edges of the relaxed regions 

We may improve upon the approximation that the re- 
laxed regions are entirely relaxed and that the relaxation 
then falls discontinuously to zero. Since the relaxation falls 
away exponentially (actually as ze -“) with a characteristic 
length of approximately d outside the region of width md 
(see Appendix A), a dislocation will discourage the for- 
mation of other dislocations over a region of width say 
about 2md or more. This does not affect the estimate of 
critical thickness given by the idealized model, but it does 
reduce the initial density of dislocations by a correspond- 
ing factor of about 2 or more. Thus, instead of three-quar- 
ters complete relaxation at d,, we expect relaxation only of 
a third or less of the initial strain (Fig. 2), followed by 
continuous or stepwise relaxation according to the argu- 
ments of Sec. III A. 

C. Overrelaxation 

All we have needed to know about the energies is that 
sufficient energy is available to induce relaxation at 
d, = b/m&. It is interesting to use the geometrical model to 
demonstrate the insensitivity of the critical thickness to the 
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energy available. If in fact much more energy than neces- 
sary is available, it is possible that the layer will relax 
earlier, so that the regions around each dislocation will 
acquire strain of the opposite sign. This is not a violation of 
our premises, however, as we shall see that the geometrical 
constraint is still the most important determinant of the 
critical thickness and the subsequent plastic relaxation. 

The strain energy before relaxation in the region of 
width md around a dislocation is proportional to the vol- 
ume and to the square of the strain: 

E a md%‘. (4) 

If relaxation occurs at a thickness d cd,, the resulting 
strain in the relaxed regions will be E - b/md, and this 
implies a strain energy after relaxation of 

El ccmd2(E - b/md)2. (5) 
If only a fraction g of the strain energy at the critical 
thickness of Eq. (1) is required for plastic relaxation and 
relaxation therefore occurs at d < d, conservation of en- 
ergy gives 

gmdzE2 + El = mt2e2. (6) 

If we write x for d/d, and recall that d, = b/mE, so that 
b/md = E/X, then, substituting from Eqs. (4) and (5) into 
Eq. (6) we have 

x-g 1+ g). (7) 
For g = 1, relaxation occurs at the critical thickness d, as 
defined by Eq. ( 1 ), while at the other extreme of g = 0, 
relaxation occurs at d = dJ2. That is, even if dislocation 
creation required no energy whatsoever, the critical thick- 
ness would only be reduced by a factor of 2. In contrast, in 
the models in the literature, the critical thickness would be 
reduced to zero. This is a very important result, since gen- 
erally there is enough energy available for relaxation at the 
critical thickness, and so it follows that the critical thick- 
ness is in fact determined by the geometrical constraints 
discussed here, with energy balance criteria providing only 
a minor correction, 

D. Structure of a misfit dislocation 

In layers of small strain and large critical thickness, 
our model is insensitive to the structure of the misfit dis- 
locations. When the strain is large and the critical thick- 
ness is only a few monolayers, the structure of the misfit 
dislocation may be the dominant factor. This is seen most 
clearly with small soap bubbles, which have an interbubble 
potential very close to the Lennard-Jones interatomic 
potential” and therefore simulate metallic structures. 
Bragg and Nye created misfit dislocations in a bubble raft 
and showed that they extend over about ten bubbles.12 For 
strains much over 0.05, therefore, there is no geometrical 
constraint and critical thicknesses may be as little as a 
monolayer, depending on energy considerations. For 
smaller strains, dislocations will not be created until they 
can relax material outside the ten bubbles width and our 
geometrical model applies. 
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E. Residual strain 

Previous models predict that the critical thickness di- 
verges to inlinity as the grown-in strain tends to zero. This 
also implies that as the thickness of a relaxing layer is 
increased, the strain tends to zero. Experimentally, a resid- 
ual strain of the order of O.Ol%a. 1% is usually found, 
even in very thick layers. This is caused by the bulk elastic 
properties of the material of the layer. A solid material will 
support a &rite tensile or compressive strain up to its elas- 
tic limit; only for strains above the elastic limit will plastic 
deformation occur. (Surface defects can of course induce 
cracking or brittle fracture in layers under tension below 
the elastic limit.) Consequently, plastic relaxation of a sin- 
gle strained layer will relieve elastic strain only to the elas- 
tic limit and not beyond. The critical thickness therefore 
diverges to infinity as the strain tends to the elastic limit or 
as the stress tends to the compressive strength of the ma- 
terial under growth conditions (Fig. 3). Multilayer struc- 
tures are more complicated and can be designed to elimi- 
nate residual strain; this is discussed below. 

