Quarkonia Production at Hadron Colliders

- Physics Motivation
- Experimental Details
- J/ Ψ Production
- Production of J/ Ψ Pairs
- Double Parton Scattering
- $\Upsilon(nS)$ Production
- Conclusions

Eram Rizvi

QCD@LHC Workshop - DESY - Hamburg 2nd September 2013

Quarkonium States

- complex system of states
- provides interesting laboratory for QCD
- production rates influenced by feed-down

QCD@LHC - Hamburg - 2013

 $\chi_{_{\rm C2}}$ (2P)

Introduction

In QCD quarkonia production is a multi-scale problem perturbative expansions possible at high momenta

- non-perturbative effects dominate at low momenta
- \Rightarrow test interface of perturbative and non-perturbative QCD
- \Rightarrow test models of confinement
- \Rightarrow confront lattice QCD calculations to data
- \Rightarrow probe deconfined matter in quark-gluon plasma

Scales:

quarkonia are non-relativistic bound states $v/c \sim 0.3 - 0.1$

several associated energy scales:

- partonic mass, m
- partonic momenta, p ~ mv
- hadronic mass ~ binding energy ~ mv^2

production & decay occur at scale m binding occurs at scales ~ mv QCD Lamb shift occurs at scales ~ mv²

Polarisation measurements \rightarrow Pietro Faccioli's talk Deconfined matter \rightarrow Ionut Arsene's talk

Quarkonia probe production mechanisms many flavours of models:

non-relativistic QCD Colour Singlet Colour Octet Colour Evaporation Model

No model is able to describe all details: rates, polarisations...

⇒ QCD formulated as a hierarchy of effective field theories high energy scales integrated out and matched Factorisation:

qqbar production \Leftrightarrow non perturbative evolution into quarkonium

<u>Colour Singlet Model</u> meson forms if quarks produced in same ang. mom. state as meson described e^+e^- data well failed to describe high p_T TeVatron data but NLO / NNLO* improves description

<u>Colour Octet Model</u>

qqbar produced in colour octet state singlet state evolves from non-perturbative soft gluon emission yields harder pT spectrum & larger production cross section than CSM

Colour Evaporation Model

probability to produce quarkonium state independent of quark colour / spin production cross section is a fraction of the qqbar production

Experiments

ATLAS Muons measured: |η|<2.7 & pT > 4 GeV 10 μm impact par. resolⁿ $/\psi$ mass resolⁿ σ = 46 MeV for |y|<0.75

Muons measured: $2.5 < \eta < 4 \& p_T > 0 GeV$ J/ψ mass resolⁿ σ = 72 MeV

Eram Rizvi

QCD@LHC - Hamburg - 2013

ALICE also has results for electrons |y| < 0.9

- \bullet High pileup / inst. lumi makes triggering low p_T muons very difficult
- Essential for many studies calibration, alignment, efficiencies etc
- \bullet Large samples of J/ ψ and Υ now collected
- \bullet Extended range of production measurements to high meson p_{T}

J/ ψ production measurements $\int \mathcal{L} dt = 2 - 40 \text{ pb}^{-1}$ Y(nS) production: $\int \mathcal{L} dt = 2 - 5 \text{ fb}^{-1}$ Y(nS) polarisation: $\int \mathcal{L} dt = 5 \text{ fb}^{-1}$ $\sqrt{s} = 2.76 \text{ TeV} / 7 \text{ TeV} / 8 \text{ TeV}$ ALICE: $\int \mathcal{L} dt = 5 / 15 \text{ nb}^{-1} \& 1.35 \text{ pb}^{-1}$ minimum bias trigger only LHCb: $\int \mathcal{L} dt = 18 - 51 \text{ pb}^{-1}$

J/Ψ - Inclusive Production

Alice: PLB 718 (2012) 295-306 Alice: JHEP 11 (2012) 065

Measure J/ ψ production in pp collisions Inclusive production (prompt+non-prompt)

CO+CS NLO predicts p_T spectrum well

FONLL model describes b-quark production \rightarrow decay to b hadrons $\rightarrow J/\psi$

FONLL describes inclusive production well Also described \sqrt{s} dependence

J/Ψ - Prompt and non-Prompt Production

Eram Rizvi

J/Ψ - Non-Prompt Production

J/Ψ - Non-Prompt Production

LHCb: JHEP 06 (2013) 064

LHCb measures forward high rapidity region

- 2.0 < y < 4.5
- $0 < p_{T,J/\psi} < 50 \text{ GeV}$
- $\sqrt{s} = 8 \text{ TeV}$

