
7 Preparing ATLAS data for education
worldwide

Respect your parents. They passed school without Google.

Anon [190]

This chapter discusses the education work that forms part of this thesis - ATLAS Open Data. The
ATLAS Open Data project provides open-source access to measured data, simulation, resources,
and documentation for the purpose of education. ATLAS was the first LHC experiment to release
real 13 TeV collision data [166, 191]. The development and testing of specific resources related to
the CC̄/ 2✓OS process are discussed in this chapter. It is important to point out however, that many
other resources unrelated to the CC̄/ 2✓OS process were also developed. All data and resources can
be accessed from the ATLAS Open Data website [148]. This chapter is structured as follows:

1. discussion of the Histogram Analyser;

2. discussion of ATLAS Open Data Jupyter notebooks.

The author’s specific contribution was to:

• create a data pipeline to go from 13 TeV data used for physics analysis to simplified data
formats, which then allowed the creation of datasets that could be used for the CC̄/ 2✓OS
Histogram Analyser and Jupyter notebooks;

• create the 13 TeV datasets used as input for Open Data analyses, including those used in the
CC̄/ 2✓OS Histogram Analyser and Jupyter notebooks;

• write example physics analyses for use with 13 TeV ATLAS Open Data, for example the CC̄/
2✓OS Histogram Analyser and Jupyter notebooks;
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• write corresponding documentation for 13 TeV datasets and example analyses, similar to the
accompanying explanations given throughout this chapter;

• test 13 TeV datasets and example analyses, for example through the CC̄/ 2✓OS Histogram
Analyser and Jupyter notebooks.

7.1 The data

The 13 TeV ATLAS Open Data release constitutes 10 fb�1of experimental data, which is approx-
imately 1/14th of the data collected by ATLAS in Run 2. 10 fb�1correspond to approximately
1000 trillion proton-proton collisions.The whole release is in .root file format, along with csv file
formats for some specific processes. The variables present in the datasets were summarised in
Table 4.4.1, and further information can be found in Ref. [166]. The data can be accessed through
the ATLAS Open Data portal [148] or CERN Open Data portal [149]. Analysis of these data is
possible through a number of tools, including the Histogram Analyser (Section 7.2) and Jupyter
notebooks (Section 7.3)

7.2 Histogram Analyser

The Histogram Analyser is one of the main web-based resources that was developed for using
ATLAS data for education. It allows students to apply selection requirements to histograms without
the need to use computer code. It is possible to apply selection requirements on eight di�erent
variables, all of which are presented as individual histograms. This section introduces and covers
the CC̄/ Histogram Analyser, the individual histograms that form it, and conclusions that can be
drawn from three di�erent signal regions. The CC̄/ Histogram Analyser is focused on because the
author of this thesis was the main developer.

7.2.1 Introduction

The ATLAS Open Data Histogram Analyser [192, 193] is a web-based tool for fast, cut-based
analysis of data, allowing to visualise data using online histograms with only a computer mouse.
This tool shows how to di�erentiate between physics processes. By applying cuts to data, specific
physics processes (signal) can be isolated from the background. The webpage [193] displays nine
histograms of variables which can be used to isolate signal events. One can use their cursor to apply
selections to a particular variable. Cutting on one histogram cuts the whole datasets, therefore
changing the distributions of all 9 histograms - the e�ect on the other variables will be shown
immediately. The Histogram Analyser helps in understanding the data and the relationship between
the signal and background processes. It can simplify and speed-up the selection of cuts, before
coding an analysis. The Histogram Analyser is used for an initial look at the CC̄/ 2✓OS process.

7.2.2 The t t̄` Histogram Analyser

The CC̄/ Histogram Analyser is used to help visualise rare top-quark measured data and simulations.
This Histogram Analyser searches for rare top-quark processes. Data are shown by the black dots,
with error bars. The error bars are statistical. The three main processes are CC̄/ signal, CC̄ background
and / background. This Histogram Analyser also includes minor backgrounds, labelled as ‘Other’
in red. Minor backgrounds are required for data to match the total simulation. ‘Other’ includes
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single top production, ,/ and // diboson production and CC̄, . Each process is represented by a
di�erent colour in the Histogram Analyser.

The Histogram Analyser displays nine histograms, shown in Figure 7.2.1 and described in the
following.