It is difficult to predict the residual strain E, Perfect 
single crystals are very weak at temperatures sufficient for 
dislocations to be mobile, and this is generally the case at 
growth temperature. However, at low growth tempera- 
tures, the strength will be greater. Also, if a layer has un- 
dergone much plastic deformation, there may be a signifi- 
cant amount of work hardening, and this will increase the 
residual strain. However, we are not aware of any detailed 
studies of the mechanical strength of semiconductors as a 
function of temperature and deformation during growth. 

Taking all the factors into account that have been dis- 
cussed in this section, our predictions for critical thickness 
and for relaxation above critical thickness may be approx- 
imated by the following expressions: 

e(d) =EO, d < ~/CEO - E&, 

&(&=1/d+& d>l/(&g-&E,). 
(8) 

F. Multilayer structures 

Many epitaxial structures require a change of lattice 
constant from the substrate to the epilayer of interest, and 
so relaxed buffer layers are required. The control of dislo- 
cations usually requires that the relaxed buffers have sev- 
eral layers of different compositions; sometimes superlat- 
tices are used. It is then important to know not only how a 
single homogeneous layer will relax during its own growth, 
but also whether subsequent layers grown on top will in- 
duce or prevent further relaxation. 

Analysis of multilayer structures begins with the ob- 
servation that any combination of layers will relax in the 
same way as a single layer of the same total thickness and 
with a strain equal to the average strain of the multilayer 
structure. This is because the stress-strain relationships of 
the usual crystals are approximately linear, so that strain 
fields may be superposed. Internal strains within a struc- 
ture consequently do not affect the elastic properties of the 
structure. Thus, during growth of a structure with y1 layers, 
one may consider separately the top layer and the top i 

layers (i = l-n) at any stage of growth. If any one of these 
combinations is beyond the critical thickness of the equiv- 
alent single layer, relaxation will occur at the bottom in- 
terface of that combination. (Exceptions to this statement 
will occur if the internal structure of a multilayer combi- 
nation can obstruct dislocation creation or movement; this 
is a kinetic problem and so outside the scope of this paper. ) 

It is interesting to note that if the strains are all of the 
same signs, relaxation will always start at the deepest in- 
terface. This may be seen by considering a structure of two 
layers. We ignore residual strain, for simplicity, and use 
Fq. (4) to obtain critical thicknesses and relaxation. A 
subcritical layer with a.mismatch of s1 to the substrate is 
grown first, to a thickness di. A layer of mismatch .s2 > cl 
is then grown on top, to a thickness d2 The top layer has 
a critical thickness of l/s2 with respect to the interface 
between the two layers, so that the relaxation will occur at 
this interface at the total growth thickness 

dcz=d, + l/c> 

However, the structure has an average strain given by 

~av= (dlq + d&/(4 + 41, 

and a critical thickness with respect to the lower interface 
of d,, = l/e,;. Since d,, = dl + d2 at relaxation, by rear- 
rangement we obtain ’ 

d,, =dl + l/s2 - dlq/‘.c2, 

which is always less than dc2 when the two strains have the 
same sign. 

Once relaxation has occurred at an interface, it may be 
taken to continue smoothly or to go stepwise (Fig. 3). In 
either case, if critical thickness criteria still apply to the 
other interfaces in the structure, relaxation will not occur 
elsewhere until the layer above the relaxing interface has 
been driven to the opposite sign of strain. However, it is 
not clear to what extent random strain fields in the vicinity 
of misfit dislocations in an interface may reduce critical 
thicknesses in other nearby interfaces. Further experimen- 
tal work.is required in this area. 

IV. DISCUSSION AND EXPERIMENTAL RESULTS 

A. Geometrical models 

The model presented here shows that Saint-Venant’s 
principle is sufficient to account quantitatively for critical 
thicknesses in strained-layer growth. It predicts the critical 
thickness itself, the extent of relaxation at critical thick- 
ness, and the way in which relaxation proceeds as the layer 
thickness increases further. It shows that the geometry of 
the problem is at least as important as the strain energies of 
the layer and of dislocations. 

