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local gauge symmetry)
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Feynman Graphs are used to compute correlators in Quantum
Field Theory (QFT) .

Simplest quantum field theories are scalar field theories (no
local gauge symmetry) and quantum electrodynamics (U(1)
local gauge symmetry)

Quantum chromodynamics requires non-abelian gauge
symmetry SU(3). ’t Hooft used the idea of large N gauge
theory e.g U(N) local symmetry, in a 1/N expansion, as an
approximation.



Feynman graphs are graphs in math sense. Vertices and links
joining vertices. Vertices have permutation symmetry.

’t Hooft found that the large N expansion is organised by ribbon
graphs or embedded graphs on Riemann surfaces. Vertices
have cyclic symmetry.



Feynman graphs are graphs in math sense. Vertices and links
joining vertices. Vertices have permutation symmetry.

’t Hooft found that the large N expansion is organised by ribbon
graphs or embedded graphs on Riemann surfaces. Vertices
have cyclic symmetry.

He interpreted the Riemann surfaces in terms of string theory
as string worldsheets of a dual string theory.



The original remark of ’t Hooft concerned the structure of the
large N expansion.

Early-Mid 90’s : concrete combinatoric versions of gauge-string
dualities were found. Precise connections to holomorphic map
counting.



The original remark of ’t Hooft concerned the structure of the
large N expansion.

Early-Mid 90’s : concrete combinatoric versions of gauge-string
dualities were found. Precise connections to holomorphic map
counting.

Mid-late 90’s : AdS/CFT – deeper versions of gauge-string
duality, where observables have non-trivial space-time
dependences.

All relies on large N.



At the combinatoric level, there are also string dualities for
Feynman graph counting which do not rely on large N, and are
relevant to scalar field theories or QED.



OUTLINE

◮ Review of strings and simple examples of gauge-string
duality.

◮ Two dimensional Yang Mills at large N and TFT with Sn

gauge group.
◮ Schur-Weyl duality ; Riemann existence theorem.
◮ Recent work : Graph counting in scalar field theories and

string amplitudes. Without large N.
◮ Connections between strings, permutations, graphs hinting

at more general QFT-string dualities



String theory :

Point particles moving in spacetime are replaced by
one-dimensional objects.

Worldlines - curves describing trajectories of points in
space-time - are replaced by Worldsheets (two-dimensional
surfaces).



A string theory is a path-integral over spaces of maps from
worldsheets to space-time.

Worldsheets have a genus h. A string theory has a parameter
gst , the string coupling .

Contributions to physical observables, from genus h
world-sheets, are weighted by g2h−2

st



Traditionally string theories are described by writing a
worldsheet action

S =

∫
Σh

√
ggab∂aXµ∂bX νGµν

Xµ are space-time coordinates. They are dynamical variables
Xµ(σ, τ) depending on world-sheet coordinates (σ, τ).

This traditional approach leads to integrals over Mh,n, the
moduli space of conformal structures of the world-sheet metric
g



A recent theme in last 20 years :

Emergent string theories.



Simplest string theories emerge from Matrix integrals.

Z =

∫
dX e− 1

2 trX 2Op(X )

X is an N × N hermitian matrix. Op(X ) is a product of traces
trX , trX 2, · · · . For fixed degree d in X , the observables are
parametrized by partitions p of d .





Permutation sums

〈Op〉 =
1

(2n)!

∑
σ∈p

∑
γ∈[2n]

∑
τ∈S2n

δ(σγτ)NCσ+Cτ−n

The sum γ is over the conjugacy class [2n] – of permutations
with n cycles of length 2.

where

δ(σ) = 1 if σ = 1
= 0 otherwise



Branched Covers

Sum of three permutations with a constraint that they multiply to
1. Weighted by 1/N according to cycle structures.

π1(P
1 \ {3punctures}) is the group with 3 generators and one

relation.

From covering space theory, the permutation sum is counting
branched covers of P

1.



Holomorphic maps

Branched at 3 points. If ∂z f (P) = 0 for some P on the cover,
then f (P) is one of three points.

Branched covers are holomorphic maps.



Holomorphic maps

Branched at 3 points. If ∂z f (P) = 0 for some P on the cover,
then f (P) is one of three points.

Branched covers are holomorphic maps.

The string theory thus emerging is simplest at large N. The
contributions from genus h are weighted by N2−2h.

We expect there is a string theory where gst = 1/N and the
worldsheet path integral over maps which localizes to
holomorphic maps – and which computes the same
observables Op.



Integrals → QFT

In Quantum field theories the matrix X is replaced by a
space-time dependent matrix – called a field.