Figure 7.2.1: CC̄/ Histogram Analyser before any selections are applied. The 9 histograms are (top left)
Channel, (top middle) Reconstructed Dilepton Mass, (top right) Number of Jets, (centre left) Number
of b-tagged Jets, (centre middle) Total Lepton Transverse Momentum, (centre right) Missing Transverse
Momentum, (bottom left) Separation Between Leptons, (bottom middle) Opening Angle Between Leptons,
(bottom right) Expected Number of Events.

7.2.3 Expected Number of Events for 10 fb�1

This histogram shows the number of events expected to be detected, reconstructed and recorded by
ATLAS for 10 inverse femtobarn (10 fb�1) of data, before any additional selections are made on the
Histogram Analyser.
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The expected number of real data events reconstructed and recorded by ATLAS is di�erent to the
number of events produced by real collisions. Some events will not be reconstructed due to the way
the detector is constructed, the resolution of the sub-detectors, reconstruction e�ciency and other
ine�ciencies.

Table 7.2.1 shows the cross-sections used by ATLAS Open Data [194], along with the expected
number of events before applying additional cuts with the Histogram Analyser. With no cuts, we
have 75 CC̄/ events, with many more background events. The majority of the background at this
point is / boson production, which can change depending on the cuts applied.

Process Cross-section (pb) Expected # of events

CC̄/ 0.08258096 75

CC̄ 452.693559 23474

/ 3901.1616 120040

Table 7.2.1: Cross-sections used for the di�erent processes of the CC̄/ Histogram Analyser [194], along with
the expected number of events before any additional cuts are applied in the Histogram Analyser.

The significance of CC̄/ quantifies how "significant" the CC̄/ simulation sample is with respect to
the background. It is calculated by the simplified equation:

Number of CC̄/ eventsp
Number of background events

. (7.2.1)

A larger significance value indicates better extraction of the t t̄` signal amongst the back-
grounds.

7.2.4 Preselections

Some pre-selections were applied to reduce the size of the datasets used as inputs to the CC̄/

Histogram Analyser so that the website can run quicker. These pre-selections include:

• exactly 2 leptons are required;

• decays to taus or hadrons are removed;

• events with <3 jets are removed;

7.2.5 The Histograms

Channel

The leptonic decay channels are shown in this first histogram in the top left: dielectron 44, dimuon
`` and electron-muon 4`.



145

Reconstructed Dilepton Mass, M(ll)

The “Reconstructed Dilepton Mass" histogram displays the mass reconstructed from the two leptons
in the final state. For CC̄/ 2✓OS signal and / background, these would originate from a / boson.
With no cuts, this peaks at 90 GeV, due to the huge / boson contribution.

Number of Jets, NJets

The “Number of Jets" histogram displays the number of jets found in the event.

Number of b-tagged Jets, N(BJets)

Jets originating from 1-quarks are identified and labelled, or tagged, using so-called b-tagging
algorithms. 1-tagged jets are expected in top quark decays, but not in leptonic , or / boson
decays.

Total Lepton Transverse Momentum, PT(l,l)

Total Lepton Transverse Momentum is the vectorial sum of the transverse momenta of the observed
charged leptons.

For / boson events, total lepton transverse momentum peaks at low values since the transverse
momenta of both leptons mostly cancel each other. For the other processes this cancellation is not as
pronounced, their distributions peak at between 60 and 90 GeV. This is illustrated in Figure 7.2.2.

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.2: Total Lepton Transverse Momentum (PT(ll) [GeV]) distributions for (a) CC̄/ , (b) CC̄, (c) / .

Missing Transverse Momentum, MET

In the LHC, the initial energy of the colliding partons (quarks or gluons) along the beam axis is not
known. This is due to the energy of each proton being shared and constantly exchanged between its
constituents.

However, the initial momentum of particles travelling transverse to the beam axis is zero. Therefore,
any net momentum in the transverse direction indicates missing transverse momentum.



146

Missing transverse momentum is used to infer the presence of non-detectable particles such as the
neutrino. It is also expected to be a signature of many predicted physics events beyond the Standard
Model, for example the lightest supersymmetric particle.

The standard abbreviation for missing transverse momentum is MET, for historical reasons.

CC̄ decays to two leptons have two neutrinos in the final state while / boson decays to charged
leptons do not. This is illustrated in Figure 7.2.3 by the fact that the CC̄ MET distribution peaks at
higher values than the MET distributions of CC̄/ and / .