Obviously, a complete calculation of energy balance 
for random and ordered arrays of misfit dislocations will 
also give a correct prediction-and, indeed, would be 
equivalent to a fully refined version of the present model. 
However, the models in the literature include geometrical 
factors only in the calculation of the energy of a dislocation 
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FIG. 3. The critical thickness predicted by the geometric model is shown 
as a function of the lattice mismatch (a) neglecting residual strain and for 
residual strain due to the elastic strength of the layer with values of (b) 
E, = 2.10 - 4 and (c) .c, = 10 - 3. At high values of mismatch, the structure 
of the misfit dislocation may need to be considered, and in this region the 
predictions are shown by dashed lines. 

at a distance d from the free surface; once this energy is 
obtained, the geometrical information is discarded. 

The value of a geometrical model was summarized by 
Jesser and van der Merwe as being simple and useful4 If 
the model gives critical thicknesses and relaxation in as 
good agreement with experiment as more sophisticated 
models, that is already a sufficient justification. In addition, 
the geometrical model, we believe, indicates that attention 
should be concentrated on the important contribution to 
the energy, the long-range strain fields of individual dislo- 
cations and their interaction. Clearly, this implies that the 
approximations of a single dislocation or of a periodic ar- 
ray of dislocations are unlikely to be adequate. 

B. Comparison with experiment 

A considerable amount of data in the literature sup- 
ports the conclusion that the critical thickness is close to 
inversely proportional to the strain. For example, Cibert et 
aZ.13 give data for CdTe on (001) CdZnTe, grown with 
lattice mismatches from 0.15% up to 6%. Over this range, 
the critical thickness varies from 1000 monolayers to 5 
monolayers, deviating by at most a factor of 2 from 

d,= l/s, 

except at the highest strains. 
There are also data to support the hyperbolic relax- 

ation we predict above critical thickness. In Fig. 4 we show 
experimental data on the dislocation density observed by 
plan-view transmission electron microscopy (TEM) of 
Ine2C$,sAs layers grown on GaAs to various thicknesses. 
Misfit dislocations are observed at the InGaAs/GaAs in- 

FIG. 4. Dislocation densities measured by plan-view TEM are shown for 
Ine,Gae,As layers of various thicknesses grown on GaAs. These values 
are averages of the densities in the (110) and (110) directions. Most of 
the dislocations in thin unreIaxed layers below critical thickness are found 
to be 60” partials and are ineffective in relieving strain; these data points 
are marked by crosses. The majority of dislocations in relaxing layers are 
effective in relieving strain, and their densities are marked by circles. The 
horizontal straight line indicates the density of pure edge dislocations 
required to relieve the strain completely; the other lines are a guide to the 
eye. 

terface. At small thicknesses, a low density of 60” disloca- 
tions is observed, which varies randomly from sample to 
sample, but shows no significant correlation with sample 
thickness. These, we believe, are due to the turning over of 
threading screw dislocations from the substrate and are not 
treated by the present model. The onset of significant re- 
laxation and the critical thickness treated here are marked 
by the generation of high densities of new misfit disloca- 
tions. These, from the figure, follow approximately the be- 
havior required by the model: a jump to about half the 
density required for full relaxation, followed by a smooth 
increase to full relaxation at many times the critical thick- 
ness. Similar behavior has been observed by Moore et a&l4 
who measured the strain in layers of In,,,,Gao,,,As grown 
on GaAs to thicknesses up to 6 pm. Other authors, how- 
ever, report kinetically controlled relaxation (e.g., Whaley 
and Cohemi5); in this case the present model is not appli- 
cable (except for putting a lower limit on critical thick- 
nesses and an upper limit on the extent of relaxation at any 
given thickness). The kinetics of relaxation have been dis- 
cussed by Dodson and Tsao.16 