 $\frac{d \sigma(J/\psi)}{d p_{T}} [nb/(GeV/c])$

10

 10^{-1}

Ε

0

 $\sqrt{s} = 8 \text{ TeV}$

5

10

 $10^{3} = (a)$

At higher y observe increased suppression at high p_T

FONLL, 2.0 < y < 4.5

15

20

 $p_{_{\rm T}}$ [GeV/c]

non-prompt J/ ψ agrees well with FONLL Large uncertainties on prediction

3

0

nburg - 2013

2

y

Prompt J/Ψ

10

 $p_{\rm T}$ [GeV/c]

Charmonium Production Ψ(2S)

Eram Rizvi

New result from ATLAS - prompt and non-prompt production of $~\psi(2s) \rightarrow J/\psi + \pi\pi$

 $\rightarrow J/\psi \rightarrow \mu\mu$

Prompt production has no significant feed-down: higher mass charmonia decay mostly to $D\overline{D}$ NLO NRQCD describes prompt production well - perhaps too high at large p_T FONLL provides reasonable model for non-prompt production - p_T spectrum too hard

Charmonium Production Xc1 & Xc2

Eram Rizvi

Prompt J/Ψ Pair Production

Pair production of prompt J/ ψ s is process dependent Could distinguish CO and CSM Contributions from double parton scattering may be significant Fiducial selection of J/ ψ s 2.0 < y < 4.5 pT < 10 GeV

CSM works well - higher statistical precision needed

Non-prompt pair production of J/ ψ s could help understand g \rightarrow bb splitting analyses are underway...

Prompt J/\Psi + W[±] Production

Associated production of J/ ψ s with W[±] \rightarrow First observation from ATLAS at 5.3 σ W selects different partonic initial states \rightarrow different CO / CS contributions Prediction: DD \rightarrow W + I/III is dominated by CO process $d\sigma_W \otimes d\sigma_{J/\psi}$ Prediction: $pp \rightarrow W + J/\psi$ is dominated by CQ process Process is sensitive to double parton scattering: W & $\frac{1}{\psi}$ produced in separate partonic interactions 3×10⁻⁶ dσ(W+J/ψ) $pp \rightarrow prompt J/\psi + W : pp \rightarrow W$ 20 Events / bin ₹ $pp \rightarrow prompt J/\psi + W : pp \rightarrow W$ Measur **ATLAS** Preliminary, $\sqrt{s} = 7 \text{ TeV}, \int L dt = 4.6 \text{ fb}^{-1}$ ď ₽_{2.5} **ATLAS** Preliminary, $\sqrt{s} = 7$ TeV, L dt = 4.6 fb⁻ **ATLAS** Preliminary, $\sqrt{s} = 7 \text{ TeV}$, $\int L dt = 4.6 \text{ fb}^{-1}$ pile-up + W + prompt J/ψ data 0<|y_{_J/ψ}|<2.1, 8.5 < p_{τ J/ψ} < 30 GeV 15 Estimated DPS contribution Spin-alignment uncertainty - ¹ − 1 0 Spin-alignment uncertainty Estimated DPS contribution COM+CSM prediction BR(J/ψ→μμ) × $\frac{1}{\sigma(W)}$ LO CSM prediction 10 NLO COM prediction 1.5 10⁻⁹ 0.5 2.5 15 20 25 10 30 0 1.5 2 3 1 J/w Transverse Momentum [GeV] $\Delta \phi(W, J/\psi)$ 0.5 10 0 Fiducial Inclusive DPS-subtracted Theories Combined CO+CS prediction underestimates measurement

QCD@LHC - Hamburg - 2013

0.5

0

2.5

2

3

 $\Delta \phi(W, J/\psi)$

1.5

- New measurements of Y family of mesons
- Expect better theoretical understanding due to large b mass
- Use high stats samples
- Measure production cross sections and polarisation

ATLAS: PRD 87 (2013) 052004 CMS: CMS-PAS-BPH-12-006 LHCb: EPJC (2012) 72:2025 LHCb: JHEP 06 (2013) 064

- Large uncertainties due to trigger
- Good agreement with CMS & LHCb in central / forward regions

Eram Rizvi

Eram Rizvi

- Production cross sections for J/ ψ , $\psi(2S)$, $\Upsilon(nS)$ measured at LHC by all experiments
- Kinematic range extended up to $p_T \sim 70$ GeV and $y \sim 4.5$
- Good agreement between LHC experiments and TeVatron
- Measurements are mostly systematically limited
- Prompt production well described by NRQCD and the COM
- non-prompt production well described by FONLL