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.3: Missing Transverse Momentum (MET [GeV]) distributions for (a) CC̄/ , (b) CC̄, (c) / .

Opening Angle Between Leptons, DeltaPhi(l,l)

This is the opening angle, measured in phi q, between the two leptons. The azimuthal angle q is
measured from the G-axis, around the beam.

If the leptons are emitted back-to-back, this is displayed on the histogram as 1800. / events show a
peak at high values in contrast to all other processes, as shown in Figure 7.2.4. The reason / events
peak at higher values than other processes is because the leptons from the / decay are emitted close
to back-to-back.

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.4: DeltaPhi(l,l) distributions for (a) CC̄/ , (b) CC̄, (c) / .
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Separation Between Leptons, DeltaR(l,l)

Separation, (�'), is calculated using the following equation:

(�')2 = (�q)2 + (�[)2
, (7.2.2)

where q is the azimuthal angle between leptons and [ is the pseudorapidity.

Figure 7.2.5 shows that CC̄/ events show a peak between 1.0 and 1.5, which is lower values than
other processes, with CC̄ peaking between 1.5 and 2.0, and / peaking between 2.5 and 3.0.

(a) CC̄/ (b) CC̄ (c) /

Figure 7.2.5: DeltaR(l,l) distributions for (a) CC̄/ , (b) CC̄, (c) / .

7.2.6 Selections for 2◆-Z-2b6j

Some of the variables presented in the histograms of the CC̄/ Histogram Analyser are shown
pictorially in Figure 7.2.6.
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Figure 7.2.6: Schematic diagram of a CC̄/ decay, with some of the variables presented in the histograms of the
CC̄/ Histogram Analyser labelled. Antiparticles are not labelled because the / boson could be radiated from
either the top or antitop.

The selections needed to define the 2✓-Z-2b6j region in the CC̄/ Histogram Analyser are:

• only the 44 and `` Channels;

• Reconstructed Dilepton Mass between 80 and 100 GeV;

• Number of Jets at least 6;

• Number of b-tagged Jets at least 2.

All requirements imposed so far are requirements for the 2✓-Z-2b6j signal region (see Table 5.2.2).
The remaining variables are not used in the definitions of the final signal regions of the main
analysis for this thesis (Section 6), but are used in the Multi-Variate Analysis (MVA) to described in
Section 6. Therefore, exploring these variables in the Histogram Analyser can give some intuition
as to what the MVA is doing to form signal-rich regions - a key learning objective of the Histogram
Analyser.

These further selections are found to be optimal for increasing significance in the CC̄/ Histogram
Analyser 2✓-Z-2b6j region:

• PT(ll) > 30 GeV;

• MET < 80 GeV;

• DeltaPhi(l,l) < 1400;

• Separation < 3.
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The selections for the CC̄/ 2✓OS channel 2✓-Z-2b6j region are shown in Table 7.2.2, along with the
background they most help reduce. Significance achieved after making each selection sequentially
is also shown in Table 7.2.2.

Variable Selection To reduce Significance
afterwards

Channel 4
+
4
� or `+`� CC̄ 0.197

M(ll) 80 < M(ll) < 100 GeV CC̄ 0.179

N(Jets) �6 / 0.522

N(BJets) �2 / 0.885

PT(ll) >30 GeV / 0.896

MET <80 GeV CC̄ 0.944

DeltaPhi(l,l) <1400
/ 0.968

DeltaR(l,l) <3 / 0.971

Table 7.2.2: Selections for the CC̄/ 2✓OS Histogram Analyser 2✓-Z-2b6j region, along with the background
process that each selection most helps reduce, and the significance achieved after making each selection.
Significance quoted is by applying these selections in order.

After each selection, both the data points and the simulated Monte Carlo distributions change. The
data and simulated Monte Carlo are not exactly the same, but the general agreement is very good.
This shows that these processes are well understood and well modelled.

These selections are shown in Figure 7.2.7, increasing significance to 0.971.
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Figure 7.2.7: CC̄/ Histogram Analyser after applying selections for the CC̄/ 2✓OS 2✓-Z-2b6j region. A
significance of 0.971 is achieved.

