

some

Non-Accelerator Neutrino Physics*

Jeanne Wilson

IOP HEPP 2013, Liverpool

8/4/2013

*Excluding neutrino mass measurements

Content

- Probing neutrino properties
 - Reactor neutrinos: θ_{13} , Δm_{12} , reactor anomaly
 - Low energy solar neutrinos: LMA, MSW, new physics
 - Mass hierarchy
- Probing neutrino sources
 - SuperNova physics
 - Geo Neutrinos
 - Solar Physics
 - Core metallicity
 - Luminosity constraint

Experiments

- SNO+ (780† LS)
- Borexino(280t LS), KamLAND (1kt LS)
- Daya Bay, RENO, Double Chooz (Gd-LS)
- Proposed experiments:
 - LAGUNA:
 - Memphis (100kt H₂O Cerenkov)
 - Glacier (100kt liquid Ar)
 - LENA (5kt LS)
 - HyperKamiokande (H₂O Cerenkov)
 - Daya Bay II (20kt LS)
- SuperK (H₂O Cerenkov), IceCube/DeepCore/PINGU (Ice Cerenkov), KM3NeT(sea Cerenkov), Anita (Balloon radio), Askaryan Radio Array* (*Track 4 talk by J Davies)

LS Detector: SNO+

$\overline{v_e} + p \rightarrow n + e^+$

 $v_{e,x} + e^{-} \rightarrow U_{e,x}$

780 tonnes linear alkyl benzene (LAB) liquid scintillator Low energy threshold for solar measurements

Very low backgrounds U, 1h < 10⁻¹⁷ g/g

Separate phase: Isotope loading for 0vββ measurement

2km underground, 6000 mwe Ultra-low CR µ background No ¹¹C

> 12m diameter acrylic vessel (AV)

~9500 PMTs

~7 ktonne H_2O shielding

SNO+ status

Reactor Neutrinos

FIG. 3: Antineutrino survival probability $P(\bar{v}_e \rightarrow \bar{v}_e)$ as function of the ratio L/E [km/MeV]. Vertical lines indicate some relevant reactor neutrino energies. E = 1.8 MeV corresponds to the reaction threshold. The peak of the energy spectrum weighted by the detection cross section in the absence of oscillation is at $E \sim 4$ MeV, and the contribution of neutrinos with energy $\lesssim 5$ MeV is the most important.

Daya Bay, RENO, Double Chooz

Reactors – Δm_{12}^2 (Θ_{12})

Reactor Anomaly

- Experiments at <100m from reactors measure v fluxes ~0.94×prediction (deviates from 1 @ 98.6% C.L.)
- Fourth non-standard v state driving oscillations at short distances?

Phys.Rev.D83:073006,2011

SoLid at ILL

Imperial College

http://www2.physics.ox.ac.uk/research/mars-project/solid contact : <u>antonin.vacheret@physics.ox.ac.uk</u>

- ILL-HFR 58 MW compact reactor core and very short baseline (from 6m) provides high sensitivity to search for short oscillations
- Novel detector technology based on composite plastic/ 6LiF:ZnS(Ag) scintillators
 - high neutron-gamma discrimination (~10-7) enables trigger on neutron signal
 - Digitiser electronics and compact read out system (MPPC)
 - Good energy resolution (0.2 @ 1 MeV)
- highly segmented volume and 3D reconstruction
 - unprecedented background rejection capability !
- limited gamma shielding needed and active muon veto
- 2x 1.44T Fiducial (11k cubes, 2k chans) & 2 years running (300days/year) from early 2015
- prototype in construction & proposal in preparation

J. Wilson, Non-accelerator neutrino physics

Solar Neutrino Physics

Solar Neutrino Oscillations - status

Solar Neutrino Oscillations - status

 Δm_{12}^2 and θ_{12} suggest MSW but direct evidence would be nice

- Day-Night asymmetry
- Spectral distortion of ⁸B vs

SNO: http://arxiv.org/abs/0910.2984

Solar Neutrino Oscillations - status

 Δm_{12}^2 and θ_{12} suggest MSW but direct evidence would be nice

- Day-Night asymmetry
- Spectral distortion of ⁸B vs

J. Wilson, Non-accelerator neut Friedland, Lunardini & Pena-Garay hep-ph/0402266

Solar Neutrinos

A question of depth: ¹¹C

Borexino

@ LNGS, 3800 mwe 300 tonnes LS 2200 PMTs

Is LMA the full story?

A question of depth: ¹¹C

SNO+ solar signals: low E

24

Neutrino Mass Heirarchy

- Daya Bay 2
 - 20kTon LS detector 60km from Daya Bay reactors (on θ_{12} oscillation maximum)
 - Look for effects of Δm_{23} on θ_{12} oscillation
 - Fourier transform

Neutrino Mass Heirarchy

- Daya Bay 2
 - 20kTon LS detector 60km from Daya Bay reactors (on θ_{12} oscillation maximum)
 - Look for effects of Δm_{23} on θ_{12} oscillation
 - Fourier transform analysis
- PINGU
 - Increase detector density in Antarctic Ice cherenkov experiment for sensitivity down to 1GeV atmospheric neutrinos
 - hierarchy sensitivity through neutrino/anti-neutrino asymmetries and matter oscillation effects
- Super-Kamiokande
- Supernovae neutrinos