Several interesting measurements underway: DPS sensitivity from J/ ψ associated production with W, Z, J/ ψ

Polarisation measurements for J/ ψ and Y(nS) discussed in Pietro Faccioli's talk

Quarkonia in PbPb collisions discussed in Ionut Arsene's talk

ATLAS

Di-muon candidates / (0.08 GeV) ATLAS Data 50 Muon system $\sqrt{s} = 7 \text{ TeV}$ L dt = 2.2 pb⁻¹ - Fit ····· Bkg. component trigger system & precision tracking 40 lyl<0.75 toroidal B-field ~ 0.5T 30 |η|<2.7 J/ψ mass resolution 20 transverse impact parameter resolution $\sigma = 10 \ \mu m$ σ = 46 MeV for |y|<0.75 10 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 Mass [GeV] Muon Detectors Tile Calorimeter Liquid Argon Calorimeter Inner detector Transition radiation tracker: particle ID, track finding silicon strips: momentum measurement silicon pixels: secondary vertex Solenoidal B-field = 2T|η|<2.5 **Calorimeters** coverage |n|<4.9 photons, missing energy **Triggers**: single & dimuon triggers pT > 4 GeVopposite sign muons from common vertex Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Eram Rizvi

ALICE

J/Ψ - Non-Prompt Fraction From b

Atlas: PLB 697 (2011) 294–312 CMS: PRL 107 (2011) 052302 Alice: PRL 109 (2012) 072301

Heavy ion collisions provide QCD testbed for deconfined matter Quark-gluon plasma expected to occur when energy density $\sim 1 \text{ GeV/fm}^3$

plasma screens the quark and anti-quark

- \rightarrow suppression of quarkonia production
- \rightarrow mesons melt at temperature T relative to meson binding energy
- \rightarrow ground state J/ ψ and Υ are less suppressed than weakly bound excitations

 \rightarrow feed-down from excitations will also affect the ground state production rates

CMS:
$$\frac{Y(2S+3S)/Y(1S)|_{PbPb}}{Y(2S+3S)/Y(1S)|_{pp}} = 0.31^{+0.19}_{-0.15} \text{ (stat.)} \pm 0.03 \text{ (syst.)},$$

ALICE measure forward rapidity J/ ψ suppression R_{AA} = PbPb rate / pp rate scaled to same $\sqrt{s_{NN}}$ and

See talk of Ionut Arsene

Eram Rizvi

Y(nS) Polarisation

<u>یں</u>

Theoretical descriptions of quarkonia polarisation have traditionally been difficult

No model successfully describes production rates and polarisation

Try to understand mechanisms producing polarisation

Detector acceptance corrections can strongly depend on polarisation model chosen \rightarrow uncertainties in production rate measurements

$$\frac{dN}{d(\cos\vartheta)d\varphi} \propto 1 + \lambda_{\vartheta}\cos^2\vartheta + \lambda_{\vartheta\varphi}\sin^2\vartheta\cos\varphi + \lambda_{\varphi}\sin^2\vartheta\cos\varphi.$$

 $\boldsymbol{\lambda}$ are the polarisation parameters in a given frame

Several different polarisation frames can be defined:

- Centre-of-mass helicity frame HX: z axis in direction of meson
- Collins-Soper frame: CS z axis in direction of relative velocity of incoming partons
- Perpendicular helicity frame: PX z axis ⊥ to Collins-Soper frame z axis

transverse: $\lambda_{\theta} > 0$

longitudinal: $\lambda_{\theta} < 0$

Eram Rizvi

Good agreement between CMS and CDF

Models do not accurately describe the measurements

 $\Upsilon(3S)$ is affected by feed-down from $\chi_b(3P)$...

LHCb arXiv:1307.6379 Alice: PLB 108 (2012) 082001

- \bullet Prompt J/ ψ polarisation measured in HX & CS frames
- Reasonable agreement between experiments
- \bullet Small polarisation observed for λ_{θ}
- Polarisation consistent with zero for $\lambda_{\theta\phi}$ and λ_{ϕ}
- CS cannot describe p_T dependence
- NRQCD (CO) predicts zero polarisation closest to data

CMS arXiv:1307.6070

CMS measurement in central rapidity range: |y| < 0.6

kinematically forbidden

• No significant polarisations observed in either CS or PX frames

- Data disagree with NRQCD predictions (not shown)
- Similar measurements performed for $\Psi(2s)$