No further changes in selection for any histogram increases the significance over 0.971. This
indicates that the selections on Channel, M(ll), N(Jets) and N(BJets) are optimal in terms of signal
region definition for 2✓-Z-2b6j, as is the case for CC̄/ 2✓OS papers published by ATLAS [36]. The
fact that the maximum significance achievable from defining a looser signal region of N(Jets)�5
and N(BJets)�1 indicates that the approach of defining separate signal regions can achieve higher
significance than a looser signal region, e.g. with at least 5 jets rather than at least 6 jets. The
significances of the separate signal regions can then be combined together to achieve a greater
significance for CC̄/ 2✓OS.

7.2.7 Selections for 2◆-Z-2b5j

To achieve a greater significance for CC̄/ 2✓OS by combining signal regions, the same process can
be applied to the 2✓-Z-2b5j signal region of Table 5.2.2 to find a significance of 0.380, shown in
Figure 7.2.8. The selections for the CC̄/ 2✓OS channel 2✓-Z-2b5j region are shown in Table 7.2.3,
along with the background they most help reduce. Significance achieved after making each selection
sequentially is also shown in Table 7.2.3.
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Variable Selection To reduce Significance
afterwards

Channel 4
+
4
� or `+`� CC̄ 0.197

M(ll) 80 < M(ll) < 100 GeV CC̄ 0.179

N(Jets) ==5 / 0.212

N(BJets) �2 / 0.329

PT(ll) >100 GeV / 0.350

MET <130 GeV CC̄ 0.360

DeltaPhi(l,l) <900
/ 0.380

Table 7.2.3: Selections for the CC̄/ 2✓OS Histogram Analyser 2✓-Z-2b5j region, along with the background
process that each selection most helps reduce, and the significance achieved after making each selection.
Significance quoted is by applying these selections in order.

7.2.8 Selections for 2◆-Z-1b6j

The same process can be applied to the 2✓-Z-1b6j signal region of Table 5.2.2 to find a maximum
significance of 0.488, shown in Figure 7.2.9. The selections for the CC̄/ 2✓OS channel 2✓-Z-1b6j
region are shown in Table 7.2.4, along with the background they most help reduce. Significance
achieved after making each selection sequentially is also shown in Table 7.2.4.

Variable Selection To reduce Significance
afterwards

Channel 4
+
4
� or `+`� CC̄ 0.197

M(ll) 80 < M(ll) < 100 GeV CC̄ 0.179

N(Jets) �6 / 0.522

N(BJets) ==1 / 0.472

PT(ll) >20 GeV / 0.483

DeltaR(l,l) <3 / 0.488

Table 7.2.4: Selections for the CC̄/ 2✓OS Histogram Analyser 2✓-Z-1b6j region, along with the background
process that each selection most helps reduce, and the significance achieved after making each selection.
Significance quoted is by applying these selections in order.
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Figure 7.2.8: CC̄/ Histogram Analyser after applying selections for the 2✓-Z-2b5j signal region and optimising
each variable. A significance of 0.380 is achieved.
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Figure 7.2.9: CC̄/ Histogram Analyser after applying selections for the 2✓-Z-1b6j signal region and optimising
each variable. A significance of 0.488 is achieved.
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7.2.9 Conclusion

This study indicates that an MVA will likely select:

• high PT(ll);

• low MET;

• low DeltaPhi(l,l);

• low DeltaR(l,l).

when building a signal-enriched region. No precise values can be given here because an MVA
will optimise di�erently to the by-hand optimisation done in the Histogram Analyser. The fact
that optimum selections for PT(ll), MET, DeltaR(l,l) and DeltaPhi(l,l) are di�erent in the 3 regions
illustrates why MVA training is conducted separately in di�erent regions - because di�erent regions
will yield di�erent optimum selections.

7.3 Jupyter notebooks

Jupyter notebooks [195] are a key online resource to introduce programming and coding, providing
a very suitable arena for using ATLAS data for education. Several notebooks based on the CC̄/ 2✓OS
process were developed, as discussed during this section. They are presented here in sequential
order of increasing di�culty.

7.3.1 Introduction

The release of the 13 TeV ATLAS Open Data was accompanied by a set of Jupyter notebooks that
allow data analysis to be performed directly in a web browser [192, 196, 197]. Several notebooks
with analysis examples are available, including analyses of CC̄/ . The aim of many of these notebooks
is to recreate published ATLAS results.