Ask not what we can learn of the neutrinos, ask what the neutrinos can do for us

SuperNova Neutrino Physics

Supernova Physics

ents in SNO+, SN@10kpc, E>0.2MeV

Anti)Neutrino Interaction	Expected Number of Events
$\nu_e^{} + e^{-} \rightarrow \nu_e^{} + e^{-}$	8
$\overline{\nu}_e^{} + e^{-} \rightarrow \overline{\nu}_e^{} + e^{-}$	3
$\nu_{\mu,\tau} + e^- \rightarrow \nu_{\mu,\tau} + e^-$	4
$\overline{\nu}_{\mu,\tau} + e^{-} \rightarrow \overline{\nu}_{\mu,\tau} + e^{-}$	2
$\overline{\nu}_e + p \rightarrow n + e^+$	263
$\nu_e + {}^{12}C \rightarrow {}^{12}N + e^{-1}$	27
$\overline{\nu}_e + {}^{12}C \rightarrow {}^{12}B + e^+$	7
+ ${}^{12}C \rightarrow {}^{12}C^*(15.11MeV) + \nu_{g}$	58
$\nu_x + p \rightarrow \nu_x + p$	273**

Phys.Rev.D83 arXiv:1103.2768

Assay the Earth by looking at its neutrino glow

- Radiogenic contribution to heat flow and energetics in the deep earth.
- Test basic models of crust composition

GeoPhysics

- SNO+ more geov than KamLAND
 - continental vs oceanic crust
- SNO+ less reactor v than KamLAND

60

10

Positron Deposited Energy (MeV)

2

J. Wilson, Non-accelerator neutrino physics

Solar Physics

• pp neutrinos:

 $p+p \rightarrow ^{2}D + e^{+} + v_{e}$

- highest flux, smallest theoretical uncertainty
- CNO neutrinos: test solar core metallicity
- Large uncertainty in solar models

DBD Measurements

- As a direct result of work initiated at Oxford, the SNO+ collaboration has identified a more favourable isotope to load into the liquid scintillator for high sensitivity to $0v\beta\beta$.
- Following the development of a new metal loading technique and purification method by colleagues at BNL, and a thorough independent internal review of the Oxford/Queens' proposal completed last month (March), the collaboration has decided to pursue the deployment of ¹³⁰Te as the primary target isotope for double beta decay.
- We are planning for an initial loading corresponding to 800kg of ¹³⁰Te (0.3%) to begin in 2014. Following a successful demonstration of this phase and pending results from the continuing R&D effort, we would then aim to increase the loading to the multi-tonne scale as soon as is feasible, with the goal of achieving sensitivity near the bottom of the inverted neutrino mass hierarchy.

08/04/2013

Summary

- Reactors, Solar, SN neutrinos useful tools to probe neutrino properties
- Neutrinos becoming useful tools to understand neutrino sources
- It's hard need big, deep, multi-purpose experiments.
- Balancing act against other purposes
 - SNO+ to focus on $0v\beta\beta$ with ¹³⁰Te
- Apologies for everything I missed out:
 - Atmospheric vs, SuperNova relicvs, AGNs, GRBs, ...

Backup slides

Reactor θ_{13}

sin²20₁₃ Measurements

http://arxiv.org/pdf/1207.6632.pdf

J. Wilson, Non-accelerator neutrino physics

Extra-terrestrial neutrinos

Solar Neutrinos

Solar neutrinos

Other Low E Backgrounds

SNO+ Solar Prospects

SNO+ has decided to prioritise $0\nu\beta\beta$

• Radon daughters have accumulated on the surface of the AV over the last few years in a significant way. If these leach into the scintillator, the purification system has the capability to remove them.

• However, depending on the actual leach rate, that removal might be inefficient and the ²¹⁰Bi levels in the scintillator too high for a pep/CNO solar neutrino measurement without further mitigation.

- Mitigation could include enhancing online scintillator purification, draining the detector and sanding the AV surface to remove radon daughters, or deploying a bag.
- $0\nu\beta\beta$ and low-energy 8B solar neutrino measurements are not affected by these backgrounds

SNO+ solar signals

SNO+ solar signals

GeoPhysics

 KamLAND and Borexino combined:

SuperNova Neutrino Physics

- Challenge to decouple details of SN model from neutrino physics.
- model ~independent handles on mass hierarchy (θ_{13} large):
 - Modulations in vspectra by day-night effect -> IH
 arXiv: hep-ph 0412100, 0304150
 - Fast O(100ms) rise-time of $\overline{v_e}$ lightcurve arXiv:1111.4483

Solar Physics – core metallicity

- Tension helioseismology ← → photosphere spectroscopy
- Use SNO 8B to constrain environmental variables (core T)
- Measure CNO flux and compare to solar models to differentiate high and low metallicity

A la Haxton and Serenelli arXiv:0902.0036

$$^{210}\text{Bi} \longrightarrow ^{210}\text{Po} \longrightarrow ^{206}\text{Pb}$$

Examine time evolution of ²¹⁰Po a rate

http://arxiv.org/abs/1104.1335

08/04/2013

Daya Bay, RENO, Double Chooz