The prediction that relaxation will always occur first at 
the lowest interface of a structure in which strains are all of 
the same sign is illustrated by the micrographs shown in 
Figs. 5 and 6. A stack of multiple quantum wells of 
Ine2Ga,,sAs in GaAs barriers on GaAs was grown, with 
the thinnest well at the bottom. The strain for this system 
is compressive, with a mismatch of about 1.4%. A detailed 
TEM study of this sample has been reported elsewhere.” 
Figure 5(a) shows a cross-sectional TEM picture of the 
stack, tilted so that the misfit dislocations are seen in pro- 
jection (the short black lines). Only the top three wells are 
above critical thickness for this material combination, and 
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FIG. 5. (a) A cross-sectional TEM micrograph of a multiple-quantum- 
well (MQW) sample of Ine.,GaesAs/GaAs. There are ten wells, with the 
thinnest at the bottom of the stack, of thicknesses 40, 60, 80, 100, 120, 
140, 160, 180, 200, and 220 A, with ba,rriers of 1000 8, of GaAs between 
them. The sample was tilted so that the misfit dislocations are seen in 
projection, as the black lines seen in the top three wells and in the bottom 
well: two other dislocations are indicated by the arrows. The wells are 
spread out by the projection. (b). A micrograph of a similar 
Ine,,Ga,,sAs/GaAs M Q W  sample, containing only four wells of thick- 
nesses 30, 40, 60, and 120 A. Note the complete absence of any misfit 
dislocations. 

a large density of misfit dislocations is seen in them. Dis- 
locations are also seen in the lowest well, indicating that 
during growth of the top wells the entire stack went super- 
critical with respect to relaxation at the bottom interface. 
Clearly, only a little relaxation would be required to 
change the average strain of the stack of wells and barriers 
into tension, after which further relaxation occurs at the 
interfaces of the top wells only. To confirm that the dislo- 
cations under the bottom well are due to the growth of the 
last few wells, we show for comparison in Fig. S(b) a 
sample grown under the same conditions, but with only 
four quantum wells. No dislocations are found. Zou et al9 
have reported similar behavior in multilayer stacks. 

In Fig. 6 we show a cross-sectional TEM picture of a 

FIG. 6. The multilayer structure described in the text is shown in cross- 
sectional TEM. The 2000 A layers of In,Gar ,As (values of x marked) 
each contain a 70-A quantum well with an indium content of x + 0.15 
(marked), 500 8, below the top of the layer. The lowest quantum well is 
70 b of Ine,,,Gaes,As in GaAs, 500 A below the ln,,zGaO,sAs/GaAs 
interface. Although this quantum well is well below critical thickness, 
dislocations can be seen in it. A dislocation wall (marked) is seen in the 
Ine,Ga,,6As layer. 

more complicated structure, in which successive 2000-A 
layers of, respectively, In0,2Ga0.sAs, In0.3Ga,,7As, and 
In0.4Ga0.6As were grown on a GaAs substrate. These thick- 
nesses are well above critical, so that these layers are par- 
tially relaxed. Each layer contains a 70-A quantum well as 
a probe for optical quality. In addition, a 70-A quantum 
well was grown in the underlying GaAs. Each well had an 
indium content 0.15 higher than its barriers. Normally, a 
70-h; well of Ino.isGacssAs in GaAs shows no evidence of 
relaxation at all, whether by TEM or from its optical prop- 
erties; for example, low-temperature photoluminescence 
linewidths of l-2 meV are typical. However, this well, be- 
neath the relaxed material, shows evidence of damage: The 
TEM micrograph (Fig. 6) ,shows several dislocations in it, 
and the photoluminescence (PL) linewidth was broadened 
to about 20 meV. Thus the unstrained GaAs above it has 
not protected the well from relaxation in higher layers, 
consistent with the theory put forward here. 
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APPENDIX A: SAINT-VENANT’S PRlNClPLE AND THE 
EXPONENTIAL DECAY OF A STRAIN FIELD 

Consider a system of forces statically equivalent to a 
zero force and zero couple, applied to a small part of the 
surface of a body. Saint-Venant’s principle states that such 
a system gives rise to local stress and strain only. 