7.3.2 Analysis from csv

csv files are commonplace in data science outside of particle physics, therefore an analysis from csv
files using ATLAS data is an opportunity to teach the transferrable skill of analysing csv files. As
such, an example analysis starting from csv files and reproducing aspects of an ATLAS published
result [36] is presented here.

Introduction

The csv analysis notebook [198] uses ATLAS Open Data to show the steps to implement Machine
Learning in the CC̄/ 2✓OS analysis, using the same input csv file as was used for the Histogram
Analyser of Section 7.2. The steps taken throughout the notebook to recreate aspects of the ATLAS
published result are:

1. tabulating the input data;

2. checking signal and background distributions for the variables present in the dataset;

3. checking separation between signal and background for the variables present in the dataset;
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4. checking correlations between the variables present in the dataset;

5. training a MVA;

6. checking for overtraining of the MVA;

7. evaluating the performance of the MVA.

Selections

The fact that no CC̄/ 2✓OS signal is visible immediately means that some selections have to be made.
These selections are given in Table 7.3.1.

Reason Code

4
+
4
� or `+`� Channel!=2

Number of jets NJets � 5

Number of b-jets N(BJets) � 1

Close to / mass |Mll - 91.12| < 10 GeV

Table 7.3.1: Initial selections applied to the input data in the Jupyter notebook introducing ML using CC̄/

2✓OS csv data.

After the selections of Table 7.3.1, a useful next step is to see how well signal and background
are separated for each variable, and how high a signal-to-background ratio this can achieve. Such
graphs are shown in Figure 7.3.1. Only 2 from 7 of the input variables are shown, for brevity.



156

(a) Number of jets (b) Number of b-jets

Figure 7.3.1: Separation between signal and background and signal-to-background ratio obtained by selecting
above a particular value of the x-variable in question. Taking (a) NJets as an example, the starting x-value is
5. Taking the ratio of number of signal events with at least 5 jets, to the number of background events with at
least 5 jets gives the S/B value at NJets=5 on the signal:background ratio plot (about 3.5%). Now imagine
selecting only events with at least 7 jets. Taking the ratio of those events passing that selection gives the S/B
value at NJets=7 on the signal:background ratio plot (about 6%). That is how the signal:background ratio
plots are constructed.

Introducing Machine Learning

ML is introduced as a way to construct a variable that can achieve higher separation between signal
and background and signal-to-background ratios. To achieve highest separation, ideally all variables
would be used in the ML technique. However, for example, ";; cannot be used since values around
the Z mass were selected, therefore using this sculpted distribution would lead to overtraining. To
be sure all the other variables can be used, the correlations between them need to be checked. If a
pair of variables is fully correlated (=1.0), using both would not add any new info. Having said this,
some correlation is crucial, because this is what the ML technique exploits. No variable pair is
correlated > 0.75 (absolute value), therefore each variable can be used. With a correlation check
complete, the separation and signal-to-background ratio achievable using the ‘ML_output’ variable
can be seen in Figure 7.3.2.
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Figure 7.3.2: Separation between signal and background and signal-to-background ratio obtained by selecting
above a particular value of ‘ML_output’. The starting x-value is about 0.05. Taking the ratio of number of
signal events with ML_output > 0.05, to the number of background events with ML_output > 0.05 gives the
S/B value at ML_output = 0.05 on the signal:background ratio plot (about 2%). Now imagine selecting only
events with ML_output > 0.6. Taking the ratio of those events passing that selection gives the S/B value at
ML_output=0.6 on the signal:background ratio plot (about 8%). That is how the signal:background ratio
plots are constructed.

ML_output compared to individual variables

The separation and S/B shown in Figure 7.3.2 is better than any of the individual variables of
Figure 7.3.1 could ever have achieved. Recalling that CC̄/ 2✓OS signal nominally produces at least 6
jets, including at least 2 b-jets, allows a further selection to be made, in an attempt to uncover some
significant CC̄/ 2✓OS signal.

Conclusion to the csv exploration notebook

After applying further selections, a significant amount of CC̄/ 2✓OS signal can be seen above 0.8 in
the ML_output distribution . Selecting ML_output > 0.8 would mostly eliminate background and
achieve S/B 15%, as can be seen from Figure 7.3.2.
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This technique of isolating signal at high ML_output allows to make precise measurements of the
CC̄/ 2✓OS signal process. In summary, this notebook introducing ML using CC̄/ shows that:

• putting data into an ML technique means only one variable has to be optimised;

• signal and background distributions are separated more when looking at ML output;

• ML achieves higher S/B than individual variables, because it finds multi-dimension correla-
tions that give better S/B classification.