X → X (t , x1, x2, x3)

The integrand is replaced by some spacetime integral e.g.

e
1
2

R

d4xtr∂µX∂µX−trX 2

The integral
∫

dX becomes a path integral.



The most famous example is four dimensional QFT, with U(N)
gauge group (and N = 4 supersymmetry).

The fields appearing in the action are connections for U(N)
bundles over R

4 ( along with other fields).

X (x1, x2, x3, t) → A(x1, x2, x3, t)

A is a 1-form with values in the Lie algebra u(N). Action is
constructed from the curvature of this connection.

In this case the dual string theory is conjectured to be
ten-dimensional, and the space-time is AdS5 × S5. This version
of string-QFT duality is called AdS/CFT.



There is a lot of evidence for the conjecture. There are physical
arguments based on D-brane physics and string theory in
favour of the conjecture.

Simpler models of gauge-string duality were precursors of
AdS/CFT, and serve to get insights on the mathematical
mechanisms for gauge-string duality.



Another lower dimensional QFT will be of interest. It is U(N)
gauge theory on a closed Riemann surface ΣG, or with
boundaries ΣG,B

The case where the Riemann surface is a cylinder is of
particular interest.



The path integral for a closed Riemann surface depends only
on the area A and genus G, and of course N. Take G > 1.

The leading large N answer is

Z (G, A = 0) =
∑

s1,s2,···sG

∑
t1,t2,···tG

δ(s1t1s−1
1 t−1

1 s2t2s−1
2 t−1

2 · · · sGtGs−1
G t−1

G )

where

δ(σ) = 1 if σ = 1
= 0 otherwise



This is counting homomorphisms from π1(ΣG) to Sn.

From Riemann-existence theorem, this is equivalent to counting
unbranched covers of Σh → ΣG.

At higher orders in the 1/N expansion, the coefficients have an
interpretation in terms of branched covers of ΣG.



The large N answer can also be interpreted in terms of gauge
theory with Sn gauge group.

In lattice gauge theory, we discretize ( triangulate) the surface
and associate group elements to edges. To the 2-cells
(triangles) we associate a weight depending on the product σ of
group elements for edges around the 2-cell.

The continuum limit is obtained by refining the lattice and
studying the resulting change of the lattice action.



The simplest lattice gauge theory for Sn is defined using

ZP(σ) = δ(σ) =
∑

R

dRχR(σ)

n!

Under refinement of the discretization, the weight of for 2-cells
is unchanged.



Figure: Two discretizations of the disc with the same boundary
condition.

The continuum result can be computed with a single-cell. It
leads to the answer given before. The lattice gauge theory is
actually a topological field theory.



For 2dYM on a cyclinder, defining the partition function requires
specifying the boundary condition, which is a group element U
in U(N) at each boundary.



The result is a gauge-invariant function of U. Can be written in
terms of characters of U in irreps. of U(N). Instructive to go
transform to a permutation basis of these gauge invariant
operators.

Gauge-invariant functions are traces.

tr(U3), trU2trU, (trU)3



trU2 = U i1
i2

U i2
i1

= U i1
iσ(1)

U i2
iσ(2)

with σ = (12)

(trU)2 = U i1
i1

U i2
i2

= U i1
iσ(1)

U i2
iσ(2)

Multi-traces are constructed by using different permutations.

trV⊗n(σU⊗n)

Different permutations with the same cycle structure give the
same trace. Replcing σ → γσγ−1 leaves the trace invariant.



In 2dYM, the partition function Z (U1, U2) on a cylinder (and any
Riemann surface) can be written exactly in terms of
representations of U(N).

We can transform to a permutation basis

Z (σ1, σ2) =

∫
dU1dU2Z (U1, U2)trn(σ1U†

1)trn(σ2U†
2)

Z (σ1, σ2) =
∑
γ∈Sn

δ(σ1γσ2γ
−1)



In 2dYM, the partition function Z (U1, U2) on a cylinder (and any
Riemann surface) can be written exactly in terms of
representations of U(N).

We can transform to a permutation basis

Z (σ1, σ2) =

∫
dU1dU2Z (U1, U2)trn(σ1U†

1)trn(σ2U†
2)

Z (σ1, σ2) =
∑
γ∈Sn

δ(σ1γσ2γ
−1)

This is the answer in the zero area limit.



Figure: Paths and permutations on cylinder



The partition function vanishes unless σ1 and σ2 are in the
same conjugacy class.

Geometrical interpretation : Unbranched Covering spaces of
cylinder.
Physical interpretation : The covers are string worldsheets.



The partition function vanishes unless σ1 and σ2 are in the
same conjugacy class.