The stress and strain due to localized loading on an 
extended body diminishes with distance on account of geo- 
metrical divergence (in simple cases, by the inverse square 
law) whether or not the resultants are zero. The localiza- 
tion required by Saint-Venant’s principle is stronger than 
this, and we show here that it is essentially exponential. 
Any continuous stress or strain field may be decomposed 
into Fourier components. Accordingly, we consider a 
stress imposed on the surface of a semi-infinite solid, given 
by 

o(x) =sin a.x 

which has zero resultant, and we consider how the stress 
decays into the solid, in the negative z direction. The gen- 
eral equation for the stress function, in two dimensions, is 

$4 a”4 a”+ 
zPaxzayz+p=02 

for which the solutions are 

d(x,z) =sin ax(A cash CYZ + B sinh az 

+ Cz cash az + Dz sinh az), 

giving” 

rr,(x,z) =sin ax(Aa’ cash az + Ba2 sinh az 

+ Ca (2 sinh az + az cash az) 

+Da(2coshaz+azsinhaz), 

CT=(X,Z) = - a2 sin ax(A cash az + B sinh az 

+ Cz cash az + Dz sinh az), 

‘I;(~(x,z) = - cos ax(Aa sinh az + Ba cash az 

+ Ca (cash az + az sinh az) 

+ D(sinh az + az cash az), 

in the usual notation. The boundary conditions are the 
applied sinusoidal stress at z = 0, vanishing stress at 
z = - co, and of course r,,(x,.O) = 0; applying these con- 
ditions, we obtain 

A=B= - l/a’, 

C= D= l/a, 

so that 

u;((x,z) =e” sin ax, 

a,(x,z) = ( 1 - az) e” sin ax, 

T,(x,z) = az8 cos ax, 

giving the decay of all stress components away from the 
surface as approximately exponential. 

This result may be applied to the misfit dislocation as 
follows. We consider now an infinite solid and insert an 
extra plane of atoms in the x-y plane at z = 0, between 
x= -d and x=d, and from y= - 60 toy= 03. The 
stress pattern set up will consist of a long-range resultant 
which will decay geometrically ( l/r) with cylindrical sym- 
metry about they axis, together with a local field which has 
Fourier components with wavelengths shorter than and of 
the order of d. This local field will decay rapidly with 
radius. The slowest decaying components of the local field 
are those of longest wavelength, decaying as r exp( - r/ 
Ad), where /z is of the order of unity. The local field is, 
however, similar to those components of the strain field of 
a misfit dislocation which are effective in relieving misfit 
strain, as may be seen by cutting the infmite solid in half to 
make the y-z plane the free surface and letting the region 
- d <x<O constitute a pseudomorphic layer under biaxial 

stress. The misfit dislocation at z = 0, x = - d therefore 
relieves strain in the strained layer only between z- 3=d. 

APPENDIX 8: DlSTRlBUTlON OF RANDOMLY 
PLACED NONOVERLAPPING LINE SEGMENTS 

If a density p of points are placed at random on a line, 
it is well known that the distribution of intervals between 
them is exponential, so that the probability that an interval 
is of width w is given by the probability density function 

P(w) =pe --Pw. 

A dislocation in our model, however, prevents another dis- 
location forming within a certain width around it. This is 
equivalent to placing nonoverlapping line segments at ran- 
dom on a line. If the segments are of length unity, then for 
densities much less than unity the requirement that the 
segments do not overlap will scarcely change the distribu- 
tion of intervals between them. However, as further seg- 
ments are added, a higher proportion of the line becomes 
unavailable, and there is a limiting density when all the 
intervals are of width less than unity, and no further seg- 
ments may be placed on the line. 

We have performed Monte Carlo calculations in which 
random numbers between 0 and L are generated, and 
points are discarded if they are within unity of a previously 
accepted point. In several runs, with values of L up to 
1000, the limiting,density was found to average 0.75. A 
histogram of the resulting intervals showed a triangular 
distribution. These results are consistent with a distribu- 
tion given by 

P(w) =2( 1 - w), w<l, 

P(w) -0, w>l. 

An analytic solution for the average crack spacing in 
reinforced brittle matrix composite materials (which is 
mathematically the same problem) has been given by Kim- 
ber and Keer.” They obtain a limiting density of 0.748, to 
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which our Monte Carlo result approximates closely. Kim- 
ber has also obtained an anal& solution for P(W), to 
which our Monte Carlo triangular distribution is a rather 
poor approximation. lg 
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