7.3.3 Full analysis

Having shown a simplified CC̄/ 2✓OS analysis from csv files, similar principles can be extended to
an analysis that fully reproduces a published ATLAS result [36]. The added complexity compared
to the notebook of Section 7.3.2 includes:

• separating the analysis into 3 di�erent signal regions;

• defining control regions;

• creating data-driven background estimates;

• ranking MVA input variables.

Introduction

The notebook presenting a full CC̄/ 2✓OS analysis [199] uses ATLAS Open Data to show the steps
to implement Machine Learning in the CC̄/ 2✓OS analysis, following the ATLAS published paper
“Measurement of the CC̄/ and CC̄, cross sections in proton-proton collisions at

p
B = 13 TeV with the

ATLAS detector" [36]. In particular, this notebook aims to recreate plots from Ref. [36] using a
simplified ML workflow. The first plot that can be recreated is shown in Figure 7.3.3. Similar plots
to Figure 7.3.3 are recreated for the 2✓-Z-2b5j and 2✓-Z-1b6j regions.

(a) Open Data
(b) Ref. [36]

Figure 7.3.3: BDT output distributions in the signal region 2✓-Z-2b6j (here called 6j2b) using (a) ATLAS
Open Data, (b) Ref. [36]. Considering the di�erences in the amount of data and the fact that not every detail
from an ATLAS paper can be followed, the Open Data can reproduce this ATLAS result well. The ‘Other’
background contains SM processes with small cross sections producing two opposite-sign prompt leptons.
The shaded band represents the total uncertainty. The last bin of each distribution contains the overflow.
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Control regions

Plots in control regions can also be recreated, shown in Figure 7.3.4 for 2✓-Z-2b6j as an ex-
ample.Equivalent plots for the 2✓-Z-2b5j and 2✓-Z-1b6j are also recreated.

(a) Open Data
(b) Ref. [36]

Figure 7.3.4: BDT output distributions in the CC̄ control region of 2✓-Z-2b6j (here called 6j2b) using (a)
ATLAS Open Data, (b) Ref. [36]. Considering the di�erences in the amount of data and the fact that not every
detail from an ATLAS paper can be followed, the Open Data can reproduce this ATLAS result well. The
‘Other’ background contains SM processes with small cross sections producing two opposite-sign prompt
leptons, including the CC̄/ process, whose contribution is negligible. The shaded band represents the total
uncertainty. The last bin of each distribution contains the overflow.

Data-driven t t̄ estimates

The CC̄ control regions exampled in Figure 7.3.4 can then be used to build data-driven estimates of
the CC̄ contribution, rather than using the MC estimates in subfigure (a) of Figure 7.3.3.

Ranking input variables

Another result from Ref. [36] that can be recreated is Table 11, showing the definitions and ranking
of input variables for the BDT. This comparison is shown in Figure 7.3.5.
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(a) Open Data (b) Ref. [36]

Figure 7.3.5: The definitions and ranking of input variables for the BDT in the CC̄/ 2✓OS analysis. (a) ATLAS
Open Data, (b) Ref. [36]. Some similarities can be seen between (a) and (b), for example “Number of jet
pairs with mass within a window of 30 GeV around 85 GeV" ranking rather highly for both. Di�erences
between (a) and (b) can also be seen, for example “Scalar sum of ?) divided by the sum of energy of all jets"
ranking highly for (b) but not so highly for (a). Jets and leptons are ordered in descending order of ?) . Only
the first eight jets are considered when calculating the input variables.

Conclusion to the full analysis notebook

Using ATLAS Open Data, a full analysis of the CC̄/ process can be undertaken, reproducing
simplified versions of the results from an ATLAS published paper [36]. Signal and control region
plots can be reproduced in the same format as the ATLAS published paper [36]. The method of
obtaining data-driven CC̄ estimates used in the ATLAS published paper [36] can also be reproduced
using ATLAS Open Data. The ranking of most important variables in the MVA with ATLAS Open
Data in the CC̄/ 2✓OS channel show similarities to the ranking of the most important variables in the
MVA from the ATLAS published paper [36].