Geometrical interpretation : Unbranched Covering spaces of
cylinder.
Physical interpretation : The covers are string worldsheets.

The inverse image of a boundary circle is a union of circles,
with winding numbers described by the permutations σ1, σ2.

The condition σ1γσ2γ
−1 says that that there are no branch

points in the interior of the cylinder, so up to relabellingby γ, the
windings are the same.



A third connection involves a QFT without large N. Just real
scalar field theory, for concreteness, take vacuum Feynman
graphs in φ4 theory.

Calculations in QFT are simplified by organizing the large
number of Wick contractions, into graphs, each of which comes
with a symmetry factor.

Each Feynman graph is associated with an integral. Not of
interest at the moment. Multiplicities and Symmetry factors.



For v = 1 there is one graph. For v = 2, there are 3 graphs, etc.

Figure: One vertex vacuum diagram in φ4 theory

Figure: Two vertex vacuum diagrams in φ4 theory



This sequence of vacuum diagrams

1, 3, 7, 20, 56, 187, 654, 2705, 12587, 67902, 417065, ..

has an expresion in terms of string amplitudes, of the kind that
appears in 2dYM.



This sequence of vacuum diagrams

1, 3, 7, 20, 56, 187, 654, 2705, 12587, 67902, 417065, ..

has an expresion in terms of string amplitudes, of the kind that
appears in 2dYM.

Number of diagrams with v vertices

=
1

|H1||H2|
∑

σ1∈H1∈S4v

∑
σ2∈H2∈S4v

∑
γ∈S4v

δ(σ1γσ2γ
−1)

A well-defined quantity in Sn TFT .



H1 is a subgroup of S4v :

(S4 × S4 · · · × S4) ⋉ Sv ≡ Sv [S4]

There are v copies of S4 and Sv acts as an automorphism of
this product group.
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H1 is a subgroup of S4v :

(S4 × S4 · · · × S4) ⋉ Sv ≡ Sv [S4]

There are v copies of S4 and Sv acts as an automorphism of
this product group.

H2 is a subgroup of S4v :

(S2 × S2 · · · × S2) ⋉ S2v ≡ S2v [S2]

H1 is the symmetry of the v 4-valent vertices. H2 is the
subgroup of permutations which commute with

(12)(34) · · · (4v − 1 4v)

which has to do with the pairing-property of Wick contractions.



The key step in deriving this expression is to describe the graph
in terms of a pair of data Σ0, Σ1, where Σ0 is associated with
vertices and Σ1 with Wick contractions

Figure: Two vertex vacuum diagrams in φ4 theory



Figure: Numbering the half-edges



Figure: Splitting the half-edges



(a) Σ0 = < 1, 2, 3, 4 >< 5, 6, 7, 8 >
Σ1 = (12)(34)(56)(78)

(b) Σ0 = < 1, 2, 3, 4 >< 5, 6, 7, 8 >
Σ1 = (23)(16)(47)(58)

(c) Σ0 = < 1, 2, 3, 4 >< 5, 6, 7, 8 >
Σ1 = (15)(26)(37)(48)

This also leads to neat symmetric group expressions for
symmetry factors which have a string interpretation.



The pair Σ0, Σ1 can be understood in terms of a double coset
description of Feynman Graph counting :

S4v \ (S4v × S4v )/(H1 × H2)

which leads directly to counting formulae for the Feynman
graphs in terms of cycle indices of H1, H2. (classic results of
Read in 1960’s)

which are here interpreted in terms of Sn TFT and covering
spaces.



Figure: Double coset connection



This counting can be expressed in terms of representation
theory

∑
R∈Rep(S4v )

MR
1H1

MR
1H2



Similar results can be derived for a variety of Feynman graph
problems.

Group acts on Feynman Graph problem
Sv [S4] permutations in [22v ] of S2v φ4 theory

Sv [S3] permutations in [2
3v
2 ] of S3v/2 φ3 theory

Sv4 [S4] × Sv3 [S3] permutations in [2
(3v3+4v4)

2 ] of S3v3+4v4
φ3 + φ4 theory

Sv [S2] All permutations in S2v Yukawa/QED
Sv [S2] All even-cycle permutations in S2v Furry QED
Sv [Z4] permutations in [22v ] of S2v Large N expansion of Matrix φ4
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The connection between Strings and Permutations is
fundamental to gauge-string duality.
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Conclusions
The connection between Strings and Permutations is
fundamental to gauge-string duality.

There are “topological” dualities between QFT and strings
related to the counting of Feynman diagrams which do not
involve large N.

Are there physical versions of such dualities involving non-trivial
dependence on space-time and momenta ?