7.4 Comparisons with full ATLAS data

This section compares results from Section 7.2 and Section 7.3.3 using 10 fb�1of ATLAS Open
Data in simplified analyses to Section 6 using 139.0 fb�1of full Run 2 ATLAS data in a full analysis.
Results will be compared in terms of:

• ranking of variables by the MVAs;

• statistical significance achievable.

7.4.1 Comparison of variable ranking between Open Data and binary BDTs

Table 6.1.2 ranking input variables using BDTs with Full Run 2 data can be compared side-by-side
with the information from Figure 7.3.5 ranking input variables using BDTs with ATLAS Open Data.
This comparison is shown in Table 7.4.1. A number of similarities can be seen, e.g. #

+<0BB

9 9
is

ranked within the top 4 in each of the six BDTs, or that pll
T is ranked within the bottom 3 in each of

the six BDTs. However, di�erences can be seen also, perhaps the most stark being that # C>?�<0BB

1 9 9
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is ranked 1st in the 2b6j Open Data BDT yet 16th in the 2b6j Full Run 2 BDT. This suggests that
some variables are important over a range of amount of data available, whereas other variables only
become more important when more data are available.

1b6j 2b5j 2b6j
rank Open Data Full Run 2 Open Data Full Run 2 Open Data Full Run 2
1 #

+<0BB

9 9
H6jets

T p4jet
T H6jets

T #
C>?�<0BB

1 9 9
H6jets

T

2 p6jet
T [;; #

+<0BB

9 9
�'0E4

9 9
p6jet

T �';;

3 [;; #
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Table 7.4.1: Comparison of ranking of the variables used for BDT training, when using a single BDT per
2✓OS region. The comparison is performed between the BDTs using ATLAS Open Data and the BDTs using
Full Run 2 data.

7.4.2 Comparison of variable ranking between Open Data and binary DNNs

Figure 6.2.1 ranking variables using DNNs with Full Run 2 data can be compared side-by-side with
the information from Figure 7.3.5 ranking variables using BDTs with ATLAS Open Data. This
comparison is shown in Table 7.4.2. A number of similarities can be seen, e.g. #+<0BB

9 9
is ranked

within the top 3 in each of the six MVAs, or that pll
T is ranked within the bottom 3 in each of the

six MVAs. However, di�erences can be seen also, perhaps the most stark being that p6jet
T and p5jet

T
are ranked much higher in the Open Data BDTs than they are in the Full Run 2 DNNs. This again
suggests that some variables are important over a range of amount of data available, whereas other
variables only become more important when more data are available.
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Table 7.4.2: Comparison of ranking of the variables used for MVA training. The comparison is performed
between the BDTs using ATLAS Open Data and the initial DNNs using Full Run 2 data.

7.4.3 Statistical significance comparison between Histogram Analyser and initial
multiclass DNN

The statistical significance from Figure 6.2.5 can be compared to the significance achievable from
the Histogram Analyser discussed in Section 7.2, whose final significances are shown in Figure 7.2.7,
Figure 7.2.8 and Figure 7.2.9 for the 2✓-Z-2b6j, 2✓-Z-2b5j and 2✓-Z-1b6j channels respectively.
This comparison is shown in Table 7.4.3. The Histogram Analyser only uses about 1/14th of the data
used for the DNNs of Section 6.3 as this is all of the 13 TeV data currently made open by ATLAS.
A more direct comparison can be made by scaling the Histogram Analyser significances by the
square root of the ratio between the full Run 2 luminosity and the luminosity used in ATLAS Open
Data,

p
139.0/10, because statistical significance scales with the square root of number of events.

Even the scaled statistical significances achievable by the Histogram Analyser are about 2.5 times
less than the statistical significances achievable by the DNNs. This hints at the power of DNNs
in optimising for statistical significance in the CC̄/ 2✓OS analysis, compared to a cut-and-count
analysis.
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Channel Histogram Analyser
significance

Histogram Analyser
significance (scaled)

DNN
significance

2b6j 0.971 (Figure 7.2.7) 3.620 10.8

2b5j 0.380 (Figure 7.2.8) 1.417 4.9

1b6j 0.488 (Figure 7.2.9) 1.819 4.5

Table 7.4.3: A comparison of the statistical significance that can be achieved using the DNNs of Section 6.3,
with the Histogram Analyser of Section 7.2. It is important to remember that the Histogram Analyser uses
about 1/14th of the data used for the DNNs of Section 6.3.